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The binary problem - The problem of relativistic binaries

In Newtonian theory
I it is modelled by the

Newtonian gravitational
potential
VNewt = −Gm1m2

|r2−r1| .
I it is analytically solvable,

with Keplerian orbits as
solutions (ellipses).

In general relativity
I it has no known analytical solution.
I it produces gravitational waves, dissipating

energy and angular momentum out of the
binary.
I This in turn makes the binary fall inn, and

eventually merge.
I The evolution can be separated into three

phases:

Inspiral Merger Ringdown
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Separation of scale
In order to approximate its evolution, a
non-relativistic binary can be separated
into 2 time scales.

1. A short time scale of only a few
periods of the orbit.
I GW radiation can be neglected.
I The motion can be approximated

by conservative orbits.
I At leading order ENewt = −1

2µv2

and Fquad = 32
5

η2

Gc5 v10 for circular,
conservative motion.

2. A long time scale of many periods.
I GW radiation reduces the orbital

energy, making the binary spiral in.

Post-Newtonian expansion
In the short time scale, slow moving / far
separated binaries are well described by
Newtonian gravity. Adding relativistic
corrections increases the accuracies for
faster moving orbits. Expanding
quantities in factors of (v/c) is called
post-Newtonian expansion.
Computing the PN expansion of the
orbital energy E, and the energy flux F ,
in the short time scale provides
information that approximate the
evolution in the long time scale.
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The binary problem - Inspiral evolution

How does gravitational waves affect
the binary dynamics?
Using energy conservation

−F = dE

dt
= dE

dω

dω

dt

⇒ dt = −F−1 dE

dω
dω .

(1)

Thus, knowing E(ω) and F(ω) provides
the diff.eq. dictating the time evolution
of ω(τ) = ω(tc − t).
Using Kepler’s third law ω, r, and v = ωr
can be related to each other, assuming
circular orbits.

ω2 = GM

r3 ⇔ v2 = GM

r
. (2)

ω(τ) = 5
8

(5GM
c3

)−5/8
τ−3/8

{
1+

( 743
2688 + 11

32η

)(5GM

c3η

)1/4
τ−1/4

}
. (3)
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Using Feynman diagrams to compute orbital energy - Gravity as a
field theory
In the 60’s R. Feynman investigated gravity, using field theory techniques. He
determined the graviton Lagrangian to be

L(2)+Lint = −1
2hµν,ρhµν,ρ + 1

4h,µh,µ+λ

2 hµνT µν , (4)

with equation of motion

hµν = −λ

2
1
2
(
ηµαηνβ +ηµβηνα −ηµν ηαβ

)
T αβ ≡ −λ

2 Pµν:αβ T αβ (5)

⇒ hµν(x) = −λ

2 Pµν:αβ

∫
∆ret(x−y)T αβ(y)d4y . (6)

Here ∆ret(r) = −δ(ct−|r|)
4π|r| is the retarded Green’s function of the d’Alembertian

operator = ∂σ ∂σ.

5



Using Feynman diagrams to compute orbital energy - Gravity as a
field theory
In the 60’s R. Feynman investigated gravity, using field theory techniques. He
determined the graviton Lagrangian to be

L(2)+Lint = −1
2hµν,ρhµν,ρ + 1

4h,µh,µ+λ

2 hµνT µν , (4)

with equation of motion

hµν = −λ

2
1
2
(
ηµαηνβ +ηµβηνα −ηµν ηαβ

)
T αβ ≡ −λ

2 Pµν:αβ T αβ (5)

⇒ hµν(x) = −λ

2 Pµν:αβ

∫
∆ret(x−y)T αβ(y)d4y . (6)

Here ∆ret(r) = −δ(ct−|r|)
4π|r| is the retarded Green’s function of the d’Alembertian

operator = ∂σ ∂σ.

5



Using Feynman diagrams to compute orbital energy - Gravity as a
field theory
In the 60’s R. Feynman investigated gravity, using field theory techniques. He
determined the graviton Lagrangian to be

L(2)+Lint = −1
2hµν,ρhµν,ρ + 1

4h,µh,µ+λ

2 hµνT µν , (4)

with equation of motion

hµν = −λ

2
1
2
(
ηµαηνβ +ηµβηνα −ηµν ηαβ

)
T αβ ≡ −λ

2 Pµν:αβ T αβ (5)

⇒ hµν(x) = −λ

2 Pµν:αβ

∫
∆ret(x−y)T αβ(y)d4y . (6)

Here ∆ret(r) = −δ(ct−|r|)
4π|r| is the retarded Green’s function of the d’Alembertian

operator = ∂σ ∂σ.

5



Using Feynman diagrams to compute orbital energy - The action of
classical point particles
This makes the action of two point particles interacting via the graviton field

Spp =
∫ d4x

c

2∑
a=1

[
1
2maẋ2δ3(x−xa)+ λ

2 hµν(x)
γ−1

a maẋµẋνδ3(x−xa)︷ ︸︸ ︷
T µν

ppa(x)
]

+L(2). (7)

The graviton field can be extremized using the EoM (6) yielding

Spp =
∫ d4x

c

2∑
a=1

[
1
2maẋ2δ3(x−xa(t))

+ λ

2

(
−λ

2 Pµν:αβ

∫
∆ret(x−y)T αβ

ppb(y)d4y

)
T µν

ppa(x)
] (8)

=
∫

dt
1
2(m1v2

1 +m2v2
2)−

∫∫ d4xd4y

c

λ

2 T µν
pp1(x)∆ret(x−y)Pµν:αβ

λ

2 T αβ
pp2(y) (9)

6



Using Feynman diagrams to compute orbital energy - The action of
classical point particles
This makes the action of two point particles interacting via the graviton field

Spp =
∫ d4x

c

2∑
a=1

[
1
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Spp

v
c

∼0
=
∫ [1

2
(
m1v2

1 +m2v2
2

)
+ λ2

8
m1m2c4

4πr

]
dt (10)

=
∫ [1

2
(
m1v2

1 +m2v2
2

)
+ Gm1m2

r

]
dt (11)

This potential can be expressed graphically as

λ
2

∫
T µν (x) d4x λ

2

∫
T αβ(y) d4y

−∆inst(x − y)P
µν:αβ
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Using Feynman diagrams to compute orbital energy - Expanding the
action

Until now, the action has only been expanded to quadratic order in h, but GR is a
non-linear theory and thus contain terms of all orders in h.

SEH ∼ 1
2

∫
d4x

[
(∂h)2 +λh(∂h)2 +λ2h2(∂h)2 + . . .

]
(12)

∼ + + + · · ·
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Using Feynman diagrams to compute orbital energy - Expanding the
action
Likewise, taking the interaction term to be the geodesic, also the interaction
acquires higher order terms.

Spp =−mc2
∫

dτ

√
1−λhµν

ẋµ

c

ẋν

c
(13)

=−mc2
∫

γ−1 dt+ λ

2

∫
dthµνγ−1mẋµẋν + mλ2

8c2

∫
dtγ−1

(
hµν ẋµẋν

)2
+ . . .

∼ + + + · · ·
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Using Feynman diagrams to compute orbital energy - Assigning PN
order to diagrams

Separating the field into potential modes H (dashed lines) and radiation modes H
(squiggly lines), hµν = Hµν +Hµν , the potential propagator can be PN expanded
off shell.

∆inst(k) ≡ 1
−kµkµ

= 1
−k2

1
1−k2

0/k2 = 1
−k2

(
1+

(
k0
k

)2
+
(

k0
k

)4
+ . . .

)
. (14)

∼ + × + × × + · · ·

Each factor of k2
0/k2 results in a factor of v2/c2, and are denoted by ⊗ in graphs.
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It can be shown that factors of H ∼
√

v
r , and λ ∼

√
rmv2

m ≡
√

Lv
m in the final

expression. Then, it is straight forward to predict the PN order of different
diagrams.

∼
√

L (15)

∼ v2 (16)

∼ v4/
√

L (17)

∼ v2/
√

L (18)

∼ v4/L (19)
11



All graviton lines must remain connected if the particle lines are stripped of. This
is because particle lines are not propagating, thus disconnected graviton lines
belong to separate diagrams.

= 2×

12



Using Feynman diagrams to compute orbital energy - The resulting
1PN diagrams

v1 v1

(a)

v0 v2

(b)

×

(c)

(d) (e)

Figure

V(a) = Gm1m2
r

4v1·v2
c2

V(b) = −Gm1m2
r

3
2

v2
1 +v2

2
c2

V(c) = −Gm1m2
r

v1 ·v2 −(v1·r̂)(v2·r̂)
2c2

V(d) = −Gm1m2
r

G(m1 +m2)
2rc2

V(e) = Gm1m2
r

G(m1 +m2)
rc2
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Using Feynman diagrams to compute orbital energy - The resulting
Lagrangian
Summing up the 0PN and 1PN diagrams, and adding kinetic energy terms up to
1PN results in the Einstein-Infeld-Hoffmann Lagrangian.

LEIH =
∑

a

1
2mav2

a

(
1+ v2

a

4c2

)
+ Gm1m2

r

{
1+

1
2c2

[
3(v2

1 +v2
2)−7v1 ·v2 −(v1·r̂)(v2·r̂)− GM

r

]}
.

(20)

Imposing circular orbits, EoM’s can be found relating r, ω, and v. E.g.

ω2 = GM

r3

{
1− (3−η)GM

rc2 +O
(
c−4

)}
, (21)

which is the 1PN version of Kepler’s third law. For the Earth-Moon system, this is
a correction of δr ≈ 0.5 cm.

14



Using Feynman diagrams to compute orbital energy - The resulting
Lagrangian
Summing up the 0PN and 1PN diagrams, and adding kinetic energy terms up to
1PN results in the Einstein-Infeld-Hoffmann Lagrangian.

LEIH =
∑

a

1
2mav2

a

(
1+ v2

a

4c2

)
+ Gm1m2

r

{
1+

1
2c2

[
3(v2

1 +v2
2)−7v1 ·v2 −(v1·r̂)(v2·r̂)− GM

r

]}
.

(20)

Imposing circular orbits, EoM’s can be found relating r, ω, and v. E.g.

ω2 = GM

r3

{
1− (3−η)GM

rc2 +O
(
c−4

)}
, (21)

which is the 1PN version of Kepler’s third law. For the Earth-Moon system, this is
a correction of δr ≈ 0.5 cm.

14



Using Feynman diagrams to compute orbital energy - The resulting
Lagrangian
Summing up the 0PN and 1PN diagrams, and adding kinetic energy terms up to
1PN results in the Einstein-Infeld-Hoffmann Lagrangian.

LEIH =
∑

a

1
2mav2

a

(
1+ v2

a

4c2

)
+ Gm1m2

r

{
1+

1
2c2

[
3(v2

1 +v2
2)−7v1 ·v2 −(v1·r̂)(v2·r̂)− GM

r

]}
.

(20)

Imposing circular orbits, EoM’s can be found relating r, ω, and v. E.g.

ω2 = GM

r3

{
1− (3−η)GM

rc2 +O
(
c−4

)}
, (21)

which is the 1PN version of Kepler’s third law. For the Earth-Moon system, this is
a correction of δr ≈ 0.5 cm.

14



Using Feynman diagrams to compute orbital energy - The resulting
Lagrangian
Summing up the 0PN and 1PN diagrams, and adding kinetic energy terms up to
1PN results in the Einstein-Infeld-Hoffmann Lagrangian.

LEIH =
∑

a

1
2mav2

a

(
1+ v2

a

4c2

)
+ Gm1m2

r

{
1+

1
2c2

[
3(v2

1 +v2
2)−7v1 ·v2 −(v1·r̂)(v2·r̂)− GM

r

]}
.

(20)

Imposing circular orbits, EoM’s can be found relating r, ω, and v. E.g.

ω2 = GM

r3

{
1− (3−η)GM

rc2 +O
(
c−4

)}
, (21)

which is the 1PN version of Kepler’s third law. For the Earth-Moon system, this is
a correction of δr ≈ 0.5 cm.

14



Using Feynman diagrams to compute orbital energy - The 1PN energy

Provided a Lagrangian, it is a straightforward matter to obtain the energy.
Preforming the Legendre transform, the Hamiltonian is obtained

HEIH =1
2µv2

(
1+ 3

4(1−3η)v2

c2

)
− GMµ

r

{
1− GM

2rc2 − v2

2c2

[
3+η

(
1+ ṙ2

v2

)]}
. (22)

For circular orbits this is

E = −µ

2 (GMω)2/3
{

1−
(3

4 + 1
12η

) (GMω)2/3

c2 +O
(
c−3

)}
, (23)

which is the E(ω) needed to compute ω(t).
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v2

)]}
. (22)

For circular orbits this is

E = −µ

2 (GMω)2/3
{

1−
(3

4 + 1
12η

) (GMω)2/3

c2 +O
(
c−3

)}
, (23)

which is the E(ω) needed to compute ω(t).

15



Using Feynman diagrams to compute orbital energy - The 1PN energy

Provided a Lagrangian, it is a straightforward matter to obtain the energy.
Preforming the Legendre transform, the Hamiltonian is obtained

HEIH =1
2µv2

(
1+ 3

4(1−3η)v2

c2

)
− GMµ

r

{
1− GM

2rc2 − v2

2c2

[
3+η

(
1+ ṙ2
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The energy flux - A brief flash of the result

At the large spatial scale, the radiation modes H couple to the binary masses +
potential modes H, which are effectively a point source endowed with multipole
structure.
Using the EoM found at short range, this motion can be inserted into the different
multipoles and determine the energy flux associated with that type of motion at
different PN orders.
The result at 1PN is

F = 32
5

η2

G

(GMω)10/3

c5

{
1−

(1247
336 + 35

12η

) (GMω)2/3
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Summary - How to compute GWforms using Feynman diagrams

1. Start by separating the binary evolution into two time scales.
2. In the short time scale, assume conservative motion by ignoring radiation.

2.1 Make diagrams with desired PN scaling and compute these.
2.2 Expand lower order diagrams with velocity dependent couplings and relativistic

corrections to propagators.
2.3 Sum up to obtain Lagrangian. Compute the corresponding Hamiltonian to

obtain the orbital energy.
3. Using the conservative motion of the short range scale, compute the radiation

produced at long range scale. This still in at the short time scale, such that
the effect of GW emission can be ignored.

4. Provided with the PN expansion of E(ω) and F(ω), compute the time
evolution of ω(t) from dt = −F−1 dE

dω dω.
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Thank you for your attention
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