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Introduction

Since its experimental discovery in 2004 (1), graphene has attracted the attention of both the

condensed-matter and the high-energy physics community. This is partly due to the fact that

its low-energy electronic excitations can be described by a variant of quantum electrodynamics

(QED) (2). As the electronic properties of graphene can be probed experimentally, it provides

a unique opportunity to test the famous argument put forth by Dyson regarding the breakdown

of the QED perturbative expansion (3). In conventional QED, the perturbative series in the

fine-structure constant is asymptotic and gives increasingly accurate results up to a very large

order, roughly the value of the inverse fine-structure constant (⇡ 137). The action of the ef-

fective low-energy theory of graphene is written as S =
R
dtd

2
x(i ̄a�

0
@0 a + ivF  ̄a�

i
@i a �

e ̄a�
0
 aA0) +

1
2

R
dtd

3
x(@iA0)2, where  a is a two-flavour, four-component Dirac spinor. The

effective fine-structure constant is rescaled by the ratio of the speed of light to the Fermi ve-

locity vF , which is roughly 300. It is thus thought that the perturbative series will display its

asymptotic behavior at much lower orders than ordinary QED, demonstrating the inadequacy

of perturbation theory. Ideally, the deviation between the perturbative results calculated within

the low-energy continuum theory and experimental data should give a clear indication about the

onset of this divergence (4).

Before one attempts such a comparison, one must be sure that suspended graphene, which

features the largest FFA you mean unscreened electron-electron interaction, is described by the

correct continuum field theory. This implies that other effects, such as the lattice scale physics

or disorder, are either unimportant, or can be incorporated into the effective field theory (EFT)

in a controlled way.

In the absence of a reliable continuum theory, the only way to proceed in a systematic man-

ner is through non-perturbative numerical calculations of the many-body Hamiltonian. The in-
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Fermi velocity vF is ~ 1/300 of the speed of light, hence fine structure constant 2. 
Thus free-standing graphene is an ideal playground to test the properties of 
perturbative series in strongly correlated QFT

α ≈

Following Dyson’s argument on the properties of the perturbative series of QED, 
we have asymptotic series: 

Normal QED: we can go up to 137 orders in perturbative series and achieve spectacular 
precision of at least 12 digits (anomalous magnetic dipole moment of electron)  
Graphene effective low energy theory: possible divergence already in the first orders of 
perturbative expansion



Renormalization of the Fermi velocity (2+1D QED)
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TR addUeVV WKe dLVcXVVed SURbOeP Rf ³PLVVLQJ´  
e-e interactions, we have studied SdHO in suspended 
graphene devices (inset in Fig. 2a). They were fabricated 
by using the procedures described previously [15-17]. 
After current annealing, our devices exhibited record 
mobilities P ~1,000,000 cm2/Vs, and charge homogeneity 
Gn was better than 109 cm-2 so that we observed the onset 
of SdHO in magnetic fields B |0.01T and the first 
quantum Hall plateau became clearly visible in B below 
0.1T (see Supplementary Information [18]). To extract the 
LQfRUPaWLRQ abRXW JUaSKeQe¶V eOecWURQLc VSecWUXP, Ze 
employed the following routine. SdHO were measured at 
various B and n as a function of temperature (T). Their 
amplitude was then analyzed by using the standard 
Lifshitz-Kosevich (LK) formula T/sinh(2S2Tmc/=eB), 
which holds for the Dirac spectrum [19] and allows one to 
find the effective cyclotron mass mc at a given n. This 
approach was previously employed for graphene on SiO2, 
and it was shown that, within experimental accuracy and 
for a range of n ~1012 cm-2, mc was well described by 
dependence mc ==(Sn)1/2/ v*

F, which corresponds to the 
linear spectrum [11,12]. With respect to the earlier 
experiments, our suspended devices offer critical 
advantages. First, in the absence of a substrate, 
interaction-induced spectral changes are expected to be 
maximal because no dielectric screening is present. 
Second, the high quality of suspended graphene has 
allowed us to probe its spectrum over a wide range of n 
well below 1012 cm-2, which is essential as the spectral 
changes are expected to be logarithmic in n. Third, due to 
low Gn, we can approach the Dirac point within  
a few meV. This low-E regime, in which a major 

renormalization of the Dirac spectrum is expected, has  
previously been inaccessible.  

 
Figure 2a plots examples of T dependence of the 

SdHO amplitude at low n (for further examples of SdHO 
and their T dependence, see [18]). The curves are well 
described by the LK formula but the inferred mc are twice 
lower than expected if we assume that vF retains its 
conventional value v*

F. To emphasize this profound 
discrepancy with the earlier experiments, the dashed 
curves in Fig. 2a plot the T dependence expected under 
the assumption vF = v*

F. The SdHO would then have to 
decay twice faster with increasing T, which would result 
in a qualitatively different behavior of SdHO. From the 
measured mc we find vF |1.9 and 2.2x106 m/s for the 
higher and lower |n| in Fig. 2a, respectively. We have 
carried out measurements of mc such as in Fig. 2a for 
many different n, and the extracted values are presented in 
Fig. 2b for one of the devices. For the linear spectrum, mc 
is expected to increase linearly with kF = (Sn)1/2. In 
contrast, the experiment clearly shows a super-linear 
behavior. Trying to fit the experimental curves in Fig. 2b 
with the linear dependence mc(kF), we find vF t2.5x106 
m/s at n <1010 cm-2 and d1.5x106 m/s for n >2x1011cm-2 as 
indicated by the dashed lines. The observed super-linear 
dependence of mc can be translated into vF varying with n. 
Fig. 2c replots the data in Fig. 2b in terms of 
vF ==(Sn)1/2/mc which shows a diverging-like behavior of 
vF near the NP. This sharp increase in vF (by nearly a 
factor of 3 with respect to v*

F) contradicts to the linear 
PRdeO Rf JUaSKeQe¶V VSecWUXP bXW LV cRQVLVWeQW ZLWK WKe 
spectrum reshaped by e-e interactions (Fig. 1). 

 
FIG. 2. PURbLQJ JUaSKeQe¶V eOecWURQLc VSecWUXP WKURXJK SdHO. (a) Symbols show examples of the T dependence of 
SdHO for n |+1.4 and ±7.0x1010 cm-2 where the sign r corresponds to electrons and holes, respectively. The dependence 
is well described by the LK formula (solid curves).  The dashed curves are the behavior expected for vF = v*

F (in the 
matching colors). The inset shows a scanning electron micrograph of one of our devices. The vertical graphene wire is 
|2 Pm wide and suspended above an oxidized Si wafer being attached to Au/Cr contacts. Approximately a half of 300 
nm thick SiO2 was etched away underneath the graphene structure. (b) mc as a function of kF for the same device. The 
e[SRQeQWLaO deSeQdeQce Rf SdHO¶V aPSOLWXde RQ mc allows high accuracy in determining the cyclotron mass, as shown 
by the error bars. The dashed curves are the best linear fits mc vn1/2 at high and low n. The dotted line is the behaviour of 
mc expected for the standard value of vF = v*

F. GUaSKeQe¶V VSecWUXP UeQRUPaOL]ed dXe WR e-e interactions is expected to 
result in the dependence shown by the solid curve. (c) mc re-plotted in terms of varying vF. The color scheme is to match 
the corresponding data in (b). 

Experiments
Suspended graphene: Elias et al, Nature 
Physics 7, 701 (2011)  
Graphene encapsulated in hBN: 
Proceedings of he National Academy of 
Sciences 110, 3282 (2013) 

Important: measurements were maid at 
fini te chemical potent ia l (possible 
add i t i ona l sc reen ing o f Cou lomb 
interaction due to the increased density of 
charge carriers). 

Another possible sources of corrections: 
charge puddles, strain, lattice defects, 
curvature, etc.   

of a quartz substrate. The latter was essential to minimize the parasitic capacitance 
that otherwise did not allow the use of the standard oxidized Si wafers as a substrate. 
Transfer of large graphene Àakes on Àat surfaces resulted in many bubbles ¿lled with 
either air or hydrocarbon residue (23, 24). By using electron-beam lithography, we 
designed our top electrodes so that they did not cover bubbles. This proved to be 
important to achieve high charge homogeneity over the whole device area. 
 
The differential capacitance was measured by using a capacitance bridge at a 1 kHz 
excitation frequency. The excitation amplitude was in the range 5–25 mV, carefully 
chosen for each device, so that the induced oscillations in ȝ� were below the 
Àuctuations caused by charge inhomogeneity. 
 
Zero-Field DoS. An example of our capacitance measurements as a function of bias 
V applied between the two electrodes is presented in Fig. 2a. C exhibits a sharp 
minimum near zero bias and tends to saturate at large positive and negative V. We 
attribute the behavior to a small value of CQ associated with the low DoS near the 
neutrality point (6–12). Indeed, the DoS in graphene is given by 
 
dn/dȝ = 8|ȝ|ʌ/h2vF

2 ;     [4] 
 
where h is the Planck constant. Near ȝ|0, CQ approaches zero, and the second term in 
1 dominates the measured capacitance. With increasing bias, ȝ�moves toward higher 
DoS in graphene’s energy spectrum and the effect of CQ decreases. 
 
By combining 1, 2, and 4 and using the expression CG = İ0İBNS/d for our parallel-
plate capacitors, we can ¿t the measured curves with essentially only one parameter 
vF. To this end, thickness d of hBN was found by using atomic force microscopy, and 
hBN’s dielectric constant İBN|4.5 is known from literature. In addition, the ratio 
d/İBN that comes into the ¿nal expression for C is found independently from 
measurements of quantum oscillations in ¿nite B (see below). Thus, noticing that the 
device area S was determined by optical and scanning electron microscopy within 5% 
accuracy, CG can be determined directly, without any ¿tting parameter. The ¿t, 
shown in Fig. 2a, yields vF

0 = 1.05 × 106 m/s for all our devices, in excellent 
agreement with the values reported in transport experiments (25, 26). Note that a 
small parasitic capacitance (associated with wiring, usually on the order of a few tens 
of femto-Farad, depending on the particular setup used) has been subtracted in such a 
way that at a very high carrier concentration the measured capacitance is equal to CG 
(which is known without any ¿tting parameter). 
 
Although the experimental and theoretical curves in Fig. 2a practically coincide, the 
high accuracy of our measurements allows further comparison between experiment 
and theory by zooming in at minute differences between the curves, which are not 
visible on the scale of Fig. 2a. To zoom in, we can replot our data in terms of vF. By 
using the standard expression ȝ� � (n/ʌ)1/2hvF(n)/2 to substitute ȝ� in 3, we arrive at 
vF(n��  � ��ʌ�n)1/2(eV í� ne2d/İ0İBN)/h. Fig. 2b shows the experimental dependence 
vF(n), where n was obtained self-consistently by integrating the non-constant 
differential capacitance over the corresponding range of V (note that the standard 
approximation nvV fails for strongly varying C). One can see that vF signi¿cantly 
depends on n but lies around the average value of vF reported above. 
 

 

 

Fig. 1. Schematics of our 
experiments. (a) Graphene 
capacitors. Graphene crystal 
(blue hexagonal layer) is 
contacted by a gold pad. Second 
electrode is deposited onto thin 
hBN (purple). (b) Schematic 
band diagram at zero bias. (c) 
6DPH� DV� �E�� EXW� DW� D� ¿QLWH� ELDV��
�G��%DQG�GLDJUDP�DW�¿QLWH�B with 
WKH� )HUPL� HQHUJ\� ȝ� LQ� JUDSKHQH�
DW�D�¿OOLQJ�IDFWRU�Ȟ� ����(DFK�//�
is shown to be 4× degenerate. 
 

temperature effects. Due to the fact that we are simulating a finite volume, the resolution in

momentum is limited by the lattice size. Thus, the numerical differentiation needed for the

computation of vF brings about additional systematic errors (see supplementary material for

examples). For this reason, we prefer to plot the renormalized dispersion relation E(k) directly

wherever possible. Indeed, the logarithmic renormalization of the Fermi velocity, vF (k) =

vF,0(1 + C ln⇤/k), also leads to the logarithmic renormalization of the energy itself: E(k) =

E0(k)[1 + C(1 + ln⇤/k)], where E0(k) is the free dispersion relation. Thus we have a well

defined fitting function for the QMC and LPT data sets.

The renormalized dispersion relation for potential variants I and II is shown in fig. 2. Unlike

previous QMC studies (19), the lattice size appears to be large enough to clearly observe the

non-linear dispersion relation. For simulations on the 102 ⇥ 102 lattice, all points except for

the one closest to the Dirac point, are well-described by the logarithmic fit. This logarithmic

increase of the Fermi velocity in the infrared signals non-Fermi liquid behavior. The first point

trends upwards with respect to the logarithmic curve so that the entire data set is actually better

described by a power law fit. This confusing result can not be attributed to finite-size effects, as

the points on a 48⇥ 48 lattice with the same temperature do not demonstrate similar behaviour

(fig. 2b). They show only a small uniform shift from the 102 ⇥ 102 lattice data, with the first

point not special in any way. However, a comparison of the 48 ⇥ 48 lattice data, obtained at

two different temperatures (fig. 2c) helps to reveal that it is actually finite-temperature effects

which are responsible for this upward shift of the first point. Once we reduce both the inverse

temperature and the lattice size by a factor of two, we reproduce the same jump of the first

point with respect to the logarithmic curve, in comparison with the same lattice at a lower

temperature. Notably, further points do not experience sizeable finite-temperature or finite-size

effects, so we can reliable include them in our comparison with LPT and experiment.

A comparison with experiment is shown in fig. 3, where the QMC data is displayed along-
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C =
α
4
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⇠
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⌘
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⇠

e e
⌘

R

Figure 7: Diagrammatic expression for the quantity G(0)⌃(1)G(0), where ⌃(1) is the bare first-
order self-energy.

In terms of Feynman diagrams, (36) is depicted in (6). The poles of Ĝ determine the quasipar-

ticle’s dispersion and this leads to the following equation

✓
ip0 (Ĝ�1

0 � ⌃̂)1,2
(Ĝ�1

0 � ⌃̂)2,1 ip0

◆
= 0, p0 = iER(~p). (37)

Typically, this equation must be solved numerically for a fixed momentum ~p in the Brillouin

zone.

The self-energy, to lowest-order, is given by the Fock diagram displayed in Fig. 7. The

expression for the first-order self-energy is given by

⌃(1)(p0, ~p)f,⇠;c,⌘ =
�c,f
4⇡L2

Z
dq0

X

~q


⇧(0)

⌘,⇠
(~q)G(0)

⇠,⌘
(q0, ~p+ ~q)

+⇧(0)
⇠,⌘
(~q)G(0)

⇠,⌘
(q0, ~p� ~q)

�
. (38)

The sum over spatial momentum ranges over the entire Brillouin zone and the integration over

all frequencies can be performed analytically. Noting that (38) does not depend on p0, one can
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-  one-loop self-energy correction

Infrared effect, thus large lattices are crucial for its 
detection. For this reason we perform auxiliary field 
QMC simulations on 102x102 lattice with long-range 
Coulomb interaction. 

p p + q p

qq

R

Figure 9: Diagram corresponding to the RPA self-energy. Here we have omitted the sublattice
and p-h indices.

= +

+ + . . .

R

Figure 10: Diagram expression for the bosonic propagator in the RPA approximation. The
polarization is calculated to first-order, which corresponds to the particle-hole bubble.

µ ⌫

p p

q � p

q

⇠
d
c

⌘ a

b

R

Figure 11: Diagram expression for the particle-hole bubble which is the lowest order approxi-
mation to the polarization, P̂ .
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Random Phase Approximation (RPA): C =

where as is clear from (52), the RPA correction also depends on ER. The solution to (53) can

be obtained without much difficulty using fixed-point iterations for root-finding.

A natural question arises as to whether a comparison of our perturbative calculation in the

lattice theory with the well-known results in the continuum is possible. The well-known con-

tinuum RPA results (14, 15) describe Nf = 2 flavors of four-component Dirac fermions in two

spatial dimensions coupled to a scalar potential, A0, which lives in all three spatial dimensions.

The action is as follows

SE = �
Z

dtd2x( ̄↵�0@0 ↵ + v0,F  ̄↵�i@i ↵ + iA0 ̄↵�0 ↵)

1

2e2

Z
dtd3x(@iA0)

2, (54)

where v0,F is the bare Fermi velocity and the four-dimensional gamma matrices satisfy the

Clifford algebra {�µ, �⌫} = 2�µ⌫ . In the notation of (15), we give the resulting renormalization

group (RG) equation governing the running of the Fermi velocity

@ log vF (k)

@ log k
= � 4

⇡2Nf

(F1(�)� F0(�)) , (55)

where the rescaled coupling is � ⌘ e2Nf/(16vF ) and

F1(�) =

⇢
�(

p
1� �2/�) arccos�� 1 + ⇡/(2�) � < 1

�(
p
�2 � 1/�) log

�
�+

p
�2 � 1

�
� 1 + ⇡/(2�) � > 1

, (56)

F0(�) =

⇢
�((2� �2)/(�

p
1� �2)) arccos�� 2 + ⇡/� � < 1

�((�2 � 2)/(�
p
�2 � 1)) log

�
�+

p
�2 � 1

�
� 2 + ⇡/� � > 1

(57)

Using the value of the coupling at the scale of the cutoff, �0, one can obtain the running cou-

pling and plot its approach to the Dirac point k ! 0. We have found that the renormalized

Fermi velocity obtained from (55) does not match up with that obtained from our lattice RPA

calculation. In contrast, the one-loop lattice result does match the one-loop result in the con-

tinuum. This is evident in the data displayed in Fig. (2) where a comparison is made between
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QMC as an intermediate stage in the study of the  
convergence of asymptotic series
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energy effective theory (2+1D 
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Figure 1: A schematic depiction of the relations between the different theoretical approaches
which we are using to describe the electronic properties of free-standing graphene.
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electron charge operator, and  = 2.7 eV is the nearest-neighbor hopping parameter FFA: Next

nearest hopping matrix elements are an order of magnitude smaller. The matrix describing

two-body interactions, Vx,y, provides a general description of the electron-electron coupling.

As in the continuum, a perturbative series can be formulated also directly for this Hamiltonian,

referred to as lattice perturbation theory (LPT), which is a systematic expansion for a given

correlation function, organized in powers of V .

A schematic depiction of the relationships between the employed theoretical approaches

is shown in fig. 1: instead of a direct comparison of the continuum perturbative series with

experiment, we establish a link between them through the help of QMC. First, we compare

experimental data with the results of QMC calculations for the many-body Hamiltonian (thus

verifying its validity). The QMC results are then compared with the perturbative calculations in

both the continuum and lattice theory. The latter comparison reveals deficiencies in the EFT as

well as demonstrating the importance of higher-order perturbative corrections.

We concentrate on the study of the Fermi velocity vF . The renormalization of vF in the
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†
�,xâ�,y+
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perturbative series 
We can separate higher-order perturbative corrections from other effects 

(lattice-scale physics, etc) 

Questions: Do we really have logarithm in experiment? How close can we get to the 
experimental value of the coefficient C  using asymptotic perturbative series?



Hybrid Monte Carlo simulations on large lattices:
Gaussian representation of the fermionic determinant

performing the Hubbard-Stratonovich transformation

Z =

Z
D�D ̄D e�S[ ̄, ,�], (27)

S = S0 + Sint. + SB, (28)

S =

Z
�

0
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�
X

x,a

 ̄x,a@⌧ x,a +
X

x,a;y,a

 ̄x,a(H0)x,a;y,b y,b
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x,a,b

�x ̄x,a�
z

a,b
 x,b �

1

2

X

x,y

�xV
�1
x,y
�y

�
, (29)

where  ̄ and  are Grassmann fields and � is a scalar field. Although we have suppressed the

Euclidean time dependence of the fields in (29), the usual (anti-)periodicity applies to ( )�. We

now write down the expressions for the propagators. The fermion propagator is defined by the

expression

Gx,a;y,b(⌧) =
1

Z

Z
D�D ̄D  x,a(⌧1) ̄y,b(⌧2)e

�S[ ̄, ,�], (30)

where ⌧ ⌘ ⌧1 � ⌧2. For the free propagator, one can ignore both the interaction term and the

bosonic action in (28). Going to the momentum-frequency representation, we obtain

G(0)
a,µ;b,⌫(p0, ~p) = �a,b(M�1(p0, ~p))µ,⌫ , (31)

where we see that the propagator is diagonal in particle/holes-space, and the matrix M, which

is in sublattice space, is given by

M(p0, ~p) =

✓
ip0 �f(~p)

�f ⇤(~p) ip0

◆
. (32)

Putting (32) into (31) we obtain

G(0)
a,µ;b,⌫(p0, ~p) =

��a,b
p20 + |f(~p)|2

✓
ip0 f(~p)

f ⇤(~p) ip0

◆

µ,⌫

. (33)

The free fermion propagator will be denoted by a solid line which carries spatial momentum ~p

and frequency p0 and is depicted in Fig. 5(c).
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Figure 1: (a) Calculation of the renormalized Fermi velocity in lattice perturbation theory for
small interaction: U0 = 0.05 and � = 1.548. The renormalized Fermi velocity is determined
through a finite difference of neighboring points in the lattice dispersion. The difference be-
tween the logarithmic fit of the 102 ⇥ 102 and 1200 ⇥ 1200 lattice data (shown in the inset)
demonstrates that there are noticeable differences arising due to the volume-limited resolution
in momentum space. (b) The same data as in figure (a), but we now plot the dispersion relation
itself. As there is no need for numerically estimating a derivative, the discrepancies between re-
sults obtained on lattices of different sizes disappear almost completely. The inset again shows
the difference between the logarithmic fit of the 102⇥ 102 and 1200⇥ 1200 lattice data.

Stratonovich transformation

e�⌧
P

x,y Vx,y q̂xq̂y ⇠=
Z

D�e�
1

2�⌧

P
x,y �xV

�1
x,y �yei

P
x �xq̂x , (1)

where the interaction is now bilinear in the fermion operators through the charge operator q̂x.

In the functional integral formulation, the thermal expectation values of observables are

computed in the usual way,

hO i = 1

Z

Z
D� detM [�]2Oe�SB [�], (2)

where M is the bilinear fermion operator and SB is the quadratic bosonic action that results

from applying (1) at each time slice. After carrying out a particle-hole transformation in say the

up-spin sector, one will show that the action, for each Hubbard-Stratonovich field is invariant

under time reversal symmetry. This symmetry leads to the absence of negative sign problem (4),
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Figure 3: (a) Several spectral functions, reconstructed with the help of stochastic MEM at
various points in the BZ. The data is shown for potential variant I with no additional rescaling in
order to reside firmly within the strongly-coupled regime. We display the spectral functions for
the K point and the three other points closest to it. The resonances are fitted with a Lorentzian
ansatz, Z/(! � !0)2 + �2. We note that a gap appears at the Dirac point. This is indicated by
the presence of a large peak in the spectral function at the Dirac point which is shifted from
the origin, with a smaller peak existing at zero frequency. (b) Spectral functions at the Dirac
point and in its vicinity. We compare the results obtained on the 102⇥ 102 lattice (at the Dirac
point and at the second point in momentum along the K-K line in the BZ) with those for the
48 ⇥ 48 lattice (again at the Dirac point and at the first point in K-K profile). The data shown
in the plots were produced with potential variant II (see main text for definition). A comparison
of the 102 ⇥ 102 lattice data with the spectral function in figure (a) at the K point shows that
the gap disappears with an increased Coulomb tail. Moreover, the comparison of the spectral
functions at the K point, computed on the 48 ⇥ 48 and 102 ⇥ 102 lattices, shows that the gap
we sometimes see is merely a finite-volume artifact. The double-peak structure seen at smaller
lattice sizes disappears as the number of sites is increased.

and one will show that the fermion determinant in the above equation is real. To evaluate

the expectation value one can adopt the Blankenbecler, Scalapino, Sugar (BSS) algorithm (5)

and work with the determinant. Such an approach invariably leads to a computational time

that scales as N⌧N3 for a single sweep (6, 7). Here, N corresponds to the number of sites.

Alternatively one can evaluate the the determinant stochastically,

detM [�]2 /
Z

D
�
⌘, ⌘†

 
e�⌘

†(M [�]M†[�])
�1

⌘ (3)

and sample both over the Hubbard-Stratonovich and pseudo-fermion fields. There exist standard
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Standard BSS-QMC: direct calculation of 
the changes of fermionic determinant 
during updates. Leads to scaling law N3L.

Fermionic fields are integrated out:
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HMC: Gaussian representation of fermionic 
determinant

Worse statistical fluctuations (thus larger 
prefactor), but lower power in the scaling:

Table 3: Scaling tests for Hybrid Monte Carlo, made on “Pascal” NVIDIA GPUs P100

Type of run Time of elmentary update (sec) Number of CG interactions

Suspended graphene 102⇥ 102 21.05 3886
Graphene on substrate 102⇥ 102 20.65 3808
Suspended graphene 48⇥ 48 4.882 3043
Graphene on substrate 48⇥ 48 4.780 2994

Thus the total scaling law for HMC on large lattices for both cases in Table 3 is

T ⇠ (NL)Sreal , (4)

with Sreal = 1.47, computed on the basis of the timings for elementary steps.
Finally, we conclude that due to the better scaling with spatial system size N in this particular case,
initial large prefactor in HMC [8] is compensated and at large lattices HMC becomes more effective than
conventional BSS-QMC, which scales as N3.
The amount of the needed resources is estimated on the basis of our previous experience that in order to
have small enough statistical errors for the Euclidean correlators, we need to generate at least 103 HMC
trajectories. Also, each HMC trajectory should consist of approximately 1500 elementary steps in order
to reduce autocorrelation of the auxiliary fields. Thus, for instance, the generation of 1 configuration for
102⇥102 lattice with � = 43.2 and L = 160 needs 8.6...8.8 GPU-hours, depending on the type of the run
(see table 3) or 86...88 host CPU core-hours, taking into account that 1 GPU node on JUWELS contains
40 CPU cores and 4 GPUs. According to the scaling 4, we need 23.8...24.4 GPU-hours or 238..244 CPU
core-hours to generate 1 configuration for 102⇥ 102 lattice with two times lower temperature (� = 86.4
and L = 320).
Typical workflow encompasses 3 stages: 1) warming up of the field configurations to reach equilibrium
Monte Carlo distribution (typically 100 HMC trajectories); 2) generation of the main set of configura-
tions; 3) calculation of observables. The latter stage also involves the solution of the equations 2, but
only up to 80 times for each configuration with L = 320, instead of 1500 times during its generation.
Thus the calculation of observables is 18.75 times cheaper than the generation of the field configurations.
A more detailed evaluation of computer resources needed is presented in the table 5.

5.1.3 Cluster algorithms for classical models

For the project of Sec. 3.1.1 we use a C++17 code developed and used in Ref. [13]. The code runs on
CPU, and it is parallelized with pure MPI. The memory requirements are essentially determined by the
volume of the system in exam. Specifically, for a lattice of size L and a model with N -components fields,
the memory per core is 8NL

3. For a maximum lattice size L = 384 and N = 3, this amounts to 1.3 GB.
It is therefore possible to run in parallel 48 cores on a single standard mem96 Juwels node, equipped with
96 GB of memory. In Fig. 5 (left), we show the effective speedup as a function of the number of nodes
n. Since the program averages the results over independent MPI tasks, the effective speedup is given the
time needed to obtain the same statistics with a single node, divided by the time elapsed on n nodes:

speedup =
Telapsed(n = 1)n

Telapsed(n)
=

Tcpu(n = 1)n2

Tcpu(n)
, Tcpu(n) = Telapsed(n)n, (5)

where Telapsed(n) is the elapsed time for running the program on n nodes, and Tcpu(n) is the consumed
CPU time. In Fig. 5 (right) we plot the measured CPU Time as a function of the lattice size L, for a series
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Thus the calculation of observables is 18.75 times cheaper than the generation of the field configurations.
A more detailed evaluation of computer resources needed is presented in the table 5.

5.1.3 Cluster algorithms for classical models

For the project of Sec. 3.1.1 we use a C++17 code developed and used in Ref. [13]. The code runs on
CPU, and it is parallelized with pure MPI. The memory requirements are essentially determined by the
volume of the system in exam. Specifically, for a lattice of size L and a model with N -components fields,
the memory per core is 8NL

3. For a maximum lattice size L = 384 and N = 3, this amounts to 1.3 GB.
It is therefore possible to run in parallel 48 cores on a single standard mem96 Juwels node, equipped with
96 GB of memory. In Fig. 5 (left), we show the effective speedup as a function of the number of nodes
n. Since the program averages the results over independent MPI tasks, the effective speedup is given the
time needed to obtain the same statistics with a single node, divided by the time elapsed on n nodes:

speedup =
Telapsed(n = 1)n

Telapsed(n)
=

Tcpu(n = 1)n2

Tcpu(n)
, Tcpu(n) = Telapsed(n)n, (5)

where Telapsed(n) is the elapsed time for running the program on n nodes, and Tcpu(n) is the consumed
CPU time. In Fig. 5 (right) we plot the measured CPU Time as a function of the lattice size L, for a series

11 V1.8-2020DEC02

- HS field coupled to charge 
(long-range interaction)6

which leads to the relation:

ḡi+1 = D
�1
i+1ḡiDi. (21)

We can now either directly use Eq. (21) to obtain the ḡi

or first obtain the gi and use the relation

ḡi = D
�1
i (I � gi) , (22)

between diagonal and o↵-diagonal blocks. By iterating
either (21) or (19) we can easily find all elements of M�1

needed for the computation of the derivative, starting
from just one block, which is computed from scratch us-
ing the Schur complement solver [49]. This is done by
applying the solver to point sources in the corresponding
time slice.

An important point here is that the whole procedure
scales as NS

3
N⌧ , where NS is the number of sites in one

Euclidean time slice of the lattice, so the scaling is not
worse than that of the Schur complement solver itself.
In practice however, the iterations (21) and (19) su↵er
from the accumulation of round-o↵ errors, which limits
the number of times they can be applied (this number
depends mostly on the condition number of e��⌧h). Af-
terwards, the block of M�1 in the subsequent time slice
must be computed from scratch. This is the so-called
stabilization which is routinely used in BSS-QMC [71].

Finally, an additional simplification comes from the
fact that we do not even need the full Schur complement
solver for the computation of the blocks gi or ḡi. In order
to demonstrate this, we sketch the essential parts of the
solver. A more detailed description can be found in Ref.
[49].

Essentially, the solver consists of tree stages. In the
first stage we decrease the size of the linear system in
an iterative procedure. At each step, the system has the
form

M̄
(l)
X

(l) = Y
(l)
, (23)

where l denotes the step number. We start from the ini-
tial system with the matrix M

(0) = M , the unknown
vector X

(0) containing elements of the fermionic propa-
gator, and a point source vector Y

(0). In the simplest
case, when N⌧ is some power of 2, the size of the system

decreases as N̄
(l)
⌧ = N⌧/2l�1. The general case is only

slightly more complicated and described in Ref. [49].

The matrix M
(l) always has the same form, with unit

matrices in the diagonal blocks and with o↵-diagonal

blocks D
(l)
k for k = 1...N̄ (l)

⌧ . Iterations are described by
the relations

D
(l+1)
k = �D

(l)
2kD

(l)
2k+1, k = 1...N̄ (l)

⌧ � 1, (24)

D
(l+1)
k = �D

(l)
2kD

(l)
1 , k = N̄

(l)
⌧ ,

for matrices and

Y
(l+1)
k = Y

(l)
2k �D

(l)
2kY

(l)
2k+1, k = 1...N̄ (l)

⌧ � 1, (25)

Y
(l+1)
k = Y

(l)
2k �D

(l)
2kY

(l)
1 , k = N̄

(l)
⌧ .

for vectors. Y (l)
k denotes the k-th timeslice of the vector

Y
(l).
The second stage is LU decomposition and solution of

the compactified system at l = lmax. Thus we know the
vector X

(lmax). Finally, the third stage is the reversed
iterative process of reconstruction of the initial solution

starting from X
(lmax), using matrix blocks D(l)

k and vec-

tors Y (l)
k computed during the first stage:

X
(l)
2k = Y

(l)
2k�1 �D

(l)
2k�1X

(l+1)
k , k = 1...N̄ (l+1)

⌧ , (26)

X
(l)
2k = X

(l+1)
k , k = 1...N̄ (l+1)

⌧ .

In the end, we arrive at the initial vectorX(0) which gives
us the matrix elements of the fermionic propagator.
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FIG. 2. Fermionic forces acting on Hubbard field �x,t during a
MD trajectory. Example calculation is made for a 6⇥6 hexag-
onal lattice with electron-electron interaction corresponding
to suspended graphene. N⌧ = 128 and temperature is equal to
0.125 eV. @ ln detM/@�x,t is shown for exact fermionic forces
and @ †(MM†)�1 /@�x,t is shown for the stochastic rep-
resentation of the determinant with pseudofermions. Exact
forces are rescaled for visibility.

One should note that the initial vector Y
(0) contains

non-zero elements only in one time slice. Due to the
structure of the iterations (25), this feature is preserved
at each step, thus we actually do not need to make the full
loop over k in (25). The same is true for backward itera-
tions (26), for a di↵erent reason: we need only one time
slice in the final solution X

(0), since we are interested
either only in diagonal blocks gk or only in o↵-diagonal
blocks ḡk. Due to this simplification we need only one
matrix-vector operation for each of the few time slices in
which we actually recompute the elements of fermionic
propagator from scratch. Thus the numerical cost of
the method is dominated by matrix-matrix operations
(24) and (21). This means that the number of floating-
point operations scales as NS

3
N⌧ with possible logarith-

mic corrections ⇠ logN⌧ from the sparse LU decompo-
sition. Such a mild scaling with N⌧ allows us to enlarge
the Euclidean time extent of the lattice and work in the
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Figure 2: Comparison of timings TCG and TSchur of Conjugate Gradient and Schur comple-
ment solver for a single system of equations (42) for the tight-binding models on the hexagonal
lattice. On the top: for the Hubbard model in the strong-coupling regime with U/Uc = 1.07
(left plot) and in the weak-coupling regime with U/Uc = 0.87 (right plot) at fixed Nt = 128
and di↵erent Ns. Bottom left: for the Hubbard-Coulomb model in the weak coupling regime
away from the phase transition (U/Uc = 0.7) at fixed Nt = 80 and di↵erent Ns. Bottom
right: for the Hubbard model at fixed Ns = 392 and physical temperature � = 21.6 and
di↵erent Nt. In most cases we show two curves where either only dense or only sparse linear
algebra was used for all matrix-matrix multiplications in (30). The filled area demonstrates
the ±� interval for the distribution of TCG at given parameters: the number of CG iterations
can vary from one configuration �k

x to another.

algebra is advantageous even for sparse initial blocksD2k�1 because they become
dense too early in the process of Schur iterations. The most important result
is that in the strong-coupling phase of the Hubbard model the Schur solver is
faster than Conjugate Gradient iterations even for lattices with Ns = 1000 sites.
Moreover, when the linear algebra routines for sparse matrices are used, the
speed-up is by at least a factor of ten, and depends rather weakly on the lattice
size. A rough extrapolation of this result suggests that in the strong-coupling
phase of the Hubbard model the Schur complement solver will outperform CG
iterations for all practically relevant lattice sizes up to at least Ns ⇠ 104.

In the weak-coupling phase of the Hubbard model the speed-up is also sig-
nificant for moderately large lattice sizes, however, the di↵erence with CG is
not so large. Again, a rough extrapolation suggests that in this regime the
Conjugate Gradient method might become more e�cient than the Schur solver
at Ns ⇠ 103 . . . 104. Likewise, for the Hubbard-Coulomb model in the weak-
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Hybrid Monte Carlo simulations on large lattices:
Why better scaling? (1)

3

Due to a more e�cient calculation of the exact deriva-
tives of the fermionic determinant, we are now able to
reveal the construction of the Lefschetz thimble decom-
position on large lattices and extrapolate our results to
the thermodynamic limit. This also represents the main
di↵erence of our paper from earlier attempts to apply the
Lefschetz thimbles decomposition to the Hubbard model
[38], where the thimbles decomposition was not optimised
and only one thimble, out of many important ones, was
taken into account. As a result, those simulations actu-
ally did not represent a full calculation of the functional
integral, but rather represented only corrections to dy-
namical mean field theory (DMFT) results. Using a com-
plete study of the saddle point structure of the Hubbard
model, and identifying the advantageous regions in pa-
rameter space, one can safely proceed to address the sign
problem using Lefschetz thimbles.

We start with a short introduction to the formalism,
and proceed with the description of the method to solve
the gradient flow equations for Wilson and staggered
fermions. After this, we describe the application of the
technique to the Hubbard model on the hexagonal lat-
tice. First, we make a detailed study of the saddle points,
which is an essential ingredient of the Lefschetz thimbles
method. In particular, we explore the dependence of sad-
dles on volume, the Hubbard coupling U , and chemical
potential. Among other things, we discuss at length the
algorithms used to search for saddle point configurations
away from half-filling, when saddle points are shifted into
complex space CN . Finally, in order to support our con-
clusions concerning the role of di↵erent saddle points,
we perform Monte Carlo calculations over manifolds in
complex space and compare results with exact diagonal-
ization. In addition to that, we show that the average
sign can be substantially increased even in comparison
with BSS-QMC. This fact means that we can potentially
construct a superior algorithm for dealing with the sign
problem, if the additional computational costs associated
with the gradient flow and integration over curved man-
ifolds in complex space are improved upon.

II. LEFSCHETZ THIMBLES FORMALISM

Let us first consider the complexification of the fields
appearing in the functional integral (1), � 2 CN . This
amounts to a shift of the contour of integration into com-
plex space. We are allowed to do so, as Cauchy’s theorem
tells us that one can choose any appropriate contour in
complex space as long as the integral still converges and
no poles of the integrand are crossed during this shift. As
we will demonstrate, both of these conditions are satis-
fied. We now introduce one particularly useful represen-
tation, known as the Lefschetz thimble decomposition of

the partition function [17, 18],

Z =

Z

RN

D� e�S[�] =
X

�

k�Z�,

where Z� =

Z

I�

D� e�S[�], (4)

and � labels all complex saddle points z� 2 CN of the
action, which are determined by the condition

@S

@�

����
�=z�

= 0. (5)

The integer-valued coe�cients k�, are the intersection
numbers and I� are the Lefschetz thimble manifolds at-
tached to the saddle points z�. These manifolds, de-
fined below, are the generalization of the contours of
steepest descent in the theory of asymptotic expansions.
We stress that if the saddle points are non-degenerate
(det @2S/@�0@�

��
�=z�

6= 0) and isolated, the relation (4)

holds (for a generalization to the case of gauge theory see
[18]).
The Lefschetz thimble manifold associated with a given

saddle point is the union of all solutions of the following
di↵erential equation

d�

dt
=

@S

@�
, (6)

known as the gradient flow (GF) equations, which sat-
isfy the following boundary condition: � 2 I� : �(t !
�1) ! z�. Just as we made an analogy between the
thimble and the contour of steepest descent, there is a
second manifold associated with each saddle point which
is analogous to the contour of steepest ascent. This man-
ifold is known as the anti-thimble, K�, and consists of all
possible solutions of the GF equations (6) which end up
at a given saddle point z�: � 2 K� : �(t) = �,�(t !

+1) ! z�. The intersection number k� is defined by
counting the number of intersections of K� with the orig-
inal integration domain: RN , k� = hK�,RN

i. An exam-
ple scheme of thimbles and anti-thimbles is drawn in the
Fig. 1.
It is worth noting that thimbles and anti-thimbles are

both real, N -dimensional manifolds embedded in CN .
We now state two key properties of the thimbles, which
follow from (6) coupled with the fact that the action,
S, is regarded as a holomorphic function of the complex
fields. These properties are that the real part of the ac-
tion, ReS, monotonically increases along the thimble,
starting from the saddle point and the imaginary part
of the action, ImS, stays constant along it. The first
property is essential in guaranteeing the convergence of
the individual integrals in (4), while the second one ob-
viously makes the method attractive with regards to the
weakening of the sign problem. Using these crucial prop-
erties, it follows that neither thimbles nor anti-thimbles
can intersect each other, no two saddle points can, in gen-
eral, be connected by a thimble (with the very important

Can be understood in terms of Lefschetz thimbles
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FIG. 8. The distribution of the action of saddle point config-
urations at half filling for an intermediate case, ↵ = 0.9. The
ensembles consist of the following: (upper panel) 6 ⇥ 6 and
(lower panel) 12 ⇥ 12 lattice with N⌧ = 256 and � = 20.0,
and three di↵erent values of interaction strength: (upper and
lower left) U = 3.0; (upper and lower middle) U = 3.8;
(upper and lower right) U = 5.0. The histograms reveal
a much more regular (in comparison with Fig. 6) system of
saddle points. The lowest saddle points correspond to the
vacuum configuration (all auxiliary fields are equal to zero).

of ↵ where the auxiliary field which couples to charge-
density starts to dominate and all saddle points are lo-
cated at �x,⌧ = 0. The latter fact automatically ensures
that the structure of the saddle points is completely dif-
ferent from the one at small ↵. The histograms for the
same three couplings show that the situation improves
and that the construction of the saddle points is now
more regular since they are equally spaced in action. A
comparison of the 6⇥6 and 12⇥12 lattices (Fig. 8(upper
panel) and Fig. 8(lower panel)) shows that the number of
saddles appearing in the histogram increases with the in-
creasing volume, particularly at larger values of the cou-
pling U . However, the general structure of saddle points
remains essentially the same. This situation is demon-
strated in Fig. 9. Here we have taken a 6 ⇥ 6 lattice
with N⌧ = 512 at U = 5, as an example (corresponding
histogram is shown in the Fig. 4). However, the same
field configurations were observed at saddle points for
other U , N⌧ and also at a volume of 12 ⇥ 12. For all
histograms, shown here for ↵ = 0.9 (Fig. 8), the first
bar corresponds to the vacuum saddle �x,⌧ = �x,⌧ = 0.
The next bar corresponds to the localized field config-
urations shown in Fig. 9-1(a). These localized features
come in two types, di↵ering only in the sign of the �x,⌧

field: �x,⌧ ! ��x,⌧ . We will refer to these structures
as “blob” and “anti-blob” in the subsequent discussion.
The third bar in the histograms for ↵ = 0.9 corresponds
to the three combinations one can construct out of two of
these localized objects: blob-blob, blob-anti-blob and two
anti-blobs, where the objects are located at some spatial
separation on the lattice. Two examples are shown in
Fig. 9-2(a) and 9-3(a). All further saddle points consist
of more complicated combinations of increasing number
of blobs/anti-blobs that are localized somewhere within
the lattice. The single blob shown in Fig. 9-1(a) has an

action given by S1 = S0 + �S, where S0 is the action
of the trivial vacuum. Both configurations in Fig. 9-2(a)
and 3 have actions given by S2 ⇡ S0+2�S to a very high
precision. It follows that the actions of n-blob configu-
rations should be concentrated around Sn = S0 + n�S,
with the width of the distribution slightly widening with
increasing n. This is due to that fact that as the density
of blobs increases, they are no longer well-separated and
start to interact with each other.
These single and multi-blob configurations have con-

sequences for the fermions, as we attempt to illustrate
in Fig. 9. We first define the equal-time fermion Green’s
function in position-time representation

g(x, y, ⌧) = �h âx(⌧)â
†
y
(⌧) i, (32)

where we have written the expression for particles and an
analogous expression exists for the holes. We compute
this expression on a given saddle point configuration, for
fixed spatial positions x and y as a function of ⌧ . This
quantity forms a closed curve in the complex plane due
to periodic boundary conditions for the auxiliary fields.
Furthermore, for certain locations of the source and sink,
this curve exhibits a non-trivial winding around the ori-
gin in the complex plane. We define the winding number
of the propagator for a given source and sink location as
follows

W (x, y) ⌘
1

2⇡i

I

�

dz

z
(33)

=
1

2⇡i

Z
�

0

1

g(x, y, ⌧)

@g(x, y, ⌧)

@⌧
d⌧,

where in the first equality we have used z ⌘ g(x, y, ⌧) and
� refers to the closed curve swept out by the propagator
in the complex plane. For the one-blob configuration in
Fig. 9, we have plotted the Green’s function contour for
two di↵erent sinks, with the source fixed at the center
of the blob. In Fig. 9-1(b), the sink is located on the
opposite sublattice of the source and shows a non-trivial
winding number of +1, while in Fig. 9-1(c) the sink is
located on the same sublattice of the source and shows
a trivial winding of 0. We thus see that there exists
a correlation between fermion winding number, saddle
points, and sublattice symmetry.
We have observed that, for the multi-blob configura-

tions, blobs with the same sign lie on the same sublattice
while blobs with opposite signs lie on opposite sublat-
tices. The latter is depicted in Fig. 9-2(a) where we have
a configuration containing a blob-anti-blob pair, and in
Fig. 9-2(b) and 9-2(c) we observe the same correlation be-
tween sublattice symmetry and fermion winding number
that was observed for the one-blob configuration. How-
ever, in 9-2(d), we see a non-trivial winding number of
+2 where the sink and source were taken to be the centers
of the two blobs. A two-blob configuration is depicted
in 9-3(a), where again, the winding number is trivial for
source and sink on the same sublattice (Fig. 9-3(b)). The
winding number is non-trivial and equal to �1 for source
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follow from (6) coupled with the fact that the action,
S, is regarded as a holomorphic function of the complex
fields. These properties are that the real part of the ac-
tion, ReS, monotonically increases along the thimble,
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of the action, ImS, stays constant along it. The first
property is essential in guaranteeing the convergence of
the individual integrals in (4), while the second one ob-
viously makes the method attractive with regards to the
weakening of the sign problem. Using these crucial prop-
erties, it follows that neither thimbles nor anti-thimbles
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Lefschetz thimbles decomposition (1)

Questions to answer:
1) Scaling of the number of thimbles in the thermodynamic 

limit: one- or many-thimble regime? 
2) Connection of the thimbles decomposition to the physics, 

in particular its reaction on the phase transition.
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FIG. 1. Typical scheme of thimbles ant anti-thimbles, arrows
show the directions of the flows, which define these manifolds.

exception which is discussed below), and all integrals on
the r.h.s. of (4) are convergent.

As a result of the above discussion, it follows that (4)
can be written as

Z =
X

�

k�e
�i ImS(z�)

Z

I�

D� e�ReS(�), (7)

where we have explicitly written out the complex factors
associated with di↵erent saddle points. Usually, thim-
bles can be classified as being either “relevant” or “ir-
relevant” using the intersection number. Relevant ones
have their intersection number, k�, being nonzero and
thus participate in the sum in (7). Conversely, a thimble
is irrelevant if it has a zero intersection number. How-
ever, this classification can fail if the so-called Stokes phe-
nomenon occurs for saddle points lying within RN . By
definition, the Stokes phenomenon means that the saddle
points are connected by a thimble. In this case, k� is not
well-defined and we need other tools in order to classify
the saddle points. An example of such a situation will
be demonstrated later on when we will study the actual
saddle points for the Hubbard model.

As one can see, the initial sign problem has been split
into two parts. The first part of the residual sign prob-
lem concerns the constant phase factors, e�i ImS(z�). The
number of relevant thimbles, their weight, and the distri-
bution of the imaginary part of the action at correspond-
ing saddles define the remaining severity of the first part
of the sign problem. An ideal situation arises when this
sum only contains one dominant term. The second part
of the residual sign problem relates to the fluctuations
of the complex measure, D�, in the integration over the
thimble. Potentially, there is the third source of the resid-
ual sign problem: residual fluctuations of ImS, which ap-
pear if we are not following the thimble exactly. All these
issues will be addressed below in our test calculations for
the Hubbard model, where we perform a thorough clas-
sification of saddle points and then give an estimate for
the fluctuations of the complex measure and the residual
fluctuations of ImS. We now present a description of our
numerical methods.

III. ALGORITHMS

The GF equations (6) are the basis of the whole for-
malism. Here we present the set of algorithms, which
allows us to solve them e�ciently at least for lattices of
moderate size. The main di�culty in implementing GF
is the presence of the fermionic determinant in the action
for a typical lattice field theory (or model -for the case
of condensed matter systems) with fermions

S = Sb + ln detM, (8)

where Sb is the bosonic part and the fermionic operator
M is more or less a sparse matrix with dimensionality ⇠

N⌧Ns (ignoring for the moment color and flavor indices).
Here, N⌧ is the Euclidean time extent of the lattice and
Ns is the number of degrees of freedom in space. The
latter typically includes the number of sites in space (in
the context of QCD one should also take into account the
number of colors and flavors). The construction (8) is the
same both for lattice field theories and interacting tight-
binding models in condensed matter physics. The key
element of our algorithms is the e�cient calculation of
the derivatives of the fermionic determinant with respect
to the bosonic fields, which is essential for the solution
of the GF equations. The derivatives of the logarithm
of the fermionic determinant can be computed directly
using the simple relation

@ ln detM

@�
= Tr

✓
M�1 @M

@�

◆
. (9)

It turns out that this requires the knowledge of only a
few elements of the fermion propagator M�1, since the
bosonic fields � enter the fermionic operator M locally.
In the following considerations we rely on the special

band structure of the fermionic operator. We start with
unimproved staggered fermions, whose fermionic opera-
tor can be written as

Mst

i,j
= 2am�i,j +

(⌘i,1e
µaUi,1�i+1̂,j � ⌘j,1U

†
j,1e

�µa�
i�1̂,j) +

4X

⌫=2

(⌘i,⌫Ui,⌫�i+⌫̂,j � ⌘j,⌫U
†
j,⌫

�i�⌫̂,j) (10)

with the usual staggered phases ⌘i,⌫ = (�1)i1+...+i⌫�1

and gauge fields Ui,⌫ . Here µ is the chemical poten-
tial and m is the mass of fermions, and both are mul-
tiplied by the lattice spacing a. The four-dimensional
index i = (t, x) consists of both the temporal t and the
three-dimensional spatial part x. It is convenient to in-
troduce the spatial part of the fermionic operator Bt,
which contains all elements of the matrix (10), diago-
nal in Euclidean time direction for a given time slice t.
After doing so, (10) can be rewritten as a block matrix
consisting of blocks Ns ⇥Ns:
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Hybrid Monte Carlo simulations: Why better scaling? (2)
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Figure 3: (a) Several spectral functions, reconstructed with the help of stochastic MEM at
various points in the BZ. The data is shown for potential variant I with no additional rescaling in
order to reside firmly within the strongly-coupled regime. We display the spectral functions for
the K point and the three other points closest to it. The resonances are fitted with a Lorentzian
ansatz, Z/(! � !0)2 + �2. We note that a gap appears at the Dirac point. This is indicated by
the presence of a large peak in the spectral function at the Dirac point which is shifted from
the origin, with a smaller peak existing at zero frequency. (b) Spectral functions at the Dirac
point and in its vicinity. We compare the results obtained on the 102⇥ 102 lattice (at the Dirac
point and at the second point in momentum along the K-K line in the BZ) with those for the
48 ⇥ 48 lattice (again at the Dirac point and at the first point in K-K profile). The data shown
in the plots were produced with potential variant II (see main text for definition). A comparison
of the 102 ⇥ 102 lattice data with the spectral function in figure (a) at the K point shows that
the gap disappears with an increased Coulomb tail. Moreover, the comparison of the spectral
functions at the K point, computed on the 48 ⇥ 48 and 102 ⇥ 102 lattices, shows that the gap
we sometimes see is merely a finite-volume artifact. The double-peak structure seen at smaller
lattice sizes disappears as the number of sites is increased.

and one will show that the fermion determinant in the above equation is real. To evaluate

the expectation value one can adopt the Blankenbecler, Scalapino, Sugar (BSS) algorithm (5)

and work with the determinant. Such an approach invariably leads to a computational time

that scales as N⌧N3 for a single sweep (6, 7). Here, N corresponds to the number of sites.

Alternatively one can evaluate the the determinant stochastically,

detM [�]2 /
Z

D
�
⌘, ⌘†

 
e�⌘

†(M [�]M†[�])
�1

⌘ (3)

and sample both over the Hubbard-Stratonovich and pseudo-fermion fields. There exist standard

4

Works well if M doesn’t have zero modes
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FIG. 8. The distribution of the action of saddle point config-
urations at half filling for an intermediate case, ↵ = 0.9. The
ensembles consist of the following: (upper panel) 6 ⇥ 6 and
(lower panel) 12 ⇥ 12 lattice with N⌧ = 256 and � = 20.0,
and three di↵erent values of interaction strength: (upper and
lower left) U = 3.0; (upper and lower middle) U = 3.8;
(upper and lower right) U = 5.0. The histograms reveal
a much more regular (in comparison with Fig. 6) system of
saddle points. The lowest saddle points correspond to the
vacuum configuration (all auxiliary fields are equal to zero).

of ↵ where the auxiliary field which couples to charge-
density starts to dominate and all saddle points are lo-
cated at �x,⌧ = 0. The latter fact automatically ensures
that the structure of the saddle points is completely dif-
ferent from the one at small ↵. The histograms for the
same three couplings show that the situation improves
and that the construction of the saddle points is now
more regular since they are equally spaced in action. A
comparison of the 6⇥6 and 12⇥12 lattices (Fig. 8(upper
panel) and Fig. 8(lower panel)) shows that the number of
saddles appearing in the histogram increases with the in-
creasing volume, particularly at larger values of the cou-
pling U . However, the general structure of saddle points
remains essentially the same. This situation is demon-
strated in Fig. 9. Here we have taken a 6 ⇥ 6 lattice
with N⌧ = 512 at U = 5, as an example (corresponding
histogram is shown in the Fig. 4). However, the same
field configurations were observed at saddle points for
other U , N⌧ and also at a volume of 12 ⇥ 12. For all
histograms, shown here for ↵ = 0.9 (Fig. 8), the first
bar corresponds to the vacuum saddle �x,⌧ = �x,⌧ = 0.
The next bar corresponds to the localized field config-
urations shown in Fig. 9-1(a). These localized features
come in two types, di↵ering only in the sign of the �x,⌧

field: �x,⌧ ! ��x,⌧ . We will refer to these structures
as “blob” and “anti-blob” in the subsequent discussion.
The third bar in the histograms for ↵ = 0.9 corresponds
to the three combinations one can construct out of two of
these localized objects: blob-blob, blob-anti-blob and two
anti-blobs, where the objects are located at some spatial
separation on the lattice. Two examples are shown in
Fig. 9-2(a) and 9-3(a). All further saddle points consist
of more complicated combinations of increasing number
of blobs/anti-blobs that are localized somewhere within
the lattice. The single blob shown in Fig. 9-1(a) has an

action given by S1 = S0 + �S, where S0 is the action
of the trivial vacuum. Both configurations in Fig. 9-2(a)
and 3 have actions given by S2 ⇡ S0+2�S to a very high
precision. It follows that the actions of n-blob configu-
rations should be concentrated around Sn = S0 + n�S,
with the width of the distribution slightly widening with
increasing n. This is due to that fact that as the density
of blobs increases, they are no longer well-separated and
start to interact with each other.
These single and multi-blob configurations have con-

sequences for the fermions, as we attempt to illustrate
in Fig. 9. We first define the equal-time fermion Green’s
function in position-time representation

g(x, y, ⌧) = �h âx(⌧)â
†
y
(⌧) i, (32)

where we have written the expression for particles and an
analogous expression exists for the holes. We compute
this expression on a given saddle point configuration, for
fixed spatial positions x and y as a function of ⌧ . This
quantity forms a closed curve in the complex plane due
to periodic boundary conditions for the auxiliary fields.
Furthermore, for certain locations of the source and sink,
this curve exhibits a non-trivial winding around the ori-
gin in the complex plane. We define the winding number
of the propagator for a given source and sink location as
follows

W (x, y) ⌘
1

2⇡i

I

�

dz

z
(33)

=
1

2⇡i

Z
�

0

1

g(x, y, ⌧)

@g(x, y, ⌧)

@⌧
d⌧,

where in the first equality we have used z ⌘ g(x, y, ⌧) and
� refers to the closed curve swept out by the propagator
in the complex plane. For the one-blob configuration in
Fig. 9, we have plotted the Green’s function contour for
two di↵erent sinks, with the source fixed at the center
of the blob. In Fig. 9-1(b), the sink is located on the
opposite sublattice of the source and shows a non-trivial
winding number of +1, while in Fig. 9-1(c) the sink is
located on the same sublattice of the source and shows
a trivial winding of 0. We thus see that there exists
a correlation between fermion winding number, saddle
points, and sublattice symmetry.
We have observed that, for the multi-blob configura-

tions, blobs with the same sign lie on the same sublattice
while blobs with opposite signs lie on opposite sublat-
tices. The latter is depicted in Fig. 9-2(a) where we have
a configuration containing a blob-anti-blob pair, and in
Fig. 9-2(b) and 9-2(c) we observe the same correlation be-
tween sublattice symmetry and fermion winding number
that was observed for the one-blob configuration. How-
ever, in 9-2(d), we see a non-trivial winding number of
+2 where the sink and source were taken to be the centers
of the two blobs. A two-blob configuration is depicted
in 9-3(a), where again, the winding number is trivial for
source and sink on the same sublattice (Fig. 9-3(b)). The
winding number is non-trivial and equal to �1 for source
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a much more regular (in comparison with Fig. 6) system of
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density starts to dominate and all saddle points are lo-
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that the structure of the saddle points is completely dif-
ferent from the one at small ↵. The histograms for the
same three couplings show that the situation improves
and that the construction of the saddle points is now
more regular since they are equally spaced in action. A
comparison of the 6⇥6 and 12⇥12 lattices (Fig. 8(upper
panel) and Fig. 8(lower panel)) shows that the number of
saddles appearing in the histogram increases with the in-
creasing volume, particularly at larger values of the cou-
pling U . However, the general structure of saddle points
remains essentially the same. This situation is demon-
strated in Fig. 9. Here we have taken a 6 ⇥ 6 lattice
with N⌧ = 512 at U = 5, as an example (corresponding
histogram is shown in the Fig. 4). However, the same
field configurations were observed at saddle points for
other U , N⌧ and also at a volume of 12 ⇥ 12. For all
histograms, shown here for ↵ = 0.9 (Fig. 8), the first
bar corresponds to the vacuum saddle �x,⌧ = �x,⌧ = 0.
The next bar corresponds to the localized field config-
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and 3 have actions given by S2 ⇡ S0+2�S to a very high
precision. It follows that the actions of n-blob configu-
rations should be concentrated around Sn = S0 + n�S,
with the width of the distribution slightly widening with
increasing n. This is due to that fact that as the density
of blobs increases, they are no longer well-separated and
start to interact with each other.
These single and multi-blob configurations have con-

sequences for the fermions, as we attempt to illustrate
in Fig. 9. We first define the equal-time fermion Green’s
function in position-time representation
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where we have written the expression for particles and an
analogous expression exists for the holes. We compute
this expression on a given saddle point configuration, for
fixed spatial positions x and y as a function of ⌧ . This
quantity forms a closed curve in the complex plane due
to periodic boundary conditions for the auxiliary fields.
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in the complex plane. For the one-blob configuration in
Fig. 9, we have plotted the Green’s function contour for
two di↵erent sinks, with the source fixed at the center
of the blob. In Fig. 9-1(b), the sink is located on the
opposite sublattice of the source and shows a non-trivial
winding number of +1, while in Fig. 9-1(c) the sink is
located on the same sublattice of the source and shows
a trivial winding of 0. We thus see that there exists
a correlation between fermion winding number, saddle
points, and sublattice symmetry.
We have observed that, for the multi-blob configura-

tions, blobs with the same sign lie on the same sublattice
while blobs with opposite signs lie on opposite sublat-
tices. The latter is depicted in Fig. 9-2(a) where we have
a configuration containing a blob-anti-blob pair, and in
Fig. 9-2(b) and 9-2(c) we observe the same correlation be-
tween sublattice symmetry and fermion winding number
that was observed for the one-blob configuration. How-
ever, in 9-2(d), we see a non-trivial winding number of
+2 where the sink and source were taken to be the centers
of the two blobs. A two-blob configuration is depicted
in 9-3(a), where again, the winding number is trivial for
source and sink on the same sublattice (Fig. 9-3(b)). The
winding number is non-trivial and equal to �1 for source

Fig. 1: Phase diagram for fermions on the honeycomb lattice with competing short-range and long-range Coulomb in-

teractions. For any value of long-range interaction ↵0, there is a critical value of the short-range interaction Uc(↵0) calculated
using quantum Monte Carlo (data points), for which the system undergoes a quantum phase transition to the Mott insulator. In
the presence of long-range interactions, a larger value of onsite interactions is required to reach the quantum phase transition.
The phase diagram can be understood by solving the renormalization group flow equations (red curve) including both onsite and
nearest neighbour interactions, where the effective onsite interactions are reduced by the long-range Coulomb tail. Solid blue
line is a quartic interpolation. The shaded window shows the region inaccessible to our numerical method (7).
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QMC data on 102x102 lattices
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Temperature corrections at low (k-K), 
of the opposite sign comparing to 
perturbative predictions

temperature effects. Due to the fact that we are simulating a finite volume, the resolution in

momentum is limited by the lattice size. Thus, the numerical differentiation needed for the

computation of vF brings about additional systematic errors (see supplementary material for

examples). For this reason, we prefer to plot the renormalized dispersion relation E(k) directly

wherever possible. Indeed, the logarithmic renormalization of the Fermi velocity, vF (k) =

vF,0(1 + C ln⇤/k), also leads to the logarithmic renormalization of the energy itself: E(k) =

E0(k)[1 + C(1 + ln⇤/k)], where E0(k) is the free dispersion relation. Thus we have a well

defined fitting function for the QMC and LPT data sets.

The renormalized dispersion relation for potential variants I and II is shown in fig. 2. Unlike

previous QMC studies (19), the lattice size appears to be large enough to clearly observe the

non-linear dispersion relation. For simulations on the 102 ⇥ 102 lattice, all points except for

the one closest to the Dirac point, are well-described by the logarithmic fit. This logarithmic

increase of the Fermi velocity in the infrared signals non-Fermi liquid behavior. The first point

trends upwards with respect to the logarithmic curve so that the entire data set is actually better

described by a power law fit. This confusing result can not be attributed to finite-size effects, as

the points on a 48⇥ 48 lattice with the same temperature do not demonstrate similar behaviour

(fig. 2b). They show only a small uniform shift from the 102 ⇥ 102 lattice data, with the first

point not special in any way. However, a comparison of the 48 ⇥ 48 lattice data, obtained at

two different temperatures (fig. 2c) helps to reveal that it is actually finite-temperature effects

which are responsible for this upward shift of the first point. Once we reduce both the inverse

temperature and the lattice size by a factor of two, we reproduce the same jump of the first

point with respect to the logarithmic curve, in comparison with the same lattice at a lower

temperature. Notably, further points do not experience sizeable finite-temperature or finite-size

effects, so we can reliable include them in our comparison with LPT and experiment.

A comparison with experiment is shown in fig. 3, where the QMC data is displayed along-
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2 times lower temperature: QMC and experimental data meet here.

2 times larger lattice: large overlap between experiment and QMC data. 

Suggestion for experiment: 1) better precision; 2) temperature effects at low density as 
qualitative proof of higher-order corrections beyond one-loop approximation

where E and C are fit parameters. Several examples of the fermion propagator at weak coupling

and their fits using eq. (14) are shown in Fig. 2(a). We have also checked that indeed, the

lattice version of the fit performed better than its continuum counterpart. In the strong-coupling

regime, the fitting form (14) becomes less reliable due to the broadening of the resonances (i.e.

decrease of the particle’s lifetime) and one must resort to the spectral reconstruction described

in the previous section.

After fitting the correlator to (14, one obtains the values of the renormalized energies, E(~k).

One way to obtain vF is through numerical differentiation

vF

✓
k1 + k2

2

◆
=

E(k1)� E(k2)

k1 � k2
, (15)

where the momentum varies along a specific direction in the Brillouin zone (BZ). However,

using this formula we introduce a systematic error of the order of (k1 + k2)2 and also increase

statistical uncertainties, as one is computing the difference of fluctuating quantities whose mean

values only slightly differ. An alternative is to look directly at the dispersion relation E(~k) and

modify the fitting functions. At weak coupling (and presumably at strong coupling too), the

renormalization of the Fermi velocity can be decomposed as

vF (~k) = vF,0(~k)

"
1 + C ln

⇤

|~k|

#
, (16)

where vF,0(~k) comes from the dispersion relation for free fermions on the hexagonal lattice. As

we will work on quite large lattices, the correction to the linear dispersion will disappear once

we approach the Dirac point:

vF,0(~k) = vC
F,0 +�v(~k), (17)

where EC

0 is constant and �v(~k) is a small correction with lim
|~k|!0 �v(~k) = 0 (the Dirac point

is placed at the origin). For most cases, we can neglect �v(~k) and assume vF0(~k) = vC
F0, but at
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Figure 2: Renormalized dispersion of electrons at strong coupling using potential variant I
(figure (a)) and potential variant II ((b) and (c)). (a) and (b): comparison of logarithmic and
power law fits for QMC data at fixed temperature. (c) comparison of QMC data on 48 ⇥ 48
lattice at two different temperatures. In all cases we consider primarily K-K profile in BZ, and
K-M profile is added for comparison. Horizontal axis is the distance from the Dirac point in the
units of inverse lattice step.

infrared limit has been already observed in several experiments (5, 6). Although a number

of theoretical calculations have been performed using a perturbative approach (7, 8, 9, 4, 10),

there is still no comprehensive comparison with fully non-perturbative calculations. Alternative

methods based on various approximations were also used to compute vF renormalization (11,

12), while here we comment strictly on the validity of the perturbative approach.

As the renormalization of the Fermi velocity is an infrared effect, QMC calculations on

large lattices are needed to resolve this small window of momenta. This can be achieved using

methods developed for lattice quantum chromodynamics, which broadly go under the name of

hybrid Monte Carlo (HMC) and are perfectly suited to these types of calculations (13,14,15,16).

Lattice Hamiltonian and experiment

We perform QMC calculations for the interacting tight-binding Hamiltonian cited above with

the matrix of two-body interaction Vx,y tuned in a way to model electronic properties of sus-

pended graphene. The salient features of Vx,y are the on-site interaction Vx,x = U0 and the

long-range Coulomb tail, Vx,y = �U0/(2|~Rx,y|), where Rx,y is the distance between lattice sites
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Figure 2: Renormalized dispersion of electrons at strong coupling using potential variant I
(figure (a)) and potential variant II ((b) and (c)). (a) and (b): comparison of logarithmic and
power law fits for QMC data at fixed temperature. (c) comparison of QMC data on 48 ⇥ 48
lattice at two different temperatures. In all cases we consider primarily K-K profile in BZ, and
K-M profile is added for comparison. Horizontal axis is the distance from the Dirac point in the
units of inverse lattice step.

infrared limit has been already observed in several experiments (5, 6). Although a number

of theoretical calculations have been performed using a perturbative approach (7, 8, 9, 4, 10),

there is still no comprehensive comparison with fully non-perturbative calculations. Alternative

methods based on various approximations were also used to compute vF renormalization (11,

12), while here we comment strictly on the validity of the perturbative approach.

As the renormalization of the Fermi velocity is an infrared effect, QMC calculations on

large lattices are needed to resolve this small window of momenta. This can be achieved using

methods developed for lattice quantum chromodynamics, which broadly go under the name of

hybrid Monte Carlo (HMC) and are perfectly suited to these types of calculations (13,14,15,16).

Lattice Hamiltonian and experiment

We perform QMC calculations for the interacting tight-binding Hamiltonian cited above with

the matrix of two-body interaction Vx,y tuned in a way to model electronic properties of sus-

pended graphene. The salient features of Vx,y are the on-site interaction Vx,x = U0 and the

long-range Coulomb tail, Vx,y = �U0/(2|~Rx,y|), where Rx,y is the distance between lattice sites
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Lattice	setup	for	calculations	
Standard	HMC	on	GPUs	(some	algorithmic	improvements)	
102x102	hexagonal	lattice,	Nt=160,	β=43	(in	the	units	of	hopping)	
	
1)  Graphene	on	substrate	(reduced	long-range	tail)	
2)  Graphene	on	substrate	(reduced	long-range	tail)	+	modification	of	
short-range	Coulomb	couplings	(V01	and	V02)		(easier	to	manipulate	in	
experiment?)		
3)			Suspended	graphene	

	

Algorithms:	
M.	Ulybyshev,	P.	Buividovich,	
M.	Katsnelson,	M.	Polikarpov	
arXiv:1304.0660,	
PRL	111,	056801	(2013);	
D.	Smith,	L.	von	Smekal,	
arXiv:	1403.3620,	
PRB	89,		145429	(2014)	
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Figure 2: Renormalized dispersion of electrons at strong coupling using potential variant I
(figure (a)) and potential variant II ((b) and (c)). (a) and (b): comparison of logarithmic and
power law fits for QMC data at fixed temperature. (c) comparison of QMC data on 48 ⇥ 48
lattice at two different temperatures. In all cases we consider primarily K-K profile in BZ, and
K-M profile is added for comparison. Horizontal axis is the distance from the Dirac point in the
units of inverse lattice step.

infrared limit has been already observed in several experiments (5, 6). Although a number

of theoretical calculations have been performed using a perturbative approach (7, 8, 9, 4, 10),

there is still no comprehensive comparison with fully non-perturbative calculations. Alternative

methods based on various approximations were also used to compute vF renormalization (11,

12), while here we comment strictly on the validity of the perturbative approach.

As the renormalization of the Fermi velocity is an infrared effect, QMC calculations on

large lattices are needed to resolve this small window of momenta. This can be achieved using

methods developed for lattice quantum chromodynamics, which broadly go under the name of

hybrid Monte Carlo (HMC) and are perfectly suited to these types of calculations (13,14,15,16).

Lattice Hamiltonian and experiment

We perform QMC calculations for the interacting tight-binding Hamiltonian cited above with

the matrix of two-body interaction Vx,y tuned in a way to model electronic properties of sus-

pended graphene. The salient features of Vx,y are the on-site interaction Vx,x = U0 and the

long-range Coulomb tail, Vx,y = �U0/(2|~Rx,y|), where Rx,y is the distance between lattice sites
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Figure 2: Renormalized dispersion of electrons at strong coupling using potential variant I
(figure (a)) and potential variant II ((b) and (c)). (a) and (b): comparison of logarithmic and
power law fits for QMC data at fixed temperature. (c) comparison of QMC data on 48 ⇥ 48
lattice at two different temperatures. In all cases we consider primarily K-K profile in BZ, and
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infrared limit has been already observed in several experiments (5, 6). Although a number

of theoretical calculations have been performed using a perturbative approach (7, 8, 9, 4, 10),

there is still no comprehensive comparison with fully non-perturbative calculations. Alternative

methods based on various approximations were also used to compute vF renormalization (11,

12), while here we comment strictly on the validity of the perturbative approach.

As the renormalization of the Fermi velocity is an infrared effect, QMC calculations on

large lattices are needed to resolve this small window of momenta. This can be achieved using

methods developed for lattice quantum chromodynamics, which broadly go under the name of

hybrid Monte Carlo (HMC) and are perfectly suited to these types of calculations (13,14,15,16).

Lattice Hamiltonian and experiment

We perform QMC calculations for the interacting tight-binding Hamiltonian cited above with

the matrix of two-body interaction Vx,y tuned in a way to model electronic properties of sus-

pended graphene. The salient features of Vx,y are the on-site interaction Vx,x = U0 and the

long-range Coulomb tail, Vx,y = �U0/(2|~Rx,y|), where Rx,y is the distance between lattice sites
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Comparison of lattice and continuum PT
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Very good agreement at one-loop level, but quite large difference in RPA coefficient. 
This is puzzling, since we are deeply within the infrared regime where both bare 
Coulomb propagator and dispersion relation of electrons are the same as in 2+1D 
QED within <1% error.



Polarization on the lattice and in continuum

Inter-valley scattering and finite cutoff should be added in 2+1D 
QED for quantitative description of QMC or experimental data
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Figure 4: Comparison of QMC data with perturbative results (zero temperature and finite-
temperature one-loop LPT, also zero temperature Random Phase Approximation (RPA) on the
lattice and in continuum). Potential variant I is shown on the left (a) and potential variant II is
shown on the right (b). Both LPT and QMC results are obtained on 102 ⇥ 102 lattice and we
consider K-K profile in BZ.

even in the strongly-correlated regime.

Lattice Hamiltonian and perturbative series

As the tight-binding Hamiltonian provides good agreement with experiment, one can comment

on the accuracy of the perturbative series by comparing its results to the QMC data. This ap-

proach is not only more flexible, as one can simply vary the parameters in the QMC simulations,

but also of higher precision (see e.g. figure 3a). FFA just say but is also more precise

The comparison of LPT, EFT and QMC data is shown in fig. 4 again for potentials I and II.

The LPT results also include finite-temperature, one-loop self-energy corrections. In the case of

the continuum EFT, we fix the UV cutoff by fitting to the QMC data. This stands in contrast to

all other methods that do not require any additional input in determining the cutoff. We compare

the coefficient, C, which appears in front of the logarithm as well as the cutoff ⇤, after fitting

the lattice data. The momentum closest to the Dirac point is omitted in the fit of the data, as

previously suggested. By examining C, one concludes that continuum RPA can hardly describe
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Cutoff effects in polarization and self-energy in 2+1D 
QED
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Figure 4: Comparison of QMC data with perturbative results (zero temperature and finite-
temperature one-loop LPT, also zero temperature Random Phase Approximation (RPA) on the
lattice and in continuum). Potential variant I is shown on the left (a) and potential variant II is
shown on the right (b). Both LPT and QMC results are obtained on 102 ⇥ 102 lattice and we
consider K-K profile in BZ.

even in the strongly-correlated regime.

Lattice Hamiltonian and perturbative series

As the tight-binding Hamiltonian provides good agreement with experiment, one can comment

on the accuracy of the perturbative series by comparing its results to the QMC data. This ap-

proach is not only more flexible, as one can simply vary the parameters in the QMC simulations,

but also of higher precision (see e.g. figure 3a). FFA just say but is also more precise

The comparison of LPT, EFT and QMC data is shown in fig. 4 again for potentials I and II.

The LPT results also include finite-temperature, one-loop self-energy corrections. In the case of

the continuum EFT, we fix the UV cutoff by fitting to the QMC data. This stands in contrast to

all other methods that do not require any additional input in determining the cutoff. We compare

the coefficient, C, which appears in front of the logarithm as well as the cutoff ⇤, after fitting

the lattice data. The momentum closest to the Dirac point is omitted in the fit of the data, as

previously suggested. By examining C, one concludes that continuum RPA can hardly describe
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In the case of graphene, the role that the hard cutoff regularization scheme plays is com-

pletely different. One can show that the hard cutoff generates corrections to (58) which are

proportional to powers of ⇤�1. These corrections can be compared with the lattice result and

can partially account for the discrepancy between the lattice and continuum polarization bub-

bles. The result takes the following form

P (0)
⇤ (p0, ~p) = P (0)(p0, ~p) + �P (0)

⇤ (p0, ~p), (89)

where the first term on the right-hand side of (89) is identical to (58), which was computed in

dimensional regularization. The second term can be represented by

�P (0)
⇤ (p0, ~p) = � 7

16⇡

~p2

⇤
+O

�
⇤�2

�
, (90)

where the first correction due to the hard cutoff is frequency independent, while the higher-order

terms will, in general, depend on frequency. The hard cutoff also modifies the bare first-order

fermion self-energy which is given by the following expression

⌃(1)(k0,~k) = vF�iki
↵g

4
log

✓
⇤

k

◆
, (91)

where dimensional regularization has been applied (22). The expression in (91) receives, at

leading order, a contribution O(~k2/⇤2) due to the hard cutoff. We note that the hard cutoff does

not generate a term in the self energy proportional to k0�0 at this order. This correction due to

the hard cutoff is small and ultimately vanishes as one reaches the Dirac point. However, from

our results it is clear that such lattice corrections can be important when comparing perturbative

calculations to QMC data and experiment.
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Figure 7: Diagrammatic expression for the quantity G(0)⌃(1)G(0), where ⌃(1) is the bare first-
order self-energy.

In terms of Feynman diagrams, (36) is depicted in (6). The poles of Ĝ determine the quasipar-

ticle’s dispersion and this leads to the following equation

✓
ip0 (Ĝ�1

0 � ⌃̂)1,2
(Ĝ�1

0 � ⌃̂)2,1 ip0

◆
= 0, p0 = iER(~p). (37)

Typically, this equation must be solved numerically for a fixed momentum ~p in the Brillouin

zone.

The self-energy, to lowest-order, is given by the Fock diagram displayed in Fig. 7. The

expression for the first-order self-energy is given by

⌃(1)(p0, ~p)f,⇠;c,⌘ =
�c,f
4⇡L2
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dq0

X

~q
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+⇧(0)
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(q0, ~p� ~q)

�
. (38)

The sum over spatial momentum ranges over the entire Brillouin zone and the integration over

all frequencies can be performed analytically. Noting that (38) does not depend on p0, one can
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sel f -energy, a lso consistent wi th 
numerical LPT 

In the case of graphene, the role that the hard cutoff regularization scheme plays is com-

pletely different. One can show that the hard cutoff generates corrections to (58) which are

proportional to powers of ⇤�1. These corrections can be compared with the lattice result and

can partially account for the discrepancy between the lattice and continuum polarization bub-

bles. The result takes the following form

P (0)
⇤ (p0, ~p) = P (0)(p0, ~p) + �P (0)

⇤ (p0, ~p), (89)

where the first term on the right-hand side of (89) is identical to (58), which was computed in

dimensional regularization. The second term can be represented by

�P (0)
⇤ (p0, ~p) = � 7

16⇡

~p2

⇤
+O

�
⇤�2

�
, (90)

where the first correction due to the hard cutoff is frequency independent, while the higher-order

terms will, in general, depend on frequency. The hard cutoff also modifies the bare first-order

fermion self-energy which is given by the following expression

⌃(1)(k0,~k) = vF�iki
↵g

4
log

✓
⇤

k

◆
, (91)

where dimensional regularization has been applied (22). The expression in (91) receives, at

leading order, a contribution O(~k2/⇤2) due to the hard cutoff. We note that the hard cutoff does

not generate a term in the self energy proportional to k0�0 at this order. This correction due to

the hard cutoff is small and ultimately vanishes as one reaches the Dirac point. However, from

our results it is clear that such lattice corrections can be important when comparing perturbative

calculations to QMC data and experiment.

References

1. M. V. Ulybyshev, P. V. Buividovich, M. I. Katsnelson, M. I. Polikarpov, Phys. Rev. Lett.

111, 056801 (2013).

30

In the case of graphene, the role that the hard cutoff regularization scheme plays is com-

pletely different. One can show that the hard cutoff generates corrections to (58) which are

proportional to powers of ⇤�1. These corrections can be compared with the lattice result and

can partially account for the discrepancy between the lattice and continuum polarization bub-

bles. The result takes the following form

P (0)
⇤ (p0, ~p) = P (0)(p0, ~p) + �P (0)

⇤ (p0, ~p), (89)

where the first term on the right-hand side of (89) is identical to (58), which was computed in

dimensional regularization. The second term can be represented by

�P (0)
⇤ (p0, ~p) = � 7

16⇡

~p2

⇤
+O

�
⇤�2

�
, (90)

where the first correction due to the hard cutoff is frequency independent, while the higher-order

terms will, in general, depend on frequency. The hard cutoff also modifies the bare first-order

fermion self-energy which is given by the following expression

⌃(1)(k0,~k) = vF�iki
↵g

4
log

✓
⇤

k

◆
, (91)

where dimensional regularization has been applied (22). The expression in (91) receives, at

leading order, a contribution O(~k2/⇤2) due to the hard cutoff. We note that the hard cutoff does

not generate a term in the self energy proportional to k0�0 at this order. This correction due to

the hard cutoff is small and ultimately vanishes as one reaches the Dirac point. However, from

our results it is clear that such lattice corrections can be important when comparing perturbative

calculations to QMC data and experiment.

References

1. M. V. Ulybyshev, P. V. Buividovich, M. I. Katsnelson, M. I. Polikarpov, Phys. Rev. Lett.

111, 056801 (2013).

30

Polarization is finite

δΣ



Summary
1) With certain QMC algorithms, and in some cases, we can reach sample size/scale 

really observed in experiment without need for further extrapolations. 
  

2) We were able to directly observe the logarithmic dependence of the Fermi velocity 
on momentum for the first time in QMC simulations. 

3) Comparison with experiment confirms the interacting tight-binding Hamiltonian with 
cRPA potentials of electron-electron interactions as a quantitatively precise model of 
the electronic properties of graphene, even in strongly-correlated regime. 

4) The standard 2+1D QED can not be really used besides the qualitative prediction of 
the main asymptotic, since the inter-valley scattering and cutoff effects play 
important role starting from RPA level. Following this comparison, the most 
straightforward course of action is to replace continuum perturbation theory with  
lattice perturbation theory in the study of asymptotic properties of perturbative series 
in graphene. 

5) Besides lattice-scale physics, higher-order corrections are important in quantitative 
behavior of the Fermi velocity too. The most pronounced effects are: 1) the opposite 
sign of the temperature corrections in QMC in comparison to perturbative data; 2) 
large discrepancy in the cutoff when we compare QMC results with LPT. 


