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- My definition of collectivity & why it is interesting
- What drives collectivity in small collision systems ?
- Key players in the game
* Pinning down the origin of collectivity with RHIC small system scan
- Predictions from initial state (CGC) and final state (Hydrodynamics)
* The hybrid framework to study collectivity in small systems
- Framework combining CGC + Hydro. and predictions
- Strong acceptance dependence and puzzle with triangular flow
- Where do we see shape engineering works?
- Further attempts to distinguish initial & final state effects
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* Most recent venture: Collectivity in Photon included collisions
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Pattern of particle emission
Au

I\
" STAR  Au+Au 200 GeV Run# 17172038

Ad~0, An~large
(Correlation pattern repeated
over wide phase space)

Ap~0, An~small
Correlation over a
narrow phase space

In collisions very often a pattern of particle emission is
observed that span over a wide phase space
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What is collectivity ?

At fundamental levels conservation laws
determine correlation among few particles

A + = +

4
‘ Local charge conservation

3 7
Ad
------- >E------ + EEEEEEE 2 TEEEEENE
These correlations will not fill
_ the full-phase space
4 Momentum conservation S
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What is collectivity ?

At fundamental levels conservation laws
determine correlation among few particles

A + ", +

4
‘ Local charge conservation

4 Momentum conservation 8

p+p (Low multiplicity)

dszair

N\fig dAT] qu)

These correlations will not fill
the full-phase space
(Seen in experiment)

(Conservation = perfect configurations)
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What is collectivity ?

At fundamental levels conservation laws
determine correlation among few particles
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‘ Local charge conservation
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4 Momentum conservation 8

p+p (High-Multiplicity)

Violation from such
scenario is striking
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What is collectivity ?

Deviations from these perfect configurations or correlation among few
particles = Important physics at play (often non-perturbative)
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Non-flow
Collectivity = observation of a specific pattern or behavior that is
followed by most of its constituents in a system

Observing correlations among many must be accompanied by a large
scale deviation = interesting to study with decreasing system size

Au+Au — p+A = p+p — e(Y)+A = e(Y)+p — e+e
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What drives collectivity in small collision systems ?
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Origin of collectivity: initial state correlations from CGC

Quantum correlations due to Classical correlations due to
Bose enhancement / Glasma graphs local anisotropy 1/Qs

Di-Jet Graph Glasma Graph

E E

Enhanced probability to find two gluons with the Gluons hitting the same domain in
same transverse momentum. target get scatter in the same direction

@

Gelis,Lappi Venugopalan PRD 78 054020 (2008), PRD 79 094017 (2009); Dumitru, Gelis, McLerran,Venugopalan NPA810, 91 (2008); Dumitru, Jalilian-Marian PRD 81 094015 (2010);
Dusling, Venugopalan PRD 87 (2013); A. Dumitru, A.V. Giannini, Nucl.Phys.A933 (2014) 212; V. Skokov. Phys.Rev.D91 (2015) 054014; T. Lappi, B. Schenke, S. Schlichting, R.
Venugopalan, JHEP 1601 (2016) 061; Kovner, Skokov, Phys.Rev. D98 (2018) no.1, 014004
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Origin of collectivity: final state correlations from hydro

Azimuthal momentum anisotropy generated by medium
response to the initial transverse geometry: Pressure

gradients drive expansion Fourier components of initial geometry
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Initial energy density Hydrodynamic
distribution expansion

Cartoon: B. Schenke
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Collectivity across systems

larger Q2

()

dipole+A (EIC)
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u+u Au+Au Ru+Ru O+0O 3He+Au d+Au p+Au p*p
fig: Chun Shen QM19

Au+Au central
3<p,"9<4 GeV/c

p+p (High-Multiplicity)
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STAR collaboration, Phys. Rev. Lett. 95, 152301
Phys. Rev. C 80 (2009) 64912 CMS collab., JHEP 1009:091,2010 ATLAS collab.,
Phys. Rev. C 104, 014903 (2021) "



What drives collectivity in small systems ?

oa

“« % =

SHe+Au d+Au p+Au
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Pinning down the origin of collectivity with RHIC small system scan
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Event Engineering using different light ions

SHe+Au — Triangular
Shape engineering: d+Au — Elliptical Q

p+Au — Circular
PHENIX collab, Nature Physics 15, 214—220 (2019)

PHENIX collab., arXiv: 2107.06634v1
Nagle et. al., Phys. Rev. Lett. 113, 112301

Nucl. Nucl. Quarks IP-G IP-G
(e2,3) Collision w/o  w/ w/ w/ w/
system NBD NBD NBD Nucl. Quarks
Fluc. Fluc. Fluc.

(e2) p+Au 0.23 0.32 0.38 0.10 0.50

d+Au 0.54 0.48 0.51 0.58 0.73

3He+Au 0.50 0.50 0.52 0.55 0.64

(e3) p+Au 0.16 0.24 0.30 0.09 0.32

d+Au 0.18 0.28 0.31 0.28 0.40

SHe+Au (0.28 0.32 0.35 0.34 0.46

A primary motivation of the RHIC small system scan

The ordering of vz is more decisive (vz ordering — stronger final state effect)

Collectivity, P. Tribedy, vConf21
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What drives collectivity in small systems ?

Color Glass Condensate (oversimplified) Relativistic Hydrodynamics (oversimplified)
4 3 4
]
2 e d
— 1 ® =
£ 1) =0 |
0| @ 08g)::
2 1 & )
-3 0-5 7 -4 i 1 1 1 1 1 1 1
-44-3-2-101234 432101234 -4-3-2-1012340 4 2 0 2 4 4 -2 0 2 4 -4 -2 0 2 4
x [fm] X [fm] x [fm] x [fm] x [fm] x [fm]
va(p+Au) > vao(d+Au) > vo(3He+Au) v2(p+Au) < vao(d+Au) ~ v2(3He+Au)
Gluon p+Au 0-5% ——
Gluon d+Au 0-5% &
Gluon He+Au 0-5%
2 25 3 3.5 4
p, [GeV]
Mace, Skokov, PT, Venugopalan, Phys. Rev. Lett. Erratum 123, 039901 (E) (2019) Schenke, Shen, PT, Phys. Rev. C 102, 044905 (2020)

Two possible mechanisms, qualitatively different predictions
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The hybrid framework to study collectivity in small systems
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Initial state model based on CGC: IP-Glasma

Kowalski, Teaney hep-ph/0304189v3 sp Schenke, PT, Venugopalan Phys. Rev. Lett. 108 (2012) 252301, Phys. Rev. C 86, 034908 (2012)
Hv] — v i__ 7l i
Dy, ¥ =J A’ = Al + Al
n_ <9 ) )
Tr(AxL(z,y)) AT = 2 [ (4)’ (B)}
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Compute & evolve
the color fields after
collisions

A saturation Build a saturation Estimate the color
model of proton model of nucleus fields inside nucleus

|
Stress-Energy tensor: T — _gragP ¥, Fgs 4 Zg“”g"‘”’gﬁ‘sFaﬁF,,(g
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Hybrid framework combining CGC + Hydro

Schenke, Shen, PT, Phys. Rev. C 102, 044905 (2020)

s s = — = e i
% @ﬁ & /@' @ @: x/" g = 5 €
i 04

\/ _ g

0 :
™ > T (fm)
IP-Glasma e Hydrodynamics (MUSIC) | Transrt (UrQMD)

Fig: Chun Shen (different calculation)

124

Thyn = Thygro ——> UpThyg,, = €u Smooth matching between CGC and Hydro

5 y 4 L, e + Landau Matching with lattice EoS
™ =T o — geu“u - §9M
=< Ple) Cooper-Frye particlization

3
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Independent constrains from Global data
L JIC, Py ...

Mantysaari, Schenke, —— PbPb5.02TeV M ALICE Pb+Pb 5.02 TeV

—— Geometry + color + Q, Phys. Rev. Lett. 117, F === XeXe544TeV & ALICE XetXe 5.44 TeV
T Goamety -+ color 052301 (2016), Phys.Rev. ' pPb 5.02 TeV ALICE p+Pb 5.02 TeV

H1 coh t
0 icn%o%rgrnent D94 (2016) 034042
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IP-GLASMA + MUSIC HYDRODYNAMICS + URQMD

10°
Na(|n] < 0.8)

Before simulating hadronic collisions IP-Glasma Using single set of parameters we

is constrained by photon-induced collision data fit bulk observables in different
collision system

19



What drives collectivity in small systems ?

= |P-Glasma p+Au, full T
= |P-Glasma p+Au, ideal TH
= |P-Glasma d+Au, full T
— - |P-Glasma d+Au, ideal T*
= MUSIC, p+Au, full TH

== MUSIC, p+Au, ideal T#
- MUSIC, d+Au, full TH

= = MUSIC, d+Au, ideal T

vo(d+Au)<vz(p+Au)

Early Time
(pre-equilibrium
CGC-dynamics

dominate)

Schenke, Shen, PT, Phys. Lett. B, 135322

0-5% for both

Sy, L

vo(d+Au)>va(p+Au)

Late Time
(Final state/hydro
dominates)
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What drives collectivity in small systems ?

nature physics
3He+Au d+Au p+ Au Creation of quark-gluon plasma droplets with three

distinct geometries

PHENIX Collaboration

Nature Physics 15, 214-220(2019) | Cite this article

12k Accesses | 76 Citations | 227 Altmetric | Metrics

v2(3He+Au)~v2(d+Au)>vz(p+Au)

=—— |P-Glasma p+Au, full TH

—- IP-Glasma p+Au , ideal T#’ O/ .F b h
—— IP-Glasma d+Au, full T** O 5 o Or Ot
— - IP-Glasma d+Au, ideal T*”

=— MUSIC, p+Au, full TH

== MUSIC, p+Au, ideal TH

= MUSIC, d+Au, full T
== MUSIC, d+Au, ideal T/

\'syn = 200 GeV 0-5% PHENIX
- 3He+Au

Lo TH
1T
" s
[ ]

L

v2(d+Au) > v2(p+Au)

Late Time
(Hydrodynamics dominate)
vo(d+Au) < vz(p+Au)
Early Time
(pre-equilibrium
CGC-dynamics dominate) Schenke, Shen, PT, Phys. Lett. B, 135322

25 3
P, (GeV/c)

PHENIX collab, Nature Physics 15, 214-220 (2019)

PHENIX results decisively establishes role of final state driving collectivity
our framework provides deeper insight on how it happens
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Strong acceptance dependence and puzzle with triangular flow
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Puzzle with triangular flow in small systems

H K}
3He+Au — Triangular Hetgu d+Au p+Au

d+Au — Elliptical - - e
b+AU — Circular —
PHENIX collab, Nature Physics 15, 214—220 (2019)

Shape engineering:

PHENIX collab., arXiv: 2107.06634v1
Nagle et. al., Phys. Rev. Lett. 113, 112301

Nucl. Nucl. Quarks IP-G IP-G
(e2,3) Collision w/o  w/ w/ w/ w/
system NBD NBD NBD Nucl. Quarks
Fluc. Fluc. Fluc.
(e2) p+Au 0.23 0.32 0.38 0.10 0.50
d+Au 0.54 0.48 0.51 0.58 0.73
3He+Au 0.50 0.50 0.52 0.55 0.64

(e3) p+Au 0.16 0.24 0.30 0.09 0.32
d+Au 0.18 0.28 0.31 0.28 0.40
SHe+Au (0.28 0.32 0.35 0.34 0.46

A primary motivation of the RHIC small system scan, confirmed by PHENIX data
The ordering of vs is more decisive (v2 ordering — stronger final state effect)

Collectivity, P. Tribedy, vConf21
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Puzzle with triangular flow in small systems

PHENIX collab, Nature Physics 15, 214-220 (2019)

v3(3He+Au) > va(d+Au)~vs (p+Au)

\'syy = 200 GeV 0-5% PHENIX

¢ °He+Au
= d+Au

25 3
P, (GeV/c)

PHENIX results are compatible
with shape engineering

v3(3He+Au) ~ va(d+Au)~ va(p+Au)  shengli Huang, Is 2021

a) "He+Au b) d+Au c) p+Au
®STAR 0-10% ®STAR 0-10% @ STAR 0-2%
OPHENIX 0-5% OPHENIX 0-5% O PHENIX 0-5%

LTy

~ 05" STAR: sub. by ¢,
STAR prellmlnary

00 05 10 15 200 05 10 15 200 05 1.0 1.
p_ (GeV/c) p. (GeV/c) (

STAR mid-rapidity results seem to be not
compatible with shape engineering expectations
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Puzzle with triangular flow in small systems

B. Schenke, C. Shen, P. Tribedy, Phys.Lett.B 803 (2020) 135322; Data: C. Aidala et al. (PHENIX), Nature Phys. 15, 214
(2019) , STAR Preliminary data: Roy Lacey (QM2019)

PHENIX v, {EP} theory v,{SP} 0-5% 3He-+Au
PHENIX v3{EP} theory v3{SP}

STAR vy 0-5% d-+Au
STAR v

05 1.0 15 20 25 00 05 10 15 20 25 00 05 10 15 20 25 3.0
Pr (GeV) pr (GeV) pr (GeV)

Hydrodynamic simulations: describes small system v2 well but also do not show strong
evidence of shape engineering in terms of v3
(Our framework is boost invariant, data have strong acceptance dependence)
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Strong acceptance dependence of (raw) harmonic coefficients

PHENIX (3x2PC,EP)
v2(3He+Au) ~ vo(d+Au)>v2 (p+Au) ©
va(3He+Au) > va(d+Au)~vs (p+Au) ©

CGC+Hydro (Boost invariant)
v2(3He+Au) ~ vo(d+Au) > va (p+Au) ©
v3(3He+Au) ~ v3(d+Au) ~ vz (p+Au) @

Schenke, Shen, PT,
Phys.Lett.B 803 (2020)
135322

PHENIX collab, Nature Phys. 15, 214—-220 (2019)

PHENIX (3x2PC)
v2(p+Au) = vo(d+Au)
> Vo(3He+Au) ®

v3(3He+Au) >0
v3(d+Au) = ?
vz (p+Au) = ?7 ®

PHENIX collab., arXiv: 2107.06634v1,
Nagle et. al, arXiv:2107.07287

Azimuthal Angle (¢)

o

© Shape engineering works
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Pseudorapidity (v

PHENIX (3x2PC)
va2(p+Au) = vo(d+Au)
> Vv2(3He+Au) @

v3(3He+Au) >0
v3(d+Au) = ?
vz (p+Au) =7 ®

PHENIX collab., arXiv: 2107.06634v1
Nagle et. al, arXiv:2107.07287

STAR TPC (2PC)

v2(3He+Au) ~ vo(d+Au) > v (p+Au) ©
v3(3He+Au) ~ v3(d+Au) ~ vz (p+Au) @

Shengli Huang, IS 2021
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Further attempts to distinguish initial & final state effects
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If final state effects (hydro) dominates

G. Giacalone, B. Schenke and C. Shen, Phys. Rev. Lett. 125, 192301 (2020)

Event-by-event correlation between v2 and {pT»

(3"22 3<PT>>
V(B3P B(r))

,52("22 APr) =

R(A) > R(B) mp (p;)(A) < (pr)(B)
&,(A) > &,(B) mp v,(A) > v,(B)

- v, and (py) are anti-correlated
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If initial state effects (hydro) dominates

G. Giacalone, B. Schenke and C. Shen, Phys. Rev. Lett. 125, 192301 (2020)

Event-by-event correlation between v2 and (pT)

(3"22 3<PT>>
V(B3P B(r))

,52("22 APr) =

R(A) > R(B) wap (pr)(A) < (pr)(B)
£,(A) < £,(B) Y vy(A) < 1,(B)
) v, and (py) are correlated
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Correlation between initial and final anisotropy

G. Giacalone, B. Schenke and C. Shen, Phys. Rev. Lett. 125, 192301 (2020)

0.6 =@= IP-Glasma+MUSIC4+UrQMD
Pest (€3, [8]): Predictor: Initial geometry Event—by—event correlation between v2 and <pT>

—&= fest(€2, [s]): Predictor: Initial momentum anisotropy
(ov3o(pr)
V{(G2(Gipr?)

,52("22 Apr) =

For dNcn/dn = 10, switches from initial state
correlation to final state correlation

—0.4}+ d+Au 200 GeV 0.2 <pr <2 GeV
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Correlation between initial and final anisotropy

G. Giacalone, B. Schenke and C. Shen, Phys. Rev. Lett. 125, 192301 (2020), Lim, Nagle, Phys. Rev. C 103, 064906 (2021), Zhang et. al., arXiv:2103.01348

#— 040 200 GeV
#— 040 5020 GeV

40 60

centrality[%]

Double sign change @ LHC energy, No sign change @ RHIC energy

Opportunity: RHIC just took O+O data with wide acceptance STAR detector
Caution: This observable will be plagued by non-flow (conservation) effects
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Most recent venture: Collectivity in Photon included collisions
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Search for collectivity in photon induced collisions

Inclusive UPC at the LHC/RHIC

e+p/A DIS (Q?>1 GeV?), most events have Q?—0, called photoproduction processes
Until the EIC is built ultra-peripheral p/A+A collisions — opportunity to study photoproduction
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Search for collectivity UPC collisions at the LHC

ATLAS collect y+Pb collisions by

= sz triggering on ultra-peripheral Pb+Pb
ATLAS ...

EXPERIMENT 2018-11-11 22:00:07 CEST

2 2
Q ~ (hc/Ry) —0, ¥ (p, LHC)=6.51e3,
Ey (LHC) ~ Y- (hc/R,) ~71 GeV ATLAS collaboration performed this pioneering

W,pp (LHC) ~ 844 GeV, dNiddn (HM)> 10 measurements of collectivity in y+Pb collisions
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Search for collectivity UPC collisions at the LHC

ATLAS collab., Phys. Rev. C 104, 014903 (2021)

ATLAS 1.0ub™-1.7 nb"
0.96— Pb+Pb, \15 =5.02 TeV g
2.0 < |An|<5.0
Y54 F Y™M(0)
G+FYLM ¢ HMData
Y3 °+FY™M0) y

ATLAS HM 20 < N5’ < 60
Pb+Pb, 1.0 ub™'- 1.7 nb"*
VS\w=5.02TeV,0nXn -~

Z,An>25

,, LN 4
0.6 ] \\\\\\\\\\\\\ \‘\ .

QNN
055 ,!,& \ \\\‘\\\M

\ & \\" l',‘ V‘\

% ‘\ \
*' 0.4< p: <0.7GeV ¢ Data

' ‘ 0.4< p: <2.0 GeV —— yfidee

20< p: < 3.0 GeV
04< p? <2.0 GeV

Nuig dA¢  2m
Y(Ag)temPlete(HM) = FY (Ag)(LM) + Y (Ag)"&(HM)

1 d2N air Nuco
Y(A¢,2<|An|<5) = P — <1+§ 2ax, cos( A¢)) .- .
" S Template fitting of di-

hadron correlations
Y (A¢)" 98 (HM) = G{1 + 2a3 cos(2A¢) + 2a3 cos(3A¢) + 2a4 cos(4A¢)}

High activity y+Pb events can accommodate a long-range ridge component (related to collectivity)
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Search for collectivity UPC collisions at the LHC

ATLAS collab., Phys. Rev. C 104, 014903 (2021) Shi et. al.,Phys. Rev. D 103, 054017 (2021)

Cartoon: Blair Seidlitz, 1S2021

ATLAS ; 4 Template Fit
Pb+Pb, 1.0 ub™- 1.7 nb 20<|An|<5.0

sy = 5.02 TeV, OnXn

3,An>2.5

20 < N <60

¢ Photonuclear % %
CGCcalc. *

A (nuclear target)

¥ p+Pb, N* = 60
Bpp, Ny =60

*
e & g

A% = 0.25 GeV?
EIC: eA, 18 GeV on 110 GeV

Correlated color domain
size is ~ 1/Q,

CGC calculations provide
Elliptic anisotropy is lower in y+Pb than in p+Pb an explanation based on
color domain picture.
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What can we do at RHIC Au+Au(y) vs d+Au(y)

Y+AuU Y+p

Qs = Q2 x AV

U’y—{—Au Q

Y+p
Q Vg

2 X Qs.a = Qs.p X AL/6 T A1/6

Y

x AY6 > 1

Cartoon: Blair Seidlitz, 1IS2021 Shi et. al.,Phys. Rev. D 103, 054017 (2021)

A (nuclear target)

"TA2 = 0.25 GeV?
size is ~ 1/Q, EIC: eA, 18 GeV on 110 GeV

Correlated color domain

If the domain picture holds we should be able to
see this ordering by triggering photonuclear
processes in ultra-peripheral Au+Au and p/d+Au
at RHIC 200 GeV collisions

At EIC we can test this with much better control
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Summary

Collectivity in small systems:

RHIC small system collision has been very successful

Hybrid framework combining CGC + Hydro can provide many insights
Challenges to understand acceptance dependence and non-flow
New observables are under investigation and scrutiny

UPC can be a doorway to study collectivity at the future EIC

Many exciting new possibilities
1. RHIC took data this year on O+O, possible O+O run at the LHC

2. RHIC just took d+Au data with the STAR detector (wide acceptance measurements)
3. Anticipated Au+Au 200 GeV run of RHIC (2023, 2025) sPHENIX & STAR with forward upgrade
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Thanks
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