

Higher order QCD corrections to hadronic tau decays and Higgs decays to $b\bar{b}$ using Padé approximants

Diogo Boito

University of São Paulo University of Vienna

In collaboration with Cristiane London, Pere Masjuan, Fabio Oliani

DB, P. Masjuan, F Oliani, JHEP 08 (2018) 075; [arXiv:1807.01567] DB, C London, P. Masjuan, in preparation

August 2021

Perturbative series, Padé approximants, Borel transform

asymptotic series

Perturbative expansions in QFTs are (at best) asymptotic

Borel transform method $B[R](t) \equiv \sum_{n=0}^{\infty} r_n \frac{t^n}{n!}$ which can be "summed" $\Longrightarrow \qquad \tilde{R} \equiv \int_0^\infty dt \, e^{-t/\alpha} \, B[R](t)$

Singularities in the Borel plane: renormalons Beneke '99

Borel transform method $B[R](t) \equiv \sum_{n=0}^{\infty} r_n \frac{t^n}{n!}$ which can be "summed" $\Longrightarrow \qquad \tilde{R} \equiv \int_0^\infty dt \, e^{-t/\alpha} \, B[R](t)$

Singularities in the Borel plane: renormalons Beneke '99

$$B[R](t) = \frac{1}{(u-2)} \mapsto \left(\frac{\Lambda^2}{Q^2}\right)^2$$

Diogo Boito

estimating missing higher orders

Use of Padé approximants (model independent)

$$P_N^M(x) = \frac{Q_M(x)}{R_N(x)} = \frac{a_0 + a_1x + a_2x^2 + \dots + a_Mx^M}{1 + b_1x + b_2x^2 + \dots + b_Nx^N}$$

example:
$$f(x) = \frac{\sqrt{1 + \frac{1}{2}x}}{(1 + 2x)^2}$$

Matching the Taylor series

$$f(x) \approx 1 - 3.75x + 10.969x^{2} - 28.867x^{3} + 71.591x^{4} + \cdots$$

$$F_{1}(x) \approx \frac{a_{0} + a_{1}x}{1 + b_{1}x} \approx a_{0} + (a_{1} - a_{0}b_{1})x + (a_{0}b_{1}^{2} - a_{1}b_{1})x^{2} + \cdots$$
Série de T
Aproxin
Estimates of higher orders
$$f(x) \approx 1 - 3.75x + 10.969x^{2} - 28.867x^{3} + 71.591x^{4} + \cdots$$

$$P_{1}^{1}(x) \approx 1 - 3.75x + 10.969x^{2} - 32.084x^{3} + 93.845x^{4} + \cdots$$

estimating missing higher orders

Use of Padé approximants (model independent)

$$P_N^M(x) = \frac{Q_M(x)}{R_N(x)} = \frac{a_0 + a_1x + a_2x^2 + \dots + a_Mx^M}{1 + b_1x + b_2x^2 + \dots + b_Nx^N}$$

- optimised use of the information (a few coefficients)
- very effective
- can reproduce poles
- model independent
- convergence theorems (in some cases) Baker
- provides an error estimate

Diogo Boito

estimating missing higher orders

D-log Padé approximants Baker

• Useful for functions with cuts or branch points

$$f(z) = A(z) \frac{1}{(\mu - z)^{\gamma}} + B(z) \qquad \qquad F(z) = \frac{d}{dz} \ln f(z) \approx \frac{\gamma}{(\mu - z)}$$

meromorphic

• D-log Padé to f(z) is defined as

$$Dlog_N^M(z) = f(0) \exp\left\{\int dz \ P_N^M(z)\right\}$$
 PA applied to $F(z)$

- The D-log Padé is not a rational approximant, however F(z) is meromorphic
- It is possible to determine the position of the cut and its multiplicity
- The D-log Padé recreates the first M + N + 1 coefficients of the function f(z)

Application to hadronic tau decays

$$R_{\tau} = \frac{\Gamma[\tau \to \text{hadrons } \nu_{\tau}]}{\Gamma[\tau \to e^{-}\bar{\nu}_{e} \, \nu_{\tau}]} = 3.6280 \pm 0.0094$$

$$R_{\tau} = \int_0^{s_0} ds \, w(s) \, \frac{1}{\pi} \mathrm{Im}\tilde{\Pi}(s)$$

Davier et al '14

$$R_{\tau} = \frac{\Gamma[\tau \to \text{hadrons } \nu_{\tau}]}{\Gamma[\tau \to e^{-}\bar{\nu}_{e} \,\nu_{\tau}]} = 3.6280 \pm 0.0094$$

$$R_{\tau} = \int_0^{s_0} ds \, w(s) \, \frac{1}{\pi} \operatorname{Im} \tilde{\Pi}(s) = \frac{-1}{2\pi i} \oint_{|z|=s_0} dz \, w(z) \, \tilde{\Pi}(z)$$

strong coupling and parameters of nonperturbative QCD.

Moments dominated by perturbation theory

disclaimer!

Contour Improved Perturbation Theory (CIPT)

Disclaimer: CIPT has a *different* Borel sum and requires a *different* OPE Hoang and Regner, arXiv:2008.00578, arXiv: 2105.11222

```
I will focus on Fixed Order Perturbation Theory
```

testing the method

We validate our strategy with the help of a realistic model: $large-\beta_0 limit$

Gluon propagator with insertions of $q\bar{q}$ loops

testing the method

We validate our strategy with the help of a realistic model: $large-\beta_0 limit$

Gluon propagator with insertions of $q\bar{q}$ loops

 $n_f
ightarrow 6\pi eta_0$ A set of non-abelian diagrams is included (running coupling) Diogo Boito $\frac{1}{2\pi i} \oint \frac{dx}{x} \frac{dx}{x} \frac{dx}{dx} \frac{d$

We validate our strategy with the help of a realistic model: $large-\beta_0 limit$

$$\delta^{(0)} = \frac{1}{2\pi i} \oint_{|x|=1} \frac{dx}{x} W(x) \widehat{D}_{pert}^{(1+0)}(m_{\tau}^{2}x) \qquad W(z \quad D^{(1+0)}(s) = -s \frac{d}{ds} \left[\Pi^{(1+0)}(s) \right]$$
Borel transformed Adler function exactly known
$$B[\widehat{D}_{L\beta}](u) = \frac{32}{3\pi} \frac{e^{(C+5/3)u}}{2-u} \sum_{k=2}^{\infty} \frac{(-1)^{k}k}{[k^{2}-(1-u)^{2}]^{2}} \sum_{k=2}^{\infty} \frac{(-1)^{k}k}{[k^{2}-(1-u)^{$$

Re(x)

testing the Wind $\widehat{W}(x) = (1-x)^3(1+x)$ x

We validate four strategy with the help of a realistic model: $large-\beta_0 limit$

$$\delta^{(0)} = \frac{1}{2\pi i} \oint_{|x|=1} \frac{dx}{x} W(x) \widehat{D}_{pert}^{(1+0)}(m_{\tau}^{2}x) \qquad W(z \quad D^{(1+0)}(s) = -s\frac{d}{ds} \left[\Pi^{(1+0)}(s)\right]$$
Borel transformed Adler function exactly known
$$B[\widehat{D}_{L\beta}](u) = \frac{32}{3\pi} \frac{e^{(C+5/3)u}}{2-u} \sum_{k=2}^{\infty} \frac{(-1)^{k}k}{[k^{2}-(1-u)^{2}]^{2}}$$
Beneke '93 Broadhurst '93
$$\int_{-0.10}^{\infty} \frac{e^{(2+5/3)u}}{-5-4-3-2-1-0-1-2-3-4-5} \prod_{k=2}^{\infty} \frac{\alpha_{k}(Q)}{\pi}$$

• $\delta^{(0)}$ function (FOPT):

 $\delta_{\text{FO},I\beta}^{(0)}(a_Q) = a_Q + 5.119a_Q^2 + 28.78a_Q^3 + 156.7a_Q^4 + 900.8a_Q^5 + 4867a_Q^6 + \cdots$

• Borel transform of the $\delta^{(0)}$ function:

$$B[\delta^{(0)}](u) = \frac{-12}{(u-1)(u-3)(u-4)} \frac{\sin(\pi u)}{\pi u} B[\widehat{D}](u),$$

Check (and understand!) the convergence of the different Padé sequences

relative error of the 1st predicted coeff.

$$\sigma_{\rm rel} = \left| \frac{c_{n,1}^P - c_{n,1}}{c_{n,1}} \right|$$

With many input coefficients everything works well. Problem: optimize the method with only four coefficients.

Diogo Boito

optimal strategies

Systematic study of different strategies: optimal strategies

- PAs on $B[\widehat{D}](u)$;
- PAs on $\widehat{D}(\alpha_s)$;
- PAs on $\delta_{\text{FO}}^{(0)}(\alpha_s)$;

```
Padés to the series in alpha_s
```

- PAs on $B[\delta_{\text{FO}}^{(0)}](u);$
- DLog PAs on $B[\widehat{D}](u)$;
- DLog PAs on $B[\delta_{FO}^{(0)}](u)$; D-log Padés to the Borel transform
- ••••

optimal strategies

Systematic study of different strategies: optimal strategies

- PAs on $B[\widehat{D}](u)$;
- PAs on D
 (α_s);
 PAs on δ⁽⁰⁾_{FO}(α_s);

- PAs on $B[\delta_{\text{FO}}^{(0)}](u);$
- DLog PAs on $B[\widehat{D}](u)$;
- DLog PAs on $B[\delta_{FO}^{(0)}](u)$; D-Log Padés to the Borel transform

Why are D-log Padés best in this case?

• D-log method:

$$F(u) = \frac{d}{du} \log \left(B[\delta^{(0)}](u) \right)$$

= $C + \frac{5}{3} + \pi \cot(\pi u) - \frac{2}{1+u} + \frac{3}{3-u} + \frac{1}{4-u} + \frac{1}{1-u} + \frac{1}{2-u} - \frac{1}{u} + \cdots$

results in large-beta0

the method can be tested in the so called "large-beta0" limit of QCD

	<i>c</i> _{5,1}	<i>c</i> _{6,1}	<i>c</i> _{7,1}	<i>C</i> 8,1	<i>C</i> 9,1
Large- β_0 (exact)	787.8	-1991	$9.857 imes 10^4$	$-1.078 imes10^{6}$	$2.775 imes 10^7$
P_2^2 $Dlog_1^1$	749.3 818.7	—1444 —2738	$\begin{array}{c} 8.169 \times 10^4 \\ 1.189 \times 10^5 \end{array}$	$-7.514 imes 10^5 \ -1.663 imes 10^6$	$1.917 imes 10^{7} \ 4.495 imes 10^{7}$

Excellent reproduction of the series at high orders (up to ~10)

Apply the optimal strategies to QCD

• In QCD we know only the first four coefficients:

$$\widehat{D}(a_Q) = a_Q + 1.640a_Q^2 + 6.371a_Q^3 + 49.08a_Q^4 + c_{5,1}a_Q^5 + c_{6,1}a_Q^6 + \cdots$$

• Apply the optimal strategies (from the study of large- β_0):

	<i>C</i> _{4,1}	<i>c</i> _{5,1}	<i>c</i> _{6,1}	<i>C</i> 7,1	<i>C</i> 8,1	<i>C</i> 9,1	Padé sum
$ \begin{array}{c} P_{1}^{2} \\ P_{2}^{1} \\ P_{3}^{3} \\ P_{3}^{1} \end{array} $	55.62 55.53 input input	276.1 276.5 304.7 301.3	3865 3855 3171 3189	$egin{array}{c} 1.952 imes 10^4 \ 1.959 imes 10^4 \ 2.442 imes 10^4 \ 2.391 imes 10^4 \end{array}$	$4.288 imes 10^{5}$ $4.272 imes 10^{5}$ $3.149 imes 10^{5}$ $3.193 imes 10^{5}$	$egin{array}{c} 1.289 imes 10^6 \ 1.307 imes 10^6 \ 2.633 imes 10^6 \ 2.521 imes 10^6 \end{array}$	0.2080 0.2079 0.2053 0.2051

PAs on $\delta^{(0)}$ function:

D-log PAs on Borel transform of $\delta^{(0)}$ function:

	<i>C</i> _{4,1}	<i>c</i> _{5,1}	<i>c</i> _{6,1}	<i>C</i> _{7,1}	<i>C</i> 8,1	<i>C</i> 9,1	Borel sum
$\frac{\text{DLog}_0^1}{\text{DLog}_1^0}$ $\frac{\text{DLog}_1^0}{\text{DLog}_0^2}$ $\frac{\text{DLog}_0^0}{\text{DLog}_2^0}$	51.90 52.08 input input	272.6 273.7 254.1 256.4	3530 3548 3243 3270	$egin{array}{c} 1.939 imes 10^4 \ 1.953 imes 10^4 \ 1.725 imes 10^4 \ 1.769 imes 10^4 \end{array}$	$3.816 imes 10^5$ $3.840 imes 10^5$ $3.447 imes 10^5$ $3.493 imes 10^5$	$egin{array}{c} 1.439 imes 10^6 \ 1.456 imes 10^6 \ 1.186 imes 10^6 \ 1.258 imes 10^6 \end{array}$	0.2050 0.2052 0.2012 0.2019

• In QCD we know only the first four coefficients:

$$\widehat{D}(a_Q) = a_Q + 1.640a_Q^2 + 6.371a_Q^3 + 49.08a_Q^4 + c_{5,1}a_Q^5 + c_{6,1}a_Q^6 + \cdots$$

• Apply the optimal strategies (from the study of large- β_0):

PAs on	$\delta^{(0)}$	function:
--------	----------------	-----------

	<i>C</i> _{4,1}	<i>c</i> _{5,1}	<i>c</i> _{6,1}	<i>C</i> 7,1	<i>C</i> 8,1	<i>C</i> 9,1	Padé sum
$\begin{array}{c} P_{1}^{2} \\ P_{2}^{1} \\ P_{2}^{3} \\ P_{1}^{3} \\ P_{3}^{1} \end{array}$	55.62 55.53 input input	276.1 276.5 304.7 301.3	3865 3855 3171 3189	$egin{array}{c} 1.952 imes 10^4 \ 1.959 imes 10^4 \ 2.442 imes 10^4 \ 2.391 imes 10^4 \end{array}$	$4.288 imes 10^{5}$ $4.272 imes 10^{5}$ $3.149 imes 10^{5}$ $3.193 imes 10^{5}$	$egin{array}{c} 1.289 imes 10^6 \ 1.307 imes 10^6 \ 2.633 imes 10^6 \ 2.521 imes 10^6 \end{array}$	0.2080 0.2079 0.2053 0.2051

D-log PAs on Borel transform of $\delta^{(0)}$ function:

	<i>C</i> _{4,1}	<i>c</i> _{5,1}	<i>c</i> _{6,1}	<i>c</i> _{7,1}	<i>C</i> 8,1	<i>C</i> 9,1	Borel sum
$\begin{array}{c} DLog_0^1\\ DLog_1^0\\ DLog_0^2\\ DLog_0^2\\ DLog_2^0 \end{array}$	51.90 52.08 input input	272.6 273.7 254.1 256.4	3530 3548 3243 3270	$egin{array}{c} 1.939 imes 10^4 \ 1.953 imes 10^4 \ 1.725 imes 10^4 \ 1.769 imes 10^4 \end{array}$	$3.816 imes 10^5 \ 3.840 imes 10^5 \ 3.447 imes 10^5 \ 3.493 imes 10^5$	$egin{array}{c} 1.439 imes 10^6 \ 1.456 imes 10^6 \ 1.186 imes 10^6 \ 1.258 imes 10^6 \end{array}$	0.2050 0.2052 0.2012 0.2019

Excellent post-diction of the 5-loop result $c_{4,1}=53\pm4$

• In QCD we know only the first four coefficients:

$$\widehat{D}(a_Q) = a_Q + 1.640a_Q^2 + 6.371a_Q^3 + 49.08a_Q^4 + c_{5,1}a_Q^5 + c_{6,1}a_Q^6 + \cdots$$

• Apply the optimal strategies (from the study of large- β_0):

PAs on	$\delta^{(0)}$	function:
--------	----------------	-----------

	<i>C</i> _{4,1}	<i>c</i> _{5,1}	<i>c</i> _{6,1}	<i>C</i> 7,1	<i>C</i> 8,1	<i>C</i> 9,1	Padé sum
$\begin{array}{c} P_{1}^{2} \\ P_{2}^{1} \\ P_{2}^{3} \\ P_{1}^{3} \\ P_{3}^{1} \end{array}$	55.62 55.53 input input	276.1 276.5 304.7 301.3	3865 3855 3171 3189	$egin{array}{c} 1.952 imes 10^4 \ 1.959 imes 10^4 \ 2.442 imes 10^4 \ 2.391 imes 10^4 \end{array}$	$4.288 imes 10^{5}$ $4.272 imes 10^{5}$ $3.149 imes 10^{5}$ $3.193 imes 10^{5}$	$egin{array}{c} 1.289 imes 10^6 \ 1.307 imes 10^6 \ 2.633 imes 10^6 \ 2.521 imes 10^6 \end{array}$	0.2080 0.2079 0.2053 0.2051

D-log PAs on Borel transform of $\delta^{(0)}$ function:

	<i>C</i> _{4,1}	<i>c</i> _{5,1}	<i>c</i> _{6,1}	<i>C</i> 7,1	<i>c</i> _{8,1}	<i>C</i> 9,1	Borel sum
$\frac{\text{DLog}_0^1}{\text{DLog}_1^0}$ $\frac{\text{DLog}_1^0}{\text{DLog}_0^2}$ $\frac{\text{DLog}_2^0}{\text{DLog}_2^0}$	51.90 52.08 input input	272.6 273.7 254.1 256.4	3530 3548 3243 3270	$egin{array}{c} 1.939 imes 10^4 \ 1.953 imes 10^4 \ 1.725 imes 10^4 \ 1.769 imes 10^4 \end{array}$	$3.816 imes 10^5$ $3.840 imes 10^5$ $3.447 imes 10^5$ $3.493 imes 10^5$	$egin{array}{c} 1.439 imes 10^6 \ 1.456 imes 10^6 \ 1.186 imes 10^6 \ 1.258 imes 10^6 \end{array}$	0.2050 0.2052 0.2012 0.2019

Excellent post-diction of the 5-loop result $c_{4,1}=53\pm4$

$$c_{4,1} = 53 \pm 4$$

 $c_{4,1}$

Estimates from other methods

proved less effective

$$= 27 \pm 16$$
[Baikov et al, 03]
[Kataev, Starshenko 94,95]

Diogo Boito

• In QCD we know only the first four coefficients:

$$\widehat{D}(a_Q) = a_Q + 1.640a_Q^2 + 6.371a_Q^3 + 49.08a_Q^4 + c_{5,1}a_Q^5 + c_{6,1}a_Q^6 + \cdots$$

• Apply the optimal strategies (from the study of large- β_0):

	<i>c</i> _{4,1}	<i>c</i> _{5,1}	<i>c</i> _{6,1}	<i>C</i> 7,1	<i>c</i> _{8,1}	<i>C</i> 9,1	Padé sum
		1					
P_{1}^{2}	55.62	276.1	3865	$1.952 imes10^4$	$4.288 imes10^5$	$1.289 imes10^{6}$	0.2080
P_2^{1}	55.53	276.5	3855	$1.959 imes10^4$	$4.272 imes10^5$	$1.307 imes10^{6}$	0.2079
$P_{1}^{\bar{3}}$	input	304.7	3171	$2.442 imes10^4$	$3.149 imes10^5$	$2.633 imes10^{6}$	0.2053
P_3^{1}	input	301.3	3189	$2.391 imes10^4$	$3.193 imes10^5$	$2.521 imes10^{6}$	0.2051

PAs on $\delta^{(0)}$ function:

D-log PAs on Borel transform of $\delta^{(0)}$ function:

	<i>C</i> _{4,1}	<i>c</i> _{5,1}	<i>c</i> _{6,1}	<i>C</i> 7,1	<i>C</i> _{8,1}	<i>C</i> 9,1	Borel sum
$\frac{1}{DLog_0^0} \\ DLog_1^0 \\ DLog_0^2 \\ DLog_2^0 \\ DLo$	51.90 52.08 input input	272.6 273.7 254.1 256.4	3530 3548 3243 3270	$egin{array}{c} 1.939 imes 10^4 \ 1.953 imes 10^4 \ 1.725 imes 10^4 \ 1.769 imes 10^4 \end{array}$	$3.816 imes 10^5$ $3.840 imes 10^5$ $3.447 imes 10^5$ $3.493 imes 10^5$	$egin{array}{c} 1.439 imes 10^6 \ 1.456 imes 10^6 \ 1.186 imes 10^6 \ 1.258 imes 10^6 \end{array}$	0.2050 0.2052 0.2012 0.2019

$$c_{5,1} = 277 \pm 51$$

• In QCD we know only the first four coefficients:

$$\widehat{D}(a_Q) = a_Q + 1.640a_Q^2 + 6.371a_Q^3 + 49.08a_Q^4 + c_{5,1}a_Q^5 + c_{6,1}a_Q^6 + \cdots$$

• Apply the optimal strategies (from the study of large- β_0):

PAs on $\delta^{(\prime)}$	⁰⁾ function:
----------------------------	-------------------------

	<i>C</i> _{4,1}	<i>c</i> _{5,1}	<i>c</i> _{6,1}	<i>C</i> _{7,1}	<i>C</i> 8,1	<i>C</i> 9,1	Padé sum
$\begin{array}{c} \hline P_{1}^{2} \\ P_{2}^{1} \\ P_{2}^{3} \\ P_{1}^{3} \\ P_{3}^{1} \end{array}$	55.62 55.53 input input	276.1 276.5 304.7 301.3	3865 3855 3171 3189	$\begin{array}{c} 1.952 \times 10^{4} \\ 1.959 \times 10^{4} \\ 2.442 \times 10^{4} \\ 2.391 \times 10^{4} \end{array}$	$4.288 imes 10^{5}$ $4.272 imes 10^{5}$ $3.149 imes 10^{5}$ $3.193 imes 10^{5}$	$egin{array}{c} 1.289 imes 10^6 \ 1.307 imes 10^6 \ 2.633 imes 10^6 \ 2.521 imes 10^6 \end{array}$	0.2080 0.2079 0.2053 0.2051

D-log PAs on Borel transform of $\delta^{(0)}$ function:

	<i>C</i> _{4,1}	<i>c</i> _{5,1}	<i>c</i> _{6,1}	<i>C</i> _{7,1}	<i>C</i> _{8,1}	<i>C</i> 9,1	Borel sum
$\begin{array}{c} & \\ DLog_0^1 \\ DLog_1^0 \\ DLog_0^2 \\ DLog_2^0 \end{array}$	51.90 52.08 input input	272.6 273.7 254.1 256.4	3530 3548 3243 3270	$egin{array}{c} 1.939 imes 10^4 \ 1.953 imes 10^4 \ 1.725 imes 10^4 \ 1.769 imes 10^4 \end{array}$	3.816×10^{5} 3.840×10^{5} 3.447×10^{5} 3.493×10^{5}	$egin{array}{c} 1.439 imes 10^6 \ 1.456 imes 10^6 \ 1.186 imes 10^6 \ 1.258 imes 10^6 \end{array}$	0.2050 0.2052 0.2012 0.2019

 $c_{5,1} = 277 \pm 51$ $c_{6,1} = 3460 \pm 690$

• In QCD we know only the first four coefficients:

$$\widehat{D}(a_Q) = a_Q + 1.640a_Q^2 + 6.371a_Q^3 + 49.08a_Q^4 + c_{5,1}a_Q^5 + c_{6,1}a_Q^6 + \cdots$$

• Apply the optimal strategies (from the study of large- β_0):

PAs on $\delta^{(0)}$ function

	<i>C</i> _{4,1}	<i>c</i> _{5,1}	<i>c</i> _{6,1}	<i>c</i> _{7,1}	<i>c</i> _{8,1}	<i>C</i> 9,1	Padé sum
$\begin{array}{c} P_{1}^{2} \\ P_{2}^{1} \\ P_{2}^{3} \\ P_{1}^{3} \\ P_{3}^{1} \end{array}$	55.62 55.53 input input	276.1 276.5 304.7 301.3	3865 3855 3171 3189	$egin{array}{c} 1.952 imes 10^4 \ 1.959 imes 10^4 \ 2.442 imes 10^4 \ 2.391 imes 10^4 \end{array}$	$egin{array}{c} 4.288 imes 10^5 \ 4.272 imes 10^5 \ 3.149 imes 10^5 \ 3.193 imes 10^5 \end{array}$	$egin{array}{c} 1.289 imes 10^6 \ 1.307 imes 10^6 \ 2.633 imes 10^6 \ 2.521 imes 10^6 \end{array}$	0.2080 0.2079 0.2053 0.2051

D-log PAs on Borel transform of $\delta^{(0)}$ function:

	<i>c</i> _{4,1}	<i>c</i> _{5,1}	<i>c</i> _{6,1}	<i>c</i> _{7,1}	<i>c</i> _{8,1}	<i>C</i> 9,1	Borel sum
$\begin{array}{c} DLog_0^1\\ DLog_1^0\\ DLog_0^2\\ DLog_2^0\\ DLog_2^0 \end{array}$	51.90 52.08 input input	272.6 273.7 254.1 256.4	3530 3548 3243 3270	$egin{array}{c} 1.939 imes 10^4 \ 1.953 imes 10^4 \ 1.725 imes 10^4 \ 1.769 imes 10^4 \end{array}$	$3.816 imes 10^5 \ 3.840 imes 10^5 \ 3.447 imes 10^5 \ 3.493 imes 10^5$	$egin{array}{c} 1.439 imes 10^6 \ 1.456 imes 10^6 \ 1.186 imes 10^6 \ 1.258 imes 10^6 \end{array}$	0.2050 0.2052 0.2012 0.2019

 $c_{5,1} = 277 \pm 51$ $c_{6,1} = 3460 \pm 690$ $c_{7,1} = (2.02 \pm 0.72) \times 10^4$

Higgs decays to bottom quarks

 $H \to b \bar{b}$

Decay
$$H \rightarrow b\bar{b}$$
 (massless case)

$$Im \Pi(s) = \frac{N_c}{8\pi} m_b^2 s \left[1 + \sum_{n=0}^{\infty} c_n a_s^n \right]$$

$$a_s = \frac{\alpha_s}{\pi}$$
1980
1990
1997
2006
Braaten, Leveille Gorishny et al Chetyrkin
Sakai
2-loop
3-loop
4-loop
5-loop
$$N2LO$$
N3LO
$$In \left[NLO + Im \left[- \frac{\alpha_s}{2} + \frac{\alpha_s}{2} +$$

Calibrating the strategies

large- β_0 limit

• Scalar correlator in large- β_0

$$\Pi_{L\beta}(s) = \frac{N_c}{4\pi^2} \ m^2 s \left[1 - \frac{L}{2} - \frac{1}{9} \sum_{n=1}^{\infty} \left(-\frac{\beta_1}{2} \right)^{n-1} H_{n+1}(L) \ \boldsymbol{a_s^n} \right], \qquad L \equiv \ln\left(-\frac{s}{\mu^2} \right)$$

[Broadhurst, Kataev, Maxwell '01]

• For
$$\mu^2 = -s$$
 and $N_f = 5$

 $\Pi_{L\beta}(s) = \frac{N_c}{4\pi^2} \ m^2 s \left[1 + 3.0542 \ a_s + 17.990 \ a_s^2 + 63.519 \ a_s^3 + 443.45 \ a_s^4 + 2958.45 \ a_s^5 + \dots \right]$

D-Log Padés (to the second derivative) again superior to ordinary Padés

Second derivative of the massless scalar correlator

$$\Pi''(s) = -\frac{N_c}{8\pi^2} \frac{m^2}{s} \left[1 + 3.6667 a_s + 12.8098 a_s^2 + 39.6839 a_s^3 + 153.955 a_s^4 + \dots \right]$$

	r_4	r_5	r_6	r_7	r_8	r_9
$P_{1}^{1}(u)$	184	1143	8850	82 240	891 707	1.10×10^{7}
$P_1^2(u)$	—	796	5149	$39\ 954$	$361\ 671$	3.74×10^6
$P_{2}^{1}(u)$	—	740	4297	$29\ 376$	$231\ 963$	2.08×10^6
	r_4	r_5	r_6	r_7	r_8	r_9
$Dlog_1^0(u$	r_4	r_5 7 247	$\frac{r_6}{473}$	$\frac{r_7}{716}$	r ₈ 802	$\frac{r_9}{581}$
$\frac{\text{Dlog}_1^0(u)}{\text{Dlog}_0^1(u)}$	$egin{array}{ccc} r_4 \ r_4 \ r_2 \ 10' \ r_2 \ 10' \ r_2 \ r_3 \ r_4 \ r_4 \ r_4 \ r_4 \ r_4 \ r_5 $	r_5 7 247 8 196	r_{6} 473 114	r_7 716 -956	$r_8 \\ 802 \\ -4287$	$r_9 \\ 581 \\ -5728$
$\frac{\text{Dlog}_1^0(u)}{\text{Dlog}_0^1(u)}$ $\frac{1}{\text{Dlog}_2^0(u)}$	$(r_4) = r_4$ (c) 10' (c) 10((c) -	r_5 7 247 3 196 789	r ₆ 473 114 4877	r_7 716 -956 36 178	r_8 802 -4287 307 326	r_9 581 -5728 2.99 × 10 ⁶

Using all available coefficients we obtain stable results.

We can then get the perturbative coefficients of the scalar correlator

	$d_{5,1}$	$d_{6,1}$	$d_{7,1}$	$d_{8,1}$
$P_1^2(u)$	$40\ 968$	$549\;637$	8.37×10^6	1.43×10^{8}
$P_{2}^{1}(u)$	$40\ 912$	$548\ 137$	8.34×10^6	1.42×10^8
$\operatorname{Dlog}_2^0(u)$) 40 961	$549\ 284$	8.36×10^6	1.43×10^8
$\operatorname{Dlog}_0^2(u)$) 41 077	$551\;531$	8.39×10^6	1.43×10^8
$P_1^3(a_s)$	$40\ 769$	$544\ 499$	8.26×10^6	1.41×10^8
$P_3^1(a_s)$	$40\ 770$	$544\ 430$	8.26×10^6	1.41×10^8

Final results

$d_{5,1}$	$d_{6,1}$	$d_{7,1}$	$d_{8,1}$
$(4.09 \pm 0.03) \times 10^4$	$(5.48 \pm 0.07) \times 10^5$	$(8.33 \pm 0.12) \times 10^6$	$(1.42 \pm 0.02) \times 10^8$

We can then get the perturbative coefficients of the scalar correlator

	$d_{5,1}$	$d_{6,1}$	$d_{7,1}$	$d_{8,1}$
$P_1^2(u)$	$40\ 968$	$549\;637$	8.37×10^6	1.43×10^{8}
$P_2^1(u)$	$40\ 912$	$548\ 137$	8.34×10^6	1.42×10^8
$\operatorname{Dlog}_2^0(u)$) 40 961	$549\ 284$	8.36×10^6	1.43×10^8
$\operatorname{Dlog}_0^2(u)$) 41 077	$551\;531$	8.39×10^6	1.43×10^{8}
$P_1^3(a_s)$	$40\ 769$	$544\ 499$	8.26×10^6	1.41×10^{8}
$P_{3}^{1}(a_{s})$	$40\ 770$	$544\ 430$	8.26×10^6	1.41×10^8

Final results

$d_{5,1}$	$d_{6,1}$	$d_{7,1}$	$d_{8,1}$
$(4.09 \pm 0.03) \times 10^4$	$(5.48 \pm 0.07) \times 10^5$	$(8.33 \pm 0.12) \times 10^6$	$(1.42 \pm 0.02) \times 10^8$

...and of the imaginary part

$$\operatorname{Im}\Pi(s) = \frac{N_c}{8\pi} m_b^2 s \left[1 + \sum_{n=0}^{\infty} c_n a_s^n \right]$$

Estimated Coefficients

$$c_5 = -8200 \pm 308$$

 $c_6 = (-2.80 \pm 0.69) \times 10^4$
 $c_7 = (1.48 \pm 2.03) \times 10^5$
 $c_8 = (2.39 \pm 4.92) \times 10^6$

DB, P Masjuan, C London, in preparation

Diogo Boito

Decay
$$H \rightarrow b\bar{b}$$
 (massless case)
Im $\Pi(s) = \frac{N_c}{8\pi} m_b^2 s \left[1 + \sum_{n=0}^{\infty} c_n a_s^n \right]$

$$a_s = \frac{\alpha_s}{\pi}$$
1980
1990
1997
2006
Braaten, Leveille Gorishny et al Chetyrkin Baikov, Chetyrkin, Kühn
Sakai
2-loop
3-loop
4-loop
5-loop
 $n \left[\frac{NLQ}{2} + \frac{1}{10} + \frac{1}{10}$

DB, P Masjuan, C London, in preparation

 $H \rightarrow b\overline{b}$ theory uncertainties

Decay $H \to b\overline{b}$

Truncation error vs. strong coupling error

 $H \rightarrow b\overline{b}$ theory uncertainties

Decay $H \to b\overline{b}$

Truncation error vs. strong coupling error

 $H \rightarrow b\overline{b}$ theory uncertainties

Decay $H \to b\bar{b}$

Renormalization scale variation

At N410 we already have a very stable perturbative series

Diogo Boito

- Method for a systematic, model ind., estimate of MHOs in pt. QCD.
- Borel Transform + D-log Padés very effective (faster convergence).
- Methods calibrated in the $large-\beta_0$
- Very good post-diction of 5-loop results -> reliable 6-loop results.
- Excellent results for hadronic tau decays.
- Very good results for $H \to b \overline{b}$
- In $H \to b\overline{b}$ it is better to invest in QCD parameters than in more loops.