Recent progress in hadronic light-by-light scattering

 $u^{\scriptscriptstyle b}$

Martin Hoferichter

Albert Einstein Center for Fundamental Physics,

UNIVERSITÄT BERN

Institute for Theoretical Physics, University of Bern

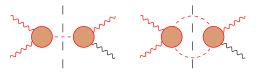
AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

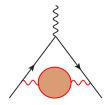
August 5, 2021

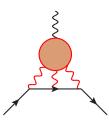
A Virtual Tribute to Quark Confinement and the Hadron Spectrum 2021

Hadronic light-by-light scattering

- In the past: hadronic models, inspired by various QCD limits, but error estimates difficult
- Dispersive approach: use again analyticity, unitarity, crossing, and gauge invariance for data-driven approach Colangelo, MH, Procura, Stoffer 2014,...
- For simplest intermediate states: relation to $\pi^0 \rightarrow \gamma^* \gamma^*$ transition form factor and $\gamma^* \gamma^* \rightarrow \pi \pi$ partial waves







HLbL scattering: white paper strategy

• Reference points:

 $egin{aligned} & a_\mu^{ ext{HLbL}} |_{ ext{"Glasgow consensus" 2009}} = 105(26) imes 10^{-11} \ & a_\mu^{ ext{HLbL}} |_{ ext{Jegerlehner, Nyffeler 2009}} = 116(39) imes 10^{-11} \end{aligned}$

- Strategy in the white paper
 - Take well-controlled results for the low-energy contributions
 - Combine errors in quadrature
 - Take best guesses for medium-range and short-distance matching
 - Add these errors linearly, since errors hard to disentangle at the moment
- Recommended value

 a_{μ}^{HLbL} (phenomenology) = 92(19) × 10⁻¹¹

• Lattice QCD: first complete calculation RBC/UKQCD 2019 (Mainz 2021 after WP, see below)

 a_{μ}^{HLbL} (lattice, *uds*) = 79(35) × 10⁻¹¹

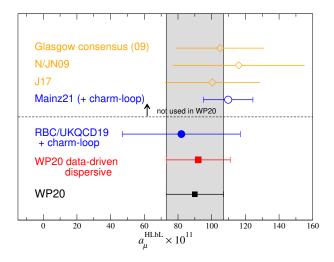
 \hookrightarrow can combine with phenomenological value

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

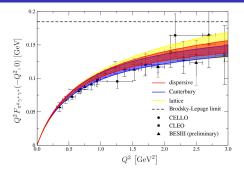
HLbL scattering: white paper details

Contribution	PdRV(09)	N/JN(09)	J(17)	Our estimate
$\pi^0,\eta,\eta' ext{-poles}$	114(13)	99(16)	95.45(12.40)	93.8(4.0)
π, K -loops/boxes	-19(19)	-19(13)	-20(5)	-16.4(2)
S-wave $\pi\pi$ rescattering	-7(7)	-7(2)	-5.98(1.20)	-8(1)
subtotal	88(24)	73(21)	69.5(13.4)	69.4(4.1)
scalars	_	_	_	} - 1(3)
tensors	-	-	1.1(1)	
axial vectors	15(10)	22(5)	7.55(2.71)	6(6)
u, d, s-loops / short-distance	-	21(3)	20(4)	15(10)
<i>c</i> -loop	2.3	_	2.3(2)	3(1)
total	105(26)	116(39)	100.4(28.2)	92(19)

All to be compared to projected final E989 precision: $\Delta a_{\mu}^{E989} = 16 \times 10^{-11}$



HLbL scattering: pion pole



• Pion pole from data MH et al. 2018, Masjuan, Sánchez-Puerto 2017 and lattice QCD Gérardin et al. 2019

$$\begin{split} \left. a_{\mu}^{\pi^{0}\text{-pole}} \right|_{\text{dispersive}} &= 63.0^{+2.7}_{-2.1} \times 10^{-11} \\ \left. a_{\mu}^{\pi^{0}\text{-pole}} \right|_{\text{Canterbury}} &= 63.6(2.7) \times 10^{-11} \\ \left. a_{\mu}^{\pi^{0}\text{-pole}} \right|_{\text{lattice}+\text{PrimEx}} &= 62.3(2.3) \times 10^{-11} \\ \left. a_{\mu}^{\pi^{0}\text{-pole}} \right|_{\text{lattice}} &= 59.7(3.6) \times 10^{-11} \end{split}$$

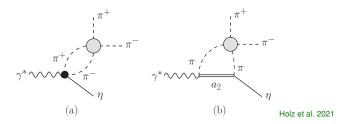
 \hookrightarrow agree within uncertainties well below Fermilab goal

Singly-virtual results agree well with BESIII measurement

Subleading contributions

- η, η' poles
- Subleading two-pion and multi-hadron intermediate states
 - \hookrightarrow narrow-resonance description
- Short-distance constraints talk by A. Rodríguez-Sánchez and their implementation
- In the following: brief review of status and prospects
- For more details: see talks by J. Bijnens, G. Colangelo, B. Kubis, A. Rebhan, P. Stoffer at recent meeting Muon
 - g-2 Theory Initiative meeting (virtual at KEK) https://www-conf.kek.jp/muong-2theory/

HLbL scattering: η , η' poles

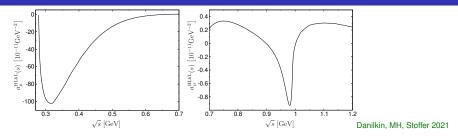


So far only based on Canterbury approximants Masjuan, Sánchez-Puerto 2017

$$\left. a_{\mu}^{\eta ext{-pole}}
ight|_{ ext{Canterbury}} = 16.3(1.4) imes 10^{-11} \qquad \left. a_{\mu}^{\eta' ext{-pole}}
ight|_{ ext{Canterbury}} = 14.5(1.9) imes 10^{-17}$$

- Impact of factorization-breaking terms not well understood: in general $F_{\eta\gamma^*\gamma^*}(q_1^2, q_2^2) \neq F(q_1^2)F(q_2^2)$
- ullet Can be cross checked with data on $e^+e^- o \eta\pi\pi$ Holz et al. 2021
 - \hookrightarrow need more differential data to ascertain role of left-hand cut from a_2 diagram

HLbL scattering: scalar contributions



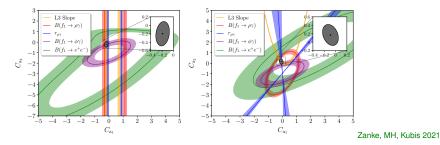
• Single-particle poles in general depend on the choice of tensor basis

 \hookrightarrow basis independence only ensured by sum rules for entire HLbL tensor

- Exception: pseudoscalar poles
- Scalar contributions first non-trivial test case
- For $f_0(500)$ and $f_0(980)$ implementation in terms of $\gamma^*\gamma^* \to \pi\pi/\bar{K}K$
 - \hookrightarrow can compare full and narrow-resonance description for $f_0(980)$

 $\left. a_{\mu}^{\text{HLbL}}[f_{0}(980)] \right|_{\text{rescattering}} = -0.2(1) \times 10^{-11} \qquad \left. a_{\mu}^{\text{HLbL}}[f_{0}(980)] \right|_{\text{NWA}} = -0.37(6) \times 10^{-11}$

HLbL scattering: axial-vector contributions



- Challenges regarding axial-vector states
 - Require multi-hadron channels: $a_1 \rightarrow 3\pi$, $f_1 \rightarrow \eta \pi \pi$, ...

 \hookrightarrow narrow-resonance approximation

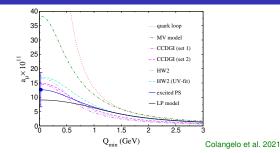
Limited information on transition form factors

 \hookrightarrow global analysis of f_1 decays Zanke, MH, Kubis 2021, asymptotic constraints MH, Stoffer 2020

 \hookrightarrow improved measurement of $f_1 \to e^+e^-$ would be valuable

Need tensor basis in which kinematic singularities are manifestly absent

HLbL scattering: short-distance constraints



Open issue how to best implement the short-distance constraints

Melnikov–Vainshtein model: anomaly exact in chiral limit, low-energy 2π and 3π cuts missing

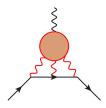
- Holographic QCD Leutgeb-Rebhan, Cappiello et al. 2019: model for QCD, implementation in terms of axial-vector states
- Regge model for excited pseudoscalars Colangelo et al. 2019: individual pseudoscalar contributions not affected by sum rules, but works only away from chiral limit
- Interpolation between low- and high-energy constraints Lüdtke, Procura 2020
- \hookrightarrow good agreement among 2.–4. for the effect on HLbL

Hadronic light-by-light scattering

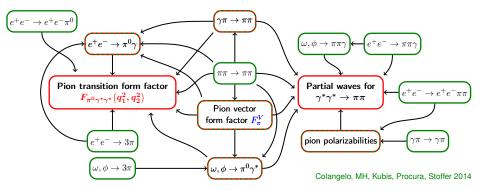
- Use dispersion relations to remove model dependence as far as possible (π^0 and leading $\pi\pi$ effects done)
- Evaluation of subleading terms and comparison to lattice-QCD calculations in progress

• Subleading terms

- η, η' poles
- Short-distance constraints talk by A. Rodríguez-Sánchez and their implementation
- Subleading two-pion and multi-hadron intermediate states
 - $\hookrightarrow \text{resonance description}$
- Current theory matches expected experimental precision after first E989 release, but need to go further!



Hadronic light-by-light scattering: data input



• Reconstruction of $\gamma^*\gamma^* \to \pi\pi, \pi^0$: combine experiment and theory constraints

• Need input on $\gamma^* \gamma^*$ matrix elements for as many states as possible

イロト イヨト イヨト イヨト