A universal holographic wavefunction for light hadrons

Ruben Sandapen

A virtual tribute to Quark Confinement and the Hadron Spectrum

University of Stavanger, Stavanger, Norway

August 6th, 2021

Based on work done with M. Ahmady, D. Chakraborti, S. Kaur, and C. Mondal
Light-front QCD

Ordinary time

Light-front time

\[x^+ = x^0 + x^3 \]

LF Schrodinger-like Equation in the conformal limit

\[\left(-\frac{d^2}{d\zeta^2} - \frac{1 - 4L^2}{4\zeta^2} + U_{\text{eff}}(\zeta) \right) \phi(\zeta) = M^2 \phi(\zeta) \]

\[\zeta = \sqrt{\frac{x}{1-x}} \sum_{j=1}^{N-1} x_j b_{\perp,j} \]

\[x = \frac{k^+}{p^+} \]
Holographic dictionary

Light front transverse distance maps onto 5th dimension of AdS

$$\zeta \leftrightarrow z_5$$

(Orbital angular momentum)2 maps onto (AdS mass parameter x radius)2 and spin

$$L^2 = (\mu R)^2 + (2 - J)^2$$
Unique confinement potential

Confinement in physical spacetime \iff dilaton field in AdS

$$U(\zeta) = \frac{1}{2} \varphi''(\zeta) + \frac{1}{4} \varphi'(\zeta)^2 + \frac{2J - 3}{2\zeta} \varphi'(\zeta)$$

$$\varphi = \kappa^2 z_5^2$$

$$U(\zeta) = \kappa^4 \zeta^2 + 2\kappa^2 (J - 1)$$

κ : emerging mass scale !

Quadratic dilaton/potential is required by underlying conformal symmetry
Supersymmetric light-front holography

Dosch, de Teramond, Brodsky, Phys. Rev. D 95 034016 (2017)

\[H \ket{\phi} = M^2_{\perp} \ket{\phi} \]

\[H = \begin{pmatrix}
-\frac{d^2}{d\zeta^2} + \frac{4L^2 - 1}{4\zeta^2} & U_M(\zeta) \\
0 & -\frac{d^2}{d\zeta^2} + \frac{4L^2 - 1}{4\zeta^2} + U_B(\zeta)
\end{pmatrix} \]

\[|\phi\rangle = \begin{pmatrix}
\phi_M(L_M = L_B + 1) & \psi^-(L_B + 1) \\
\psi^+(L_B) & \phi_T(L_T = L_B)
\end{pmatrix} \]

\[U_M(\zeta) = \kappa^4 \zeta^2 + 2\kappa^2 (L_M + S_M - 1) \]
\[U_B(\zeta) = \kappa^4 \zeta^2 + 2\kappa^2 (L_B + S_D) \]

\[M^2_{\perp,M} = 4\kappa^2 \left(n_i + L_M + \frac{S_M}{2} \right) \]
\[M^2_{\perp,B} = 4\kappa^2 \left(n_i + L_B + \frac{S_D}{2} + 1 \right) \]
\[M^2_{\perp,T} = 4\kappa^2 \left(n_i + L_T + \frac{S_T}{2} + 1 \right) \]

Each baryon has two supersymmetric partners: a meson and a tetraquark
A universal holographic mass scale

\[\kappa = 523 \pm 24 \text{ MeV} \]

Brodsky, de Teramond, Dosch, Lorce (2013)

Universal holographic wavefunction for ground state

\[\Psi(x, k_\perp^2) \propto \frac{1}{\sqrt{x\bar{x}}} \exp \left(-\frac{M^2}{2k^2} \right) \quad M^2 = \frac{k^2_\perp}{x\bar{x}} \]

Fourier conjugate to \(\zeta \)

\[k^2_\perp \rightarrow k^2_\perp + m^2 \quad \text{For massive quarks} \]
For a successful phenomenology, we need to account for dynamical effects of quark masses and spins.

\[\Psi_{h,h}^{P,V}(x, k) = S_{h,h}^{P,V}(x, k) \Psi(x, k_\perp), \]

Mesons (quark-antiquark)

\[
S_{h_q h_{\bar{q}}}^{V(\lambda)}(x, k) \propto \frac{\bar{u}_{h_q}(1 - x) P^+, -k)}{\sqrt{x}} \frac{\epsilon_\lambda^\ast \cdot \gamma}{\sqrt{x}} u_{h_{\bar{q}}}(x P^+, k) \]

Nucleons (quark-diquark)

\[
S_{h_N h_{\bar{q}}}^{N(\lambda)}(x, k) \propto \frac{\bar{u}_{h_q}(x P^+, k)}{\sqrt{x}} \frac{1}{1} u_{h_N}(P^+, 0) \]

\[
B \gg 1
\]
EM transition form factors

Light-front holographic radiative transition form factors for light mesons

Mohammad Ahmady
Department of Physics, Mount Allison University, Sackville, New Brunswick E4L 1E6, Canada
Satvir Kaur
Department of Physics, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar 144011, India
Chandan Mondal
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China, School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China and CAS Key Laboratory of High Precision Nuclear Spectroscopy, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
Ruben Sandapen
Department of Physics, Acadia University, Wolfville, Nova-Scotia B4P 2R6, Canada

(Received 17 June 2020; accepted 22 July 2020; published 19 August 2020)

\[V \rightarrow P + \gamma^* \]
Predictions for radiative decay widths

TABLE I. Our predictions for the \((\rho, \omega, \phi) \rightarrow \pi \gamma\) decay widths, compared to the PDG averages [2].

<table>
<thead>
<tr>
<th>Decay widths</th>
<th>Spin-improved LFH [keV]</th>
<th></th>
<th></th>
<th>PDG (2018) [keV]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B = 0</td>
<td>B = 1</td>
<td>B \gg 1</td>
<td></td>
</tr>
<tr>
<td>(\Gamma(\rho^\pm \rightarrow \pi^\pm \gamma))</td>
<td>23.46 ± 3.12</td>
<td>64.52 ± 6.94</td>
<td>66.37 ± 7.00</td>
<td>67.10 ± 7.82</td>
</tr>
<tr>
<td>(\Gamma(\rho^0 \rightarrow \pi^0 \gamma))</td>
<td>23.46 ± 3.12</td>
<td>64.52 ± 6.94</td>
<td>66.37 ± 7.00</td>
<td>70.08 ± 9.32</td>
</tr>
<tr>
<td>(\Gamma(\omega \rightarrow \pi^0 \gamma))</td>
<td>221.03 ± 29.90</td>
<td>607.96 ± 65.44</td>
<td>625.38 ± 66.03</td>
<td>713.16 ± 25.40</td>
</tr>
<tr>
<td>(\Gamma(\phi \rightarrow \pi^0 \gamma))</td>
<td>1.84 ± 0.33</td>
<td>5.06 ± 0.80</td>
<td>5.21 ± 0.82</td>
<td>5.52 ± 0.22</td>
</tr>
</tbody>
</table>

Pure \(\gamma^5\)
Predictions for the transition form factors

\[\omega \rightarrow \pi + \gamma^* \]

\[\varphi \rightarrow \pi + \gamma^* \]
Excellent agreement at low momentum transfer

Large uncertainties for neutron where LO contributions tend to cancel out
Predictions for the EM radii of nucleons

<table>
<thead>
<tr>
<th>Radius</th>
<th>Our prediction</th>
<th>Experimental data</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle r_E \rangle_p$ fm</td>
<td>0.833 ± 0.010</td>
<td>0.833 ± 0.010 [48]; 0.831 ± 0.019 [50]; 0.841 ± 0.084 [49]</td>
</tr>
<tr>
<td>$\langle r_M \rangle_p$ fm</td>
<td>0.7985 ± 0.0313</td>
<td>0.851 ± 0.026 [52]</td>
</tr>
<tr>
<td>$\langle r_E^2 \rangle_n$ fm2</td>
<td>−0.0704 ± 0.0434</td>
<td>−0.1161 ± 0.0022 [52]; −0.110 ± 0.008 [53]</td>
</tr>
<tr>
<td>$\langle r_M \rangle_n$ fm</td>
<td>0.8388 ± 0.0288</td>
<td>0.864$^{+0.009}_{-0.008}$ [52]</td>
</tr>
</tbody>
</table>
Conclusions & Acknowledgements

- Light hadrons share a universal holographic wavefunction which is modified differently by their spin structures

- This research is supported by the Natural Sciences and Engineering Research Council of Canada