PHYSICAL REVIEW D 103, 054502 (2021)

Antoni J. Woss^(b).^{1,*} Jozef J. Dudek.^{2,3,†} Robert G. Edwards,^{2,‡} Christopher E. Thomas^(b),^{1,§} and David J. Wilson^(b).^{1,||}

decays of an exotic 1⁻⁺ hybrid meson in QCD

Jozef Dudek

hadron spectrum collaboration hadspec.org

WILLIAM & MARY

one hypothesis to go beyond the $q\overline{q}$ picture of mesons	- add an excitation of the gluonic field $q\overline{q}G$ - can give rise to J^{PC} not allowed for $q\overline{q}$ e.g. $0^{+-}, 1^{-+}, 2^{+-} \dots$	
long history of study within QCD-motivated models	 constituent gluon bag model flux-tube model . 	all have exotic J ^{pc} mesons, but spectra differ

more recently studied in (incomplete) lattice QCD calculations ...

experimental situation

celerator Facility

WILLIAM & MARY

a resonance in QCD?

how would an unstable resonance appear in lattice QCD?

the lattice has a **finite-volume** \Rightarrow spectrum is **discrete**

but the mapping **discrete-spectrum** \leftrightarrow **scattering matrix** is known

 $\pi\pi$ *I*=1 *J*^{*P*}=1⁻

decays of an exotic π_1 hybrid | 2 Aug 2021 | Confinement 2021

Jefferson Lab

celerator Facility

coupled-channel resonances

WILLIAM & MARY

8

 ω is stable at m_{π} ~391 MeV

several successful calculations with m_{π} ~391 MeV

but a π_1 resonance potentially has a very large set of decay modes ...

WILLIAM & MARY

WILLIAM & MARY

decays of an exotic π_1 hybrid | 2 Aug 2021 | Confinement 2021

Jefferson Lab

$$\eta^{\circ} \rightarrow \pi, \kappa, \eta$$
$$\eta^{1} \rightarrow \eta'$$
$$\omega^{8}, \omega^{1} \rightarrow \rho, K^{*}, (\omega, \varphi)$$
$$h_{1}^{8}, h_{1}^{1} \rightarrow b_{1}, K_{1}, (h_{1}, h_{1}')$$
$$f_{1}^{8}, f_{1}^{1} \rightarrow a_{1}, K_{1}, (f_{1}, f_{1}')$$

WILLIAM & MARY

decays of an exotic π_1 hybrid | 2 Aug 2021 | Confinement 2021

Jefferson Lab

πη΄

0.35

0.30

 $\eta^{\mathbf{1}}\eta^{\mathbf{8}}$

 $1^{-(+)}$

lattice QCD spectrum computed in 6 volumes

53 energy levels to constrain 'eight' channel scattering

Jefferson Lab

ccelerator Facility

LQCD spectrum computed in 6 volumes

WINLIAM & MARY

decays of an exotic π_1 hybrid | 2 Aug 2021 | Confinement 2021

12

WILLIAM & MARY

describe scattering by a unitarity-preserving *K*-matrix featuring a pole (11 free parameters)

a good description of the spectrum ...

an 'eight' channel scattering amplitude

WILLIAM & MARY

'eight' channel scattering amplitudes - varying parameterization

WILLIAM & MARY

octet 1⁻⁺ resonance pole & couplings

WILLIAM & MARY

resonance below $h_1^8\eta^8$ threshold, but with a large coupling

16

core assumption: couplings scale only with the relevant barrier factor k^{ℓ}

use PDG masses & COMPASS/JPAC π_1 mass

generates for a π_1 at 1564 MeV:

JPAC/COMPASS candidate:

Гтот ~ 140-600 MeV

Гтот ~ 492(115) MeV

$\Gamma(\pi\eta) \lesssim 1 \text{ MeV}$		
<i>Γ</i> (πη') ≈ 20 MeV	Kopf et al analysis:	
$\Gamma(\pi\rho) \lesssim 12 \text{ MeV}$	Гтот ~ 388(10) MeV	
Γ(πb1) ~ 140-530 MeV	<i>Γ</i> (<i>πη'</i>) / <i>Γ</i> (<i>πη</i>) ~ 6.5(1)	

if correct, suggests prior observations in $\pi\eta$, $\pi\eta'$, $\pi\rho$ are in heavily suppressed decay channels

WILLIAM & MARY

first ever calculation of an **exotic hybrid meson** as a **resonance** in QCD

simplified scattering system using exact SU(3)_F and m_{π} ~700 MeV

flavor octet 1-+ state appears as a narrow resonance

crude extrapolation to physical kinematics suggests a **potentially broad resonance**

what about other exotic J^{PC} ?

can we build a phenomenology of hybrid decays starting from QCD?

challenge of **reducing quark mass** really the challenge of **including three-meson decays**

progress in this direction, see Raul Briceno's talk ...

extrapolation

$$|c|^{\text{phys}} = \left| \frac{k^{\text{phys}}(m_R^{\text{phys}})}{k(m_R)} \right|^{\ell} |c|.$$

$$\Gamma(R \to i) = \frac{|c_i^{\text{phys}}|^2}{m_R^{\text{phys}}} \cdot \rho_i(m_R^{\text{phys}}).$$

example 'success' $- f_{2,}f_{2}$ ' calculated at m_{π} ~400 MeV

	Scaled	PDG
$ c(f_2 \to \pi\pi) $	488(28)	453^{+9}_{-4} ,
$ c(f_2 \rightarrow K\bar{K}) $	139(27)	132(7),
$ c(f_2' \to \pi\pi) $	103(32)	33(4),
$ c(f_2' \to K\bar{K}) $	321(50)	389(12),

$$\begin{split} &\frac{1}{\sqrt{3}}(\pi^+\rho^0-\pi^0\rho^+)+\frac{1}{\sqrt{6}}(K^+\bar{K}^{*0}-\bar{K}^0K^{*+}),\\ &-\sqrt{\frac{3}{10}}(K^+_{1A}\bar{K}^0+\bar{K}^0_{1A}K^+)+\frac{1}{\sqrt{5}}(a^+_1\eta_8+(f_1)_8\pi^+),\\ &\frac{1}{\sqrt{6}}(K^+_{1B}\bar{K}^0-\bar{K}^0_{1B}K^+)+\frac{1}{\sqrt{3}}(b^+_1\pi^0-b^0_1\pi^+), \end{split}$$

Jefferson Lab

WILLIAM & MARY

decays of an exotic π_1 hybrid | 2 Aug 2021

decays of an exotic π_1 hybrid | 2 Aug 2021 | Confinement 2021

•

J-- singlet decays to pseudoscalar + vector at SU(3) point

22

f_2 resonances – decay couplings & OZI

WILLIAM & MARY

couplings from pole residue

	$\frac{a_t c_{\pi\pi} }{(a_t k_{\pi\pi})^2}$	$\frac{a_t c_{K\bar{K}} }{(a_t k_{K\bar{K}})^2}$
f_2^{a}	7.1(4)	4.8(9)
f_2^{b}	1.0(3)	5.5(8)

zero in 'OZI' limit — requires ss annihilation

resonances in a finite volume ?

but in a periodic volume ...

WILLIAM & MARY

decays of an exotic π_1 hybrid | 2 Aug 2021 | Confinement 2021

Jefferson Lab

25

*m*_π ~ 391 MeV

0.8

 $\pi^{-}\pi^{-}$ Mass (GeV)

1.2

0.4

WILLIAM & MARY

an elastic resonance – the ρ in $\pi\pi$ (isospin=1)

WILLIAM & MARY

decays of an exotic π_1 hybrid | 2 Aug 2021 | Confinement 2021

E / MeV

ccelerator Facility

Jefferson Lab

$\pi\pi$ isospin=0

WILLIAM & MARY

heavier quark mass – a bound-state

decays of an exotic π_1 hybrid | 2 Aug 2021 | Confinement 2021

lighter quark mass – attraction, maybe a **broad resonance**?

c.f. the experimental σ resonance ...

in the case of **coupled-channel scattering** it's more challenging ...

e.g. some energy region where $\pi\pi$, $K\overline{K}$ accessible

physical pion masses = low-lying multipion channels

WILLIAM & MARY

decays of an exotic π_1 hybrid | 2 Aug 2021 | Confinement 2021

Jefferson Lab

coupling resonances to currents

 $E_{\pi\pi}$ / m_{π}

WILLIAM & MARY

calculate correlation functions

e.g. $\langle 0 | \mathcal{O}_i(t) \mathcal{O}_j(0) | 0 \rangle$

where the operators are constructed from quark and gluon fields and have the quantum numbers of the hadronic system you want to study

$$\langle 0 | \mathcal{O}_i(t) \mathcal{O}_j(0) | 0 \rangle = \sum_n \langle 0 | \mathcal{O}_i | n \rangle \langle n | \mathcal{O}_j | 0 \rangle e^{-E_n t}$$

a superposition of the (finite-volume) eigenstates of QCD

powerful approach:

WILLIAM & MARY

- use a large basis of operators*
- form a matrix of correlation functions
- diagonalize this matrix

 $[000] A_{1^+} 24^3$ e.g.

* could give a whole interesting talk on the construction of these operators

decays of an exotic π_1 hybrid | 2 Aug 2021 | Confinement 2021

Jefferson Lab

operator basis

WILLIAM & MARY

'dropping' ops in $\rho \rightarrow \pi \pi$

Jefferson Lab

focus on the lowest two states

WILLIAM & MARY

an avoided level crossing

coupled-channel Riemann sheet structure

celerator Facility

WILLIAM & MARY

$$0 = \det \left[\mathbf{1} + i \boldsymbol{\rho}(E) \cdot \mathbf{t}(E) \cdot \left(\mathbf{1} + i \boldsymbol{\mathcal{M}}(E, L) \right) \right]$$

$$\overline{\mathcal{M}}_{\ell J m, \ell' J' m'} = \sum_{m_{\ell}, m'_{\ell}, m_{S}} \langle \ell m_{\ell}; 1 m_{S} | J m \rangle \langle \ell' m'_{\ell}; 1 m_{S} | J' m' \rangle$$

$$\times \sum_{\bar{\ell}, \bar{m}_{\ell}} \frac{(4\pi)^{3/2}}{k_{\mathsf{cm}}^{\bar{\ell}+1}} c_{\bar{\ell}, \bar{m}_{\ell}}^{\vec{n}}(k_{\mathsf{cm}}^{2}; L) \int d\Omega \ Y_{\ell m_{\ell}}^{*} Y_{\bar{\ell}\bar{m}_{\ell}}^{*} Y_{\ell' m'_{\ell}}$$

to respect the lattice symmetries, need to subduce into irreducible representations

"spinless" Luescher functions

zeroes of the determinant

e.g. a two-channel Flatté form – [000] A_{1^+} irrep in L=2.4 fm box

 m_{π} = 300 MeV m_{K} = 500 MeV

