

Departamento de Física Teórica Institute of Particle & Cosmos Physics (IPARCOS) Universidad Complutense de Madrid

Dispersive study of πK scattering: threshold parameters and κ/K₀*(700) resonance determination

<u>J. R. Peláez</u> A.Rodas

arXiv:2001.08153 [hep-ph]. Phys.Rev.Lett. 124 (2020) 17, 172001 arXiv:2010.1122. To appear in Physics Reports arXiv:2101.06506[hep-ph]. Also with J. Ruiz de Elvira Eur.Phys.J.ST 230 (2021) 6, 1539

A Virtual Tribute to Quark Confinement and the Hadron Spectrum, 2-6/8/2021.

Motivation

- π,K appear as final products of almost all hadronic strange processes: B,D, decays, CP violation studies...
- π,K are Goldstone Bosons of QCD: Threshold parameters test Chiral Symmetry Breaking
- Main or relevant source for PDG parameters of: κ/K₀*(700), K₀*(1430),K₁*(892),K₁*(1410),K₂*(1410),K₃*(1780)
- κ/K₀*(700) needed to complete the controversial light scalar nonet. Likely a non-ordinary meson

Problems

- Data: extracted from KN→πKN, assuming one pion exchange. Large systematic uncertainties and inconsistencies.
- Large model-dependences:

naïve models often used for parameterizations and resonance poles

Data-Driven Dispersion Relations (This talk)

Model independent constraints, precise threshold parameters and pole determinations. Enhanced precision

Data on πK scattering: S-channel

Most reliable sets: Estabrooks et al. 78 (SLAC) Aston et al.88 (SLAC-LASS)

I=1/2 and 3/2 combination MANY DATA IN CONFLICT

No clear "peak" or phase movement of $\kappa/K_0^*(800)$ resonance Definitely NO BREIT-WIGNER shape

No data near threshold. Models need dangerous extrapolations. Dispersion relations \rightarrow **sum-rules**

- Threshold parameters relevant to test ChPT (NNLO at present).
- Present tension between lattice and dispersive results

- Dalitz 1965: "Quite apart from the model discussed here,...such K* states are expected to exist simply on the basis of SU(3)" Procs. Oxford Int. Conf. on Elementary Particles 1965
- Many claims at different masses, narrow, wide... claims of absence. Confusion

- and wallet cards. This is an updating of the Reviews of Modern Physics article of October 1965.
- Removed from Review of Particle Physics in 1976 (with the σ)
- Back to PDG in 2004 as "**controversial**" K₀*(800). Omitted from summary tables

Since the 70's 90's, all descriptions of data respecting unitarity and chiral symmetry find a pole at M=650-770 MeV and Γ ~550 MeV or larger.

Best determination came from a SOLUTION of a Roy-Steiner dispersive formalism, consistent with UChPT Decotes Genon et al 2006

PDG2017: **K**₀*(800) dominated by such a SOLUTION M-i Γ/2=(682±29)-i(273±i12) MeV

PDG2018: (630-730)-i(260-340) MeV name changed to K₀*(700)

PDG2020: K₀*(700) Makes it to the summary tables. Still "Needs Confirmation"

PDG2021-on-line update: "Needs Confirmation" removed

In part due to our data-driven dispersive analysis of this talk, which we did encouraged by PDG to confirm it with a dispersive DATA analysis. We particularly thank the late **Simon Eidelman**.

Analyticity is expressed in the s-variable, not in Sqrt(s)

Important for the $\kappa/K_0^*(700)$ and threshold parameters

- Threshold behavior (chiral symmetry)
- Subthreshold behavior (chiral symmetry →Adler zeros)
- Other cuts (Left & circular)
- Avoid spurious singularities

Less important for other resonances...

FIRST STEP:

Simple Unconstrained Fits (UFD) to πK and $\pi \pi \rightarrow KK$ partial-wave Data Estimation of statistical and SYSTEMATIC errors

Simple Unconstrained Fits to πK partial-wave Data (UFD). Estimation of statistical and SYSTEMATIC errors

Forward Dispersion Relations:

Left cut easy to rewrite Relate amplitudes, not partial waves Not direct access to pole

Forward dispersion relations for K π scattering.

Since interested in the resonance region, we use minimal number of subtractions

Defining the s↔u symmetric and anti-symmetric amplitudes at t=0

$$T^{+}(s) = \frac{T^{1/2}(s) + 2T^{3/2}(s)}{3} = \frac{T^{I_{t}-0}(s)}{\sqrt{6}},$$
$$T^{-}(s) = \frac{T^{1/2}(s) - T^{3/2}(s)}{3} = \frac{T^{I_{t}-1}(s)}{2}.$$

We need one subtraction for the symmetric amplitude

$$\operatorname{Re}T^{+}(s) = T^{+}(s_{\mathrm{th}}) + \frac{(s - s_{\mathrm{th}})}{\pi} P \int_{s_{\mathrm{th}}}^{\infty} ds' \left[\frac{\operatorname{Im}T^{+}(s')}{(s' - s)(s' - s_{\mathrm{th}})} - \frac{\operatorname{Im}T^{+}(s')}{(s' + s - 2\Sigma_{\pi K})(s' + s_{\mathrm{th}} - 2\Sigma_{\pi K})} \right],$$

And none for the antisymmetric

$$\operatorname{Re} T^{-}(s) = \frac{(2s - 2\Sigma_{\pi K})}{\pi} P \int_{s_{\text{th}}}^{\infty} ds' \frac{\operatorname{Im} T^{-}(s')}{(s' - s)(s' + s - 2\Sigma_{\pi K})}.$$

where $\Sigma_{\pi K} = m_{\pi}^2 + m_{K}^2$

Simple Unconstrained Fits to πK partial-wave Data (UFD). Estimation of statistical and SYSTEMATIC errors

Forward Dispersion Relations:

Left cut easy to rewrite Relate amplitudes, not partial waves Not direct access to pole • As πK checks: Small inconsistencies.

Forward Dispersion Relation analysis of πK scattering DATA up to 1.6 GeV

(<u>not a solution</u> of dispersión relations, but a constrained fit) A.Rodas & JRP, PRD93,074025 (2016)

First observation: Forward Dispersion relations Not well satisfied by data Particularly at high energies

So we use Forward Dispersion Relations as CONSTRAINTS on fits

۲

Simple Unconstrained Fits to πK partial-wave Data (UFD). Estimation of statistical and SYSTEMATIC errors

Forward Dispersion Relations:

Left cut easy to rewrite Relate amplitudes, not partial waves Not direct access to pole

- As πK checks: Small inconsistencies.
 - As constraints: **πK consistent fits up to 1.6 GeV** JRP, A.Rodas, Phys.Rev. D93 (2016)

How well Forward Dispersion Relations are satisfied by unconstrained fits

Every 22 MeV calculate the difference between both sides of the DR /uncertainty

Define an averaged χ^2 over these points, that we call d^2 =distance²

 d^2 close to 1 means that the relation is well satisfied

 d^2 >> 1 means the data set is inconsistent with the relation.

This can be used to check DR

To obtain CONSTRAINED FITS TO DATA (CFD) we minimize:

W roughly counts the number of effective degrees of freedom (sometimes we add weight on certain energy regions)

S-waves. The most interesting for the K_0^* resonances

1.4

1,6

Simple Unconstrained Fits to πK partial-wave Data (UFD). Estimation of statistical and SYSTEMATIC errors

Forward Dispersion Relations:

Left cut easy to rewrite Relate amplitudes, not partial waves Not direct access to pole

- As πK checks: Small inconsistencies.
- As constraints: **πK consistent fits up to 1.6 GeV** JRP, A.Rodas, Phys. Rev. D93 (2016)
- Padé Sequences to extract poles: reduced model dependence on strange resonances
 JRP, A. Rodas, J. Ruiz de Elvira, Eur.Phys.J. C77 (2017)

Partial-wave πK Dispersion Relations

Need $\pi\pi \rightarrow KK$ to rewrite left cut. Range optimized.

To get a resonance pole we need PARTIAL-WAVE dispersion relations.

Their applicability is limited -by the double spectral regions -by the Lehmann ellipses (way too technical. See our apendices)

Two possibilities in the literature:

1) Integrate "t" for fixed-t dispersion relations. Fine for the real axis (1.1 GeV) Very mild dependence on $\pi\pi \rightarrow KK$ but bad to reach the pole. Were used to obtain solutions by the Paris Group We will only used them as constraints on data

$\pi K \rightarrow \pi K$ and $\pi \pi \rightarrow K K$ Hyperbolic Dispersion Relations (HDR)

2) Integrate along (s-a)(u-a)=b hyperbolae in the Mandelstam plane We tuned a= $-13m_{\pi}^2$ to maximize applicability for $\pi\pi \rightarrow KK$ up to 1.47 GeV.

Applicability range slightly smaller in real axis for πK , but covers the kappa pole if a chosen appropriately

We will use them as constraints and to get the pole.

a=-10 m_{π}^2 chosen to include also error bars inside applicability region

 $g_{J}^{I} = \pi \pi \rightarrow KK$ partial waves. We study (I,J)=(0,0),(1,1),(0,2) $f_{J}^{I} = K\pi \rightarrow K\pi$ partial waves. Taken from previous dispersive study

JRP, A. Rodas PRD 2018

$$g_{0}^{0}(t) = \frac{\sqrt{3}}{2}m_{+}a_{0}^{+} + \frac{t}{\pi}\int_{4m_{\pi}^{2}}^{\infty}\frac{\mathrm{Im}\,g_{0}^{0}(t')}{t'(t'-t)}dt' + \frac{t}{\pi}\sum_{\ell\geq 2}\int_{4m_{\pi}^{2}}^{\infty}\frac{dt'}{t'}G_{0,2\ell-2}^{0}(t,t')\mathrm{Im}\,g_{2\ell-2}^{0}(t') + \sum_{\ell}\int_{m_{+}^{2}}^{\infty}ds'G_{0,\ell}^{+}(t,s')\mathrm{Im}\,f_{\ell}^{+}(s'),$$

$$g_{1}^{1}(t) = \frac{1}{\pi}\int_{4m_{\pi}^{2}}^{\infty}\frac{\mathrm{Im}\,g_{1}^{1}(t')}{t'-t}dt' + \sum_{\ell\geq 2}\int_{4m_{\pi}^{2}}^{\infty}dt'G_{1,2\ell-1}^{1}(t,t')\mathrm{Im}\,g_{2\ell-1}^{1}(t') + \sum_{\ell}\int_{m_{+}^{2}}^{\infty}ds'G_{1,\ell}^{-}(t,s')\mathrm{Im}\,f_{\ell}^{-}(s'),$$

$$g_{2}^{0}(t) = \frac{t}{\pi}\int_{4m_{\pi}^{2}}^{\infty}\frac{\mathrm{Im}\,g_{2}^{0}(t')}{t'(t'-t)}dt' + \sum_{\ell\geq 2}\int_{4m_{\pi}^{2}}^{\infty}\frac{dt'}{t'}G_{2,4\ell-2}^{\prime0}(t,t')\mathrm{Im}\,g_{4\ell-2}^{0}(t') + \sum_{\ell}\int_{m_{+}^{2}}^{\infty}ds'G_{2,\ell}^{\prime+}(t,s')\mathrm{Im}\,f_{\ell}^{+}(s').$$
(39)

 $G_{J,J'}^{I}(\mathbf{t},\mathbf{t}')$ =integral kernels, depend on a parameter Lowest # of subtractions. Odd pw decouple from even pw.

$$g_{\ell}^{0}(t) = \Delta_{\ell}^{0}(t) + \frac{t}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{dt'}{t'} \frac{\operatorname{Im} g_{\ell}^{0}(t)}{t'-t}, \quad \ell = 0, 2,$$

$$g_{1}^{1}(t) = \Delta_{1}^{1}(t) + \frac{1}{\pi} \int_{4m_{\pi}^{2}}^{\infty} dt' \frac{\operatorname{Im} g_{1}^{1}(t)}{t'-t}, \quad (40)$$

 $\Delta(t)$ depend on higher waves or on K $\pi \rightarrow$ K π .

> Integrals from 2π threshold !
> "Unphysical region"

Solve in descending J order

We have used models for higher waves, but give very small contributions

For unphysical region below KK threshold, we used Omnés function

$$\Omega^I_\ell(t) = \exp\left(rac{t}{\pi}\int_{4m_\pi^2}^{t_m}rac{\phi^I_\ell(t')dt'}{t'(t'-t)}
ight),$$

$$\Omega_{\ell}^{I}(t) \equiv \Omega_{l,R}^{I}(t)e^{i\phi_{\ell}^{I}(t)\theta(t-4m_{\pi}^{2})\theta(t_{m}-t)},$$

This is the form of our HDR: Roy-Steiner+Omnés formalism

$$\begin{split} g_0^0(t) &= \Delta_0^0(t) + \frac{t\Omega_0^0(t)}{t_m - t} \left[\alpha + \frac{t}{\pi} \int_{4m_\pi^2}^{t_m} dt' \frac{(t_m - t')\Delta_0^0(t')\sin\phi_0^0(t')}{\Omega_{0,R}^0(t')t'^2(t' - t)} + \frac{t}{\pi} \int_{t_m}^{\infty} dt' \frac{(t_m - t')|g_0^0(t')|\sin\phi_0^0(t')}{\Omega_{0,R}^0(t')t'^2(t' - t)} \right] \\ g_1^1(t) &= \Delta_1^1(t) + \Omega_1^1(t) \left[\frac{1}{\pi} \int_{4m_\pi^2}^{t_m} dt' \frac{\Delta_1^1(t')\sin\phi_1^1(t')}{\Omega_{1,R}^1(t')(t' - t)} + \frac{1}{\pi} \int_{t_m}^{\infty} dt' \frac{|g_1^1(t')|\sin\phi_1^1(t')}{\Omega_{1,R}^1(t')(t' - t)} \right], \\ g_2^0(t) &= \Delta_2^0(t) + t\Omega_2^0(t) \left[\frac{1}{\pi} \int_{4m_\pi^2}^{t_m} dt' \frac{\Delta_2^0(t')\sin\phi_2^0(t')}{\Omega_{2,R}^0(t')t'(t' - t)} + \frac{1}{\pi} \int_{t_m}^{\infty} dt' \frac{|g_2^0(t')|\sin\phi_2^0(t')}{\Omega_{2,R}^0(t')t'(t' - t)} \right]. \end{split}$$

We can now check how well these HDR are satisfied

Simple Unconstrained Fits to πK partial-wave Data (UFD). Estimation of statistical and SYSTEMATIC errors

Forward Dispersion Relations:

Left cut easy to rewrite Relate amplitudes, not partial waves Not direct access to pole

- As πK checks: Small inconsistencies.
- As constraints: **πK consistent fits up to 1.6 GeV** JRP, A.Rodas, Phys.Rev. D93 (2016)
- Analytic methods to extract poles: reduced model dependence on strange resonances
 JRP, A. Rodas. J. Ruiz de Elvira, Eur. Phys.J. C77 (2017)

Partial-wave πK Dispersion Relations

Need $\pi\pi \rightarrow KK$ to rewrite left cut. Range optimized.

- As $\pi\pi \rightarrow KK$ checks: Small inconsistencies.
- As constraints: ππ→KK consistent fits up to 1.5 GeV
 JRP, A.Rodas, Eur.Phys.J. C78 (2018)

Once again we started with SIMPLE FITS TO $\pi\pi \rightarrow$ KK DATA, including systematic uncertainties

UFD Inconsistent with HDR If not constrained

But consistent after HDR used as constraints

Two possible solutions for S0 wave

I=0,J=0, CFD

25

Some 2- σ level differences between UFD_B and CFD_B between 1.05 and 1.45 GeV CFD_C consistent within 1- σ band of UFD_C

Simple Unconstrained Fits to πK partial-wave Data (UFD). Estimation of statistical and SYSTEMATIC errors

Forward Dispersion Relations:

Left cut easy to rewrite Relate amplitudes, not partial waves Not direct access to pole

- As πK checks: Small inconsistencies.
- As constraints: **πK consistent fits up to 1.6 GeV** JRP, A.Rodas, Phys.Rev. D93 (2016)
- Analytic methods to extract poles: reduced model dependence on strange resonances
 JRP, A. Rodas. J. Ruiz de Elvira, Eur. Phys.J. C77 (2017)

Partial-wave πK Dispersion Relations

Need $\pi\pi \rightarrow KK$ to rewrite left cut. Range optimized.

- From fixed-t DR: ππ→KK influence small. κ/K₀*(700) out of reach
 - From Hyperbolic DR:
 ππ→KK influence important.
 JRP, A.Rodas, in progress. PRELIMINARY results shown here

- As $\pi\pi \rightarrow KK$ checks: Small inconsistencies.
- As constraints: $\pi\pi \rightarrow KK$ consistent fits up to 1.5 GeV JRP, A.Rodas, Eur.Phys.J. C78 (2018)

As πK Checks: Large inconsistencies.

The most relevant wave for the kappa resonance.

LARGE inconsistencies with HDR Roy-Steiner from unconstrained fits (UFD) One or no subtraction for F⁻ lie on opposite sides of input

Fixed-t Roy-Steiner is fair but kappa pole outside their applicability region

We have chosen the hyperbolae family so that the kappa pole and its uncertainties lie within their applicability region

WARNING ABOUT THE PRECISION OF UNCONSTRAINED FITS

Before imposing Roy Eqs. incompatible results with different # of subtractions !! This is part ly due to left/circular cuts.

You can imagine what precision you get if you use simple models only of πK , without left cut or without dispersion relations...

Simple Unconstrained Fits to πK partial-wave Data (UFD). Estimation of statistical and SYSTEMATIC errors

Forward Dispersion Relations:

Left cut easy to rewrite Relate amplitudes, not partial waves Not direct access to pole

- As πK checks: Small inconsistencies.
- As constraints: **πK consistent fits up to 1.6 GeV** JRP, A.Rodas, Phys.Rev. D93 (2016)
- Analytic methods to extract poles: reduced model dependence on strange resonances
 JRP, A. Rodas. J. Ruiz de Elvira, Eur. Phys.J. C77 (2017)

- As $\pi\pi \rightarrow KK$ checks: Small inconsistencies.
- As constraints: ππ→KK consistent fits up to 1.5 GeV
 JRP, A.Rodas, Eur.Phys.J. C78 (2018)

- As πK Checks: Large inconsistencies.
- ALL DR TOGETHER as Constraints:
 πK consistent fits up to 1.1 GeV

We provide a constrained fit to data (CFD) satisfying 16 Dispersion relations

(FDRs, fixed-t, HDR, different # subtractions) Fairly simple and ready to use parameterizations

Our Constrained parameterization now yields consistent output for all Dispersion Relations

πK CFD vs. UFD

Constrained parameterizations suffer minor changes but still describe πK data fairly well. Here we compare the unconstrained fits (UFD) versus the constrained ones (CFD)

The "unphysical" rho peak in $\pi\pi \rightarrow KK$ grows by 10% from UFD to CFD

Simple Unconstrained Fits to πK partial-wave Data (UFD). Estimation of statistical and SYSTEMATIC errors

Forward Dispersion Relations:

Left cut easy to rewrite Relate amplitudes, not partial waves Not direct access to pole

- As πK checks: Small inconsistencies.
- As constraints:
 πK consistent fits up to 1.6 GeV

JRP, A.Rodas, Phys.Rev. D93 (2016)

 Padé sequences to extract poles from local information: reduced model dependence on strange resonances JRP, A. Rodas. J. Ruiz de Elvira, Eur.Phys.J. C77 (2017)

Partial-wave πK Dispersion Relations (PWDR)

Need $\pi\pi \rightarrow KK$ to rewrite left cut. Range optimized.

JRP, A.Rodas, arXiv:2010.1122. To appear in Physics Reports

 From fixed-t DR: ππ→KK influence small. κ/K₀*(700) pole out of reach

 From Hyperbolic DR: ππ→KK influence important. As πK Checks: Large inconsistencies

- As $\pi\pi \rightarrow KK$ checks: Small inconsistencies.
- As constraints: ππ→KK consistent fits from KK threshold to 1.5 GeV

JRP, A.Rodas, Eur.Phys.J. C78 (2018)

- ALL DR TOGETHER as Constraints: πK consistent fits up to 1.1 GeV for PWDR, up to 1.6 for FDRs, $\pi \pi \rightarrow KK$ up to 1.5 GeV and unphysical region
- Precise πK threshold parameters

- Threshold parameters relevant to test ChPT (NNLO at present).
- Present tension between lattice and dispersive results

JRP, A.Rodas, arXiv:2010.1122. To appear in Physics Reports

Simple Unconstrained Fits to πK partial-wave Data (UFD). Estimation of statistical and SYSTEMATIC errors

Forward Dispersion Relations:

Left cut easy to rewrite Relate amplitudes, not partial waves Not direct access to pole

- As πK checks: Small inconsistencies.
- As constraints:
 πK consistent fits up to 1.6 GeV

JRP, A.Rodas, Phys.Rev. D93 (2016)

 Padé sequences to extract poles from local information: reduced model dependence on strange resonances JRP, A. Rodas. J. Ruiz de Elvira, Eur.Phys.J. C77 (2017)

Partial-wave πK Dispersion Relations (PWDR)

Need $\pi\pi \rightarrow KK$ to rewrite left cut. Range optimized.

JRP, A.Rodas, arXiv:2010.1122. To appear in Physics Reports

 From fixed-t DR: ππ→KK influence small. κ/K₀*(700) pole out of reach

 From Hyperbolic DR: ππ→KK influence important. As πK Checks: Large inconsistencies

- As $\pi\pi \rightarrow KK$ checks: Small inconsistencies.
- As constraints:
 ππ→KK consistent fits
 from KK threshold to 1.5 GeV

JRP, A.Rodas, Eur.Phys.J. C78 (2018)

- ALL DR TOGETHER as Constraints: πK consistent fits up to 1.1 GeV for PWDR, up to 1.6 for FDRs, $\pi \pi \rightarrow KK$ up to 1.5 GeV and unphysical region
- Precise πK threshold parameters
- Rigorous κ/κ₀*(700) pole ^{JRP, A.Rodas,.} PRL. 124 (2020) 17, 172001

Dispersive πK analysis from constrained fit to data JRP, A.Rodas, arXiv:2010.1122. To appear in Physics Reports Now we have:

- FIT TO DATA (not solution but fit) CONSTRAINED WITH 16 DR
- Improved P^{1/2}-wave (consistent with data) and P^{3/2}
- Improved Pomeron
- Realistic $\pi\pi \rightarrow KK$ uncertainties (none before)
- Constrained $\pi\pi \rightarrow KK$ input with DR
- FDR up to 1.6 GeV
- Fixed-t Roy-Steiner Eqs.
- Hyperbolic Roy Steiner Eqs.
 - o Both one and no-subtractions for HDR (only the subtracted one before)
 - o both in real axis (not HDR before) and complex plane
 - Unphysical P-wave $\pi\pi \rightarrow KK$ region VERY RELEVANT

When using the constrained fit to data both poles come out nicely compatible

- πK and $\pi \pi \rightarrow K K$ data do not satisfy well basic dispersive constraints
- Using dispersion relations as constraints we provide <u>simple</u> and consistent data parameterizations.
- We have implemented partial-wave dispersion relations whose applicability range reaches the kappa pole.
- We have also derived and used SUM RULES to obtain precise threshold parameters
- We confirm previous studies and provide a precise determination of the $\kappa/K_0^*(700)$ parameters FROM DATA. A good control on the left/circular cuts is needed to claim this precision.
- Triggered by this analysis, <u>κ/K₀*(700) considered "well-established"</u> in RPP 2021 update (on-line), completing the nonet of lightest scalars.