

MITQCD

Gravitational form factors on the lattice

A Virtual Tribute to Quark Confinement and the Hadron Spectrum

August 2, 2021

Dan Hackett*

Dimitra Pefkou Phiala Shanahan

Outline

Gravitational form factors

Physics motivation

Experimental accessibility

Gluon GFFs on the lattice [2107.10368] ...for the pion, nucleon, ρ meson, Δ baryon ...for an ensemble with $M_{\pi} = 450$ MeV And: spatial densities of energy, pressure, shear forces Progress on total GFFs ...for the nucleon, pion

...for an ensemble with $M_{\pi}=170~{
m MeV}$

(Very) preliminary results

Gravitational form factors (GFFs) $\int \vec{D} = (\vec{D} - \vec{D})/2$ For (symmetric, traceless) EMT, $T^{\{\mu\nu\}} = T_a^{\{\mu\nu\}} + \sum_a T_a^{\{\mu\nu\}}$ Gluons $T_{q}^{\{\mu\nu\}} = 2 \operatorname{Tr}[G^{\alpha\{\mu}G^{\nu\}\alpha}]$ Quarks $T_{q}^{\{\mu\nu\}} = \overline{\psi}\gamma^{\{\mu}i\overleftrightarrow{D}^{\nu\}}\psi$ Not conserved { } = symmetrize e.g. $a^{\{\mu}b^{\nu\}} \equiv \frac{1}{2}(a^{\mu}b^{\nu} + a^{\nu}b^{\mu})$ $\sum_{q} \bar{c}_{q} + \bar{c}_{g} = 0$ GFFs decompose hadronic matrix elements of T, e.g. for nucleon: $\left\langle N(p',s') \left| T_{g,q}^{\{\mu\nu\}} \right| N(p,s) \right\rangle = \bar{u}(p',s') \left[A_{g,q}(t) \gamma^{\{\mu}P^{\nu\}} + B_{g,q}(t) \frac{i P^{\{\mu}\sigma^{\nu\}\rho}\Delta_{\rho}}{2M} + D_{g,q}(t) \frac{\Delta^{\mu}\Delta^{\nu} - g^{\mu\nu}\Delta^{2}}{4M} + \bar{c}_{g,q}(t) Mg^{\mu\nu} \right] u(p,s)$ $u, \bar{u} = \text{Dirac spinors}$ P = (p' + p)/2 $\Delta = p' - p$ $t = \Delta^2$

Physics:

 $\begin{array}{l} A_{q,g}(t) \sim \text{momentum of constituents} \\ \rightarrow \text{Momentum fraction } A_{q,g}(0) = \langle x \rangle_{q,g} \\ J_{q,g}(t) = \frac{1}{2} \left(A_{q,g}(t) + B_{q,g}(t) \right) \sim \text{angular momentum} \\ \rightarrow \text{Total } J(0) = \frac{1}{2} \\ D_{q,g}(t) \sim \text{pressure and shear forces} \\ \text{Total } D(0): \text{"the last global unknown"} \end{array}$

[from Polyakov & Schweitzer 1805.06596]

em:	$\partial_\mu J^\mu_{ m em}~=0$	$\langle N' J^{\mu}_{f em} N angle$	\rightarrow	Q =	$= 1.602176487(40) \times 10^{-19} \mathrm{C}$
				μ =	$= 2.792847356(23)\mu_N$
weak:	PCAC	$\langle N' J^{\mu}_{\rm weak} N\rangle$	\rightarrow	$g_A =$	= 1.2694(28)
				g_p =	= 8.06(55)
gravity:	$\partial_{\mu}T^{\mu\nu}_{\mathbf{grav}} = 0$	$\langle N' T^{\mu\nu}_{\mathbf{grav}} N \rangle$	\rightarrow	<i>m</i> =	$= 938.272013(23) \mathrm{MeV}/c^2$
				J =	$=\frac{1}{2}$
				D =	= ?

Table I. The global properties of the proton defined in terms of matrix elements of the conserved currents associated with respectively electromagnetic, weak, and gravitational interaction. Notice the weak currents include the partially conserved axial current, and g_A or g_p are strictly speaking defined in terms of transition matrix elements in the neutron β -decay or muon-capture. The values of the properties are from the particle data book [107] and [108] (for g_p) except for the unknown D-term.

Experimentally accessible?

Graviton colliders not presently feasible

but: GFFs ~ moments of (unpolarized) generalized parton distributions (GPDs), constrained by hard exclusive processes

[from Polyakov Schweitzer 1805.06596]

Some extractions of quark GFFs from experiments:

JLAB: proton *D* term extracted from DVCS [Burkert Elouadrhiri Girod 2018] Belle: pion GFFs extracted from $\gamma^*\gamma \rightarrow \pi^0\pi^0$ [Kumano Song Teryaev <u>1711.08088</u>]

No gluon GFFs **yet**

Future: gluon GFFs from J/ψ and Υ leptoproduction at e.g. JLab, EIC

Lattice calculation

Ensemble:

 $32^3 \times 96$ lattice, $M_{\pi}L \sim 8.5$ Gauge action: Lüscher-Weisz Fermion action: 2+1 Wilson clover Stout links, tree-level tadpole c_{sw} a = 0.1167(16) fm $M_{\pi} = 450(5)$ MeV $\rightarrow \rho, \Delta$ are stable 2820 configs, ≈ 235 sources/config Two source/sink smearings (SP, SS)

Compute glue GFFs only

Neglect mixing w/ quark GFFs under renormalization – expected around few % level ≪ stat uncertainties

Sketch of calculation [2107.10368]

Constraints

Compute hadronic two-point, three-point functions

Construct ratios of 3pts/2pts to isolate matrix element

 $R_{ss'}(p,p';\tau,t_f) = \frac{C_{ss'}^{3pt}(p,p';t_f,\tau)}{C_{ss'}^{2pt}(p',t_f)} \sqrt{\frac{C_{ss}^{2pt}(p,t_f-\tau)}{C_{s's'}^{2pt}(p',t_f-\tau)}} \frac{C_{s's'}^{2pt}(p',t_f)}{C_{ss}^{2pt}(p,t_f-\tau)} \frac{C_{s's'}^{2pt}(p',t_f)}{C_{ss}^{2pt}(p,t_f)} \frac{C_{s's'}^{2pt}(p',\tau)}{C_{ss}^{2pt}(p,\tau)}}{\frac{t_f \gg \tau \gg 0}{f}}$ $(\text{extra kinematic factors}) \langle h(p',s') | T^g | h(p,s) \rangle$ $= (\text{kinematic coeffs}) \cdot (\text{GFFs})(t)$

Fit to extract GFFs

Result: GFFs for discrete values of t

Fit GFFs to model functions

[To extrapolate to t = 0, and to do FTs for densities] Tripole $G(t) \sim \frac{\alpha}{(1-t/\Lambda^2)^3}$ Modified z-expansion $G(t) \sim \frac{1}{(1-t/\Lambda^2)^3} \sum_{k=0}^{k_{\text{max}}=2} \alpha_k [z(t)]^k$ $z(t) = \frac{\sqrt{t_{\text{cut}}-t} - \sqrt{t_{\text{cut}}-t_0}}{\sqrt{t_{\text{cut}}-t} + \sqrt{t_{\text{cut}}-t_0}}$ $t_{\text{cut}} = 4M_{\pi}^2$ $t_0 = t_{\text{cut}}(1 - \sqrt{1 + (2 \text{ GeV}^2)/t_{\text{cut}}})$

Results: nucleon $\sqrt{N(p',s') \left| T_g^{\{\mu\nu\}} \right| N(p,s)} = \bar{u}(p',s') \left[A_g(t) \gamma^{\{\mu}P^{\nu\}} + B_g(t) \frac{i P^{\{\mu}\sigma^{\nu\}\rho}\Delta_{\rho}}{2M} + D_g(t) \frac{\Delta^{\mu}\Delta^{\nu} - g^{\mu\nu}\Delta^2}{4M} + \bar{c}_g(t) M g^{\mu\nu} \right] u(p,s)$

Results: pion $\sqrt[]{} \sim \langle x \rangle_g \left[\sum_q A_{0q}(0) + A_{0g}(0) = 1 \right]$ $\left\langle \pi(p') \left| T_g^{\{\mu\nu\}} \right| \pi(p) \right\rangle = A_g(t) 2P^{\mu}P^{\nu} + D_g(t) \frac{1}{2} \left(\Delta^{\mu}\Delta^{\nu} - g^{\mu\nu}\Delta^2 \right) + \bar{c}_g(t) 2M^2 g^{\mu\nu}$

QCHS - August 2, 2021

QCHS - August Z, ZUZI

Comparison: glue momentum fraction

Tripole and z-expansion A(t) same w/in error

 \rightarrow Little model dependence

Energy, pressure, and shear force densities

Fourier transform to get spatial EMT density $T_{\mu\nu}(r) = FT[T_{\mu\nu}(\Delta)]$

dentify:
$$T_{tt}(r) = \epsilon(r)$$
$$T_{ij}(r) = \left(\frac{r_i r_j}{r^2} - \frac{1}{d}\delta_{ij}\right)s(r) + \delta_{ij}p(r)$$

 \rightarrow Spatial densities of energy $\epsilon(r)$, pressure p(r), shear forces s(r)

Complication 1: frame dependence. Consider three frames: 3D Breit frame (BF3): $\Delta^0 = 0$, $\mathbf{P} = \mathbf{0}$

> "Traditional" frame, but recent work casts doubt on interpretation as spatial density [see e.g. Panteleeva Polyakov 2102.10902, Freese Miller 2102.01683, Jaffe 2010.15887, Lorce 2007.05318, Lorce Moutarde Trawinski 1810.09837 etc.]

2D Breit frame (BF2)

Infinite momentum frame (IMF): $\mathbf{\Delta} \cdot \mathbf{P} = 0, P_z \rightarrow \infty$

Different identifications of $\epsilon(r)$, p(r), s(r) with GFFs in each frame

Complication 2: ρ , Δ not spherically symmetric \rightarrow monopole and quadrupole densities

Complication 3: No trace GFFs $\sim \bar{c}$, not all GFFs fit for ρ , Δ

- \rightarrow Partial densities
- See [2107.10368] for details, expressions

$$\begin{split} T_{i,\mathrm{BF3}}^{\mu\nu}(r) &= \int \frac{d^3 \Delta e^{-i\mathbf{\Delta}\cdot\mathbf{r}}}{2P^0(2\pi)^3} \left\langle h(p,s) | \, T_i^{\mu\nu} \left| h(p',s') \right\rangle \right|_{\mathbf{P}=0} \\ T_{i,\mathrm{BF2}}^{\mu\nu}(r) &= \int \frac{d^2 \Delta_{\perp} e^{-i\mathbf{\Delta}_{\perp}\cdot\mathbf{r}}}{2P^0(2\pi)^2} \left\langle h(p,s) | \, T_i^{\mu\nu} \left| h(p',s') \right\rangle \right|_{\mathbf{P}=0} \\ T_{i,\mathrm{IMF}}^{\mu\nu}(r) &= \int \frac{d^2 \Delta_{\perp} e^{-i\mathbf{\Delta}_{\perp}\cdot\mathbf{r}}}{2P^0(2\pi)^2} \left\langle h(p,s) | \, T_i^{\mu\nu} \left| h(p',s') \right\rangle \right|_{\mathbf{P}\cdot\mathbf{\Delta}=0}^{P_z\to\infty} \end{split}$$

Results: pion densities

Results: nucleon densities

Results: (partial) ρ monopole densities

Results: (partial) Δ monopole densities

In progress

Compute both quark and glue GFFs on a different ensemble

Quantify systematics in glue GFFs due to $a \neq 0$, unphysical M_{π} , mixing with quark GFFs

Compute total GFFs. Non-conserved trace GFFs cancel \rightarrow can compute full, non-partial densities

Ensemble ["a091m170"]

Gauge action: Tree-level tadpole-improved Symanzik Fermion action: 2+1 Wilson clover, stout links

```
M_{\pi} = 170 \text{ MeV}
```

```
a = 0.091 \, \text{fm} \, (\text{from} \, w_0)
```

 $48^{3} \times 96$

ho, Δ unstable ightarrow N, π only

TODO:

Disconnected diagrams for quarks

Non-perturbative renormalization

Better treatment of excited state contamination

Conclusions/upcoming:

GFFs encode fundamental, global properties of hadrons ...including some that are presently only poorly constrained

- GPDs are targets for near-future experiments
 - \rightarrow Lattice results on GFFs can inform kinematic regimes to target
 - \rightarrow Lattice results are necessary to test against experimental results
- Computed π , N, ρ , Δ GFFs
 - Calculations with higher stats, different ensembles necessary
 - Study of unstable ρ , Δ at physical masses harder, requires finite-volume Luscher method
- New lattice calculation of quark+glue GFFs ongoing, early results promising.

Comparison: glue spin fraction, D terms

Results: (partial) ρ quadrupole densities

Results: (partial) Δ quadrupole densities

