LA-UR-21-27481

Nucleon Charges from Lattice QCD

Boram Yoon (Los Alamos National Laboratory)

In collaboration with

Tanmoy Bhattacharya (LANL), Vincenzo Cirigliano (LANL), Rajan Gupta (LANL), Martin Hoferichter (Bern U.), Yong-Chull Jang (Columbia U.), Bálint Jóo (ORNL), Huey-Wen Lin (MSU), Emanuele Mereghetti (LANL), Santanu Mondal (LANL), Sungwoo Park (LANL), Frank Winter (JLab)

A Virtual Tribute to Quark Confinement and the Hadron Spectrum 2021, Aug 2-6 July 2021, online

Lattice QCD

- Non-perturbative approach to solving QCD on discretized Euclidean space-time
 - Hypercubic lattice with lattice spacing *a*
 - Quark fields placed on sites
 - Gluon fields on the links between sites; U_{μ}
- Numerical lattice QCD calculations using Monte Carlo methods
 - $t \rightarrow -i\tau$; $e^{-iHt} \rightarrow e^{-E\tau}$, $\int e^{iS} \rightarrow \int e^{-S_E}$
 - Computationally intensive
 - Use supercomputers
- Continuum results are obtained in $a \rightarrow 0$
- Has been successful for many QCD observables
 - Some results are with less than 1% error

Lattice QCD

Correlation functions

 $\langle O \rangle = Z^{-1} \int dU dq d\bar{q} O(U, q, \bar{q}) e^{-S_g - \bar{q}(D + m_q)q}$ = $Z^{-1} \int dU \left[O \left(U, \left(D + m_q \right)^{-1} \right) e^{-S_g} \det(D + m_q) \right]$

- Monte-Carlo integration
 - Integration variable **U** is huge

 $N_s^3 \times N_t \times 4 \times 8 \sim 10^9$

- Generate Markov chain of gauge configurations \boldsymbol{U}
- Calculate average as expectation value

$$\langle O \rangle \approx \frac{1}{N} \sum_{i} O_i \left(\frac{U}{N}, \left(D + m_q \right)^{-1} \right)$$

- Calculation of $O_i \left(U, \left(D + m_q \right)^{-1} \right)$: measurement
- $(D + m)^{-1}$ is computationally expensive

Physical Results from Unphysical Simulations

• Finite Lattice Spacing

• Simulations at finite lattice spacings 0.6 fm $\leq a \leq 0.15$ fm

 \Rightarrow Extrapolate to continuum limit, a = 0

• Heavy Pion Mass

• Lattice simulation:

Smaller quark mass \rightarrow Larger computational cost and noisy results

• Simulations at (heavy) pion masses $130 \text{ MeV} \lesssim M_\pi \lesssim 310 \text{ MeV}$

 \Rightarrow Extrapolate to physical pion mass, $M_{\pi} = M_{\pi}^{\text{phys}}$

• Finite Volume

- Simulations at finite lattice volume: $M_{\pi}L = 3 \sim 6$
- \Rightarrow Extrapolate to infinite volume, $M_{\pi}L = \infty$

Nucleon Charges

- Isovector charges: g^{u-d}_{A,S,T} ⟨p|ūΓd|n⟩ = g^{u-d}ψ_pΓψ_n
 >In the isospin limit (m_u = m_d), ⟨p|ūΓd|n⟩ = ⟨p|ūΓu - d̄Γd|p⟩ = ⟨n|d̄Γd - ūΓu|n⟩
 >Cancel contributions from disconnected diagrams
 >Less systematics; better precision
- Flavor-diagonal charges: g^u_{A,S,T}, g^d_{A,S,T}, g^s_{A,S,T}, ...
 ⟨p|q̄Γq|p⟩ = g^q_Γψ̄_p Γψ_p for q = u, d, s, ...
 ▷ Need calculations of disconnected diagrams
 ▷ More systematics; worse precision

Quark-line connected diagram

Quark-line disconnected diagram

Nucleon Isovector Charges

 $\langle p | \bar{u} \Gamma d | n \rangle = g_{\Gamma}^{u-d} \bar{\psi}_p \Gamma \psi_n$

Nucleon Isovector Charges

- Axial charge g_A
 - Weak interactions of nucleons
 - $g_A/g_V = 1.27641(45)(33)$ from cold neutron decay experiments (Märkisch, et al., PRL, 2019)
 - Nuclear beta decay, pion exchange between nucleons, nucleosynthesis, ...
- Scalar and tensor charges g_S, g_T
 - Helicity-flip parameters b and b_{ν} in neutron decay $b = 0.34g_S\epsilon_S - 5.22g_T\epsilon_T$, $b_{\nu} = 0.44g_S\epsilon_S - 4.85g_T\epsilon_T$
 - When combined with (ultra) cold neutron decay experiments, g_S, g_T provides bounds on novel scalar and tensor interactions that can arise in BSM (Bhattacharya, et al., PRD 2012)

Extracting Nucleon Charges on the Lattice

 $\langle p | \bar{u} \Gamma d | n \rangle = g_{\Gamma}^{u-d} \bar{\psi}_p \Gamma \psi_n$

• g_{Γ}^{u-d} is extracted from the ratio of two- and three-point correlation functions

$$\begin{aligned} & \frac{C_{3pt}^{\Gamma}(t,\tau)}{C_{2pt}(\tau)} \to g_{\Gamma}^{u-d} \\ & \geq C_{2pt}(\tau) = \langle 0|\chi(\tau)\bar{\chi}(0)|0\rangle \\ & \geq C_{3pt}^{\Gamma}(t,\tau) = \langle 0|\chi(\tau)O_{\Gamma}(t)\bar{\chi}(0)|0\rangle \\ & \geq \chi = \epsilon^{abc} [u^{aT}C\gamma_{5}(1+\gamma_{4})d^{b}]u^{c} \end{aligned}$$

• χ introduces excited states of nucleons

 $C_{3pt}(\tau,t)$

Removing Excited-state Contamination

- Excited-states (ES) effect exponentially diminishes for large Euclidean time
 - Separating proton sources far from each other leaves only the ground-state
 - But signal-to-noise ratio drops exponentially in time for baryons ($R \sim e^{-(M_N \frac{3}{2}m_\pi)\tau}$)
- For reasonably small t and τ , fit correlators to a function including ES
 - $C_{2pt}(\tau) = \sum_i |A_i|^2 e^{-M_i \tau}$
 - $C_{3pt}^{\Gamma}(\tau,t) = \sum_{i,j} A_i A_j^* \langle i | O_{\Gamma} | j \rangle e^{-M_i t M_j (\tau t)}$
 - $C_{3pt}^{\Gamma}(t,\tau)/C_{2pt}(\tau) \rightarrow g_{\Gamma}^{u-d}$ as $t \rightarrow \infty, (\tau t) \rightarrow \infty$
- Tower of possible excited states
 - Radial excitations: *N*(1440), *N*(1710), ...
 - Multi-hadron states: $N(p)\pi(-p)$, $N(0)\pi(0)\pi(0)$, ...
 - But, which states contribute significantly?

Removing Excited-state Contamination

- Excited state fits to C_{2pt} gives large first ES mass $M_1 \gtrsim M_{N(1440)}$
- But various evidences advocate $M_1 \ll M_{N(1440)}$
 - PCAC relation between G_A , \tilde{G}_P , and G_P is much better satisfied with smaller M_1
 - Nucleon σ -term results are consistent with χ PT when $M_1 \sim M_{N\pi, N\pi\pi}$

Effect of $N\pi$ Excited States

- Excited state fit results with and without $N\pi$ -state is huge:
 - Smaller $M_1 \rightarrow \text{smaller mass gap } \Delta M_1 = M_1 M_0 \rightarrow \text{longer extrapolation}$ in $t \rightarrow \infty$, $(\tau t) \rightarrow \infty (C_{3pt}^{\Gamma}(t, \tau)/C_{2pt}(\tau) = g_{\Gamma}^{u-d} + O(e^{-\Delta M_1 t}, e^{-\Delta M_1(\tau-t)}, e^{-\Delta M_1 \tau}))$
- But χ^2 of 3pt fits are not sensitive to the low-lying excited-state mass
- Larger effect with smaller pion mass

11

arXiv:2103.05599

Isovector Charges – Lattice Setup

 $N_f = 2 + 1$ Clover-on-Clover

EnsID	<i>a</i> (fm)	M_π (MeV)	Volume	$M_{\pi}L$	Confs	
a127m285	0.127(2)	285(5)	32 ³ ×96	5.87	2,002	
a094m270	0.094(1)	269(3)	32 ³ ×64	4.09	2,469	
a094m270L	0.094(1)	269(3)	48 ³ ×128	6.15	4,510	
a091m170	0.091(1)	169(2)	48 ³ ×96	3.75	4,012	
a091m170L	0.091(1)	170(2)	$64^3 \times 128$	5.03	2,002	
a073m270	0.0728(8)	272(3)	48 ³ ×128	4.81	4,720	
a071m170	0.0707(8)	166(2)	72 ³ ×192	4.28	2,500	

arXiv:2103.05599

 $N_f = 2 + 1$ Clover-on-HISQ

EnsID	<i>a</i> (fm)	M_π (MeV)	Volume	$M_{\pi}L$	Confs	
a15m310	0.1510(20)	320.6(4.3)	$16^{3} \times 48$	3.93	1,917	
a12m310	0.1207(11)	310.2(2.8)	24 ³ ×64	4.55	1,013	
a12m220S	0.1202(12)	225.0(2.3)	24 ³ ×64	3.29	946	
a12m220	0.1184(10)	227.9(1.9)	32 ³ ×64	4.38	744	
a12m220L	0.1189(09)	227.6(1.7)	40 ³ ×64	5.49	1,010	
a09m310	0.0888(08)	313.0(2.8)	32 ³ ×96	4.51	2,263	
a09m220	0.0872(07)	225.9(1.8)	48 ³ ×96	4.79	964	
a09m130	0.0871(06)	138.1(1.0)	64 ³ ×96	3.9	1,290	
a06m310	0.0582(04)	319.6(2.2)	48 ³ ×144	4.52	1,000	
a06m220	0.0578(04)	235.2(1.7)	64 ³ ×144	4.41	650	
a06m135	0.0570(01)	135.6(1.4)	96 ³ ×192	3.7	675	

PRD 98, 034503 (2018)

Chiral, Continuum, Finite volume Extrapolation

CCFV fit ansatz

$$g(a, M_{\pi}, M_{\pi}L) = c_1 + c_2 a + c_3 M_{\pi}^2 + c_4 \frac{M_{\pi}^2}{\sqrt{M_{\pi}L}} e^{-M_{\pi}L}$$

- Only axial charge shows small FV effect
- Final results of mean and statistical/systematic errors are obtained by averaging/comparing various excited state fit ansatzes and CCFV (CC) fits

Isovector Charges - Results

• CVC: Conserved vector current relation for g_S ; $g_S/g_V = (M_N - M_P)^{QCD}/(m_d - m_u)^{QCD}$

• Pheno.: Extraction of g_T from semi-inclusive deep-inelastic scattering (SIDIS) experimental data

Nucleon Flavor-diagonal Charges

 $\langle p | \bar{q} \Gamma q | p \rangle = g_{\Gamma}^{q} \bar{\psi}_{p} \Gamma \psi_{p}$

Flavor-diagonal Axial Charge: $g_A^{u,d,s}$

• Proton spin decomposition

$$\frac{1}{2} = \sum_{\substack{q=u,d,s,\dots\\q=u,d,s,\dots}} \left(\frac{1}{2}\Delta q + L_q\right) + J_g$$

where $g_A^q \equiv \Delta q = \int_0^1 dx \left(\Delta q(x) + \Delta \overline{q}(x)\right)$

• Need to calculate quark-line disconnected diagrams, in addition to connected ones, which is computationally expensive and noisy

Flavor-diagonal Axial charges - Current Status

- Only PNDME and χ QCD'18 data are extrapolated to continuum limit
- Charm-quark results (g_A^c) can be found at
 - PNDME: Rui Zhang's talk at Lattice 2021; ETMC: PRD 102, 054517 (2020)

Flavor-diagonal Tensor Charge: $g_T^{u,d,s}$

- Nonzero neutron electric dipole moment (nEDM) violates P and T, so CP
 → nEDM is a sensitive probe of new sources of CP violation in BSM
- No nonvanishing nEDM has been observed, but next-generation experiments will reach $d_N \sim 10^{-28} e \cdot cm$, which is the magnitude of nEDM predicted by many models in BSM
- To constrain BSM models using experimental value (or bound) of d_N , one needs corresponding QCD matrix elements
- One of the leading effective CPV Lagrangian term is

$$\mathcal{L}_{CPV}^{qEDM} = -\frac{i}{2} \sum_{q=u,d,s,\dots} d_q \bar{q} \sigma_{\mu\nu} \gamma_5 q F^{\mu\nu}$$

• Neutron EDM from qEDM

$$d_N^{qEDM} = d_u g_T^u + d_d g_T^d + d_s g_T^s + \cdots$$

Flavor-diagonal Tensor charges - Current Status

	g^u_T	g_T^d	g_T^s
PNDME '18	0.784(28)(10)	-0.204(11)(10)	-0.0027(16)
ETMC '20	0.729(22)	-0.208(8)	-0.0027(6)

- PNDME '18 results are extrapolated to continuum limit from seven (six) ensembles for the strange (light) quarks: $M_{\pi} \approx 135, 220, 310$ MeV, $a \approx 0.06, 0.09, 0.12, 0.15$ fm
- ETMC '20 results are from a single ensemble at $M_{\pi} = 139$ MeV, a = 0.08 fm
- Charm-quark results (g_A^c) can be found at
 - PNDME: Rui Zhang's talk at Lattice 2021; ETMC: PRD 102, 054517 (2020)

BSM Constraints from Tensor Charge

• For models in which qEDM is the dominant BSM source of CP violation

$$d_N = d_u g_T^u + d_d g_T^d + d_s g_T^s + \dots$$

- Known parameters
 - $g_T^u = 0.784(28)(10), \ g_T^d = -0.204(11)(10), \ g_T^s = -0.0027(16)$
 - $|d_N| < 1.8 \times 10^{-26} e \cdot cm$ [nEDM experiment, PRL. 124, 081803 (2020)]
- ⇒ Constraints on BSM couplings d_u , d_d , d_s (left), and allowed $M_2 - \mu$ region for various values of d_n/d_e in split SUSY model (right)

PRL 115, 212002 (2015) PRD 98, 091501 (2018)

Flavor-diagonal Scalar Charge: $g_S^{u,d,s}$

• Nucleon σ -terms

$$\sigma_{\pi N} = m_{ud} \langle N | \bar{u}u + \bar{d}d | N \rangle = m_{ud} (g_S^u + g_S^d \equiv g_S^{u+d})$$

$$\sigma_s = m_s \langle N | \bar{s}s | N \rangle = m_s g_S^s$$

- Critical to include $N\pi$ excited-state (ES) terms to remove ES contamination
- Results with $N\pi$ ES-terms gives consistent chiral fit coefficients with χ PT predictions

chiral fit	$\{4, 3^*\}$				$\{4^{N\pi},3^*\}$							
	d_2	d_3	d_4	d_{4L}	$\frac{\chi^2}{dof}$	$\sigma_{\pi N}$	d_2	d_3	d_4	d_{4L}	$\frac{\chi^2}{dof}$	$\sigma_{\pi N}$
	(GeV^{-1})	(GeV^{-2})	(GeV^{-3})	$({ m GeV^{-3}})$	aor	(MeV)	(GeV^{-1})	(GeV^{-2})	(GeV^{-3})	(GeV^{-3})	uor	(MeV)
$\chi \mathrm{PT}$	4.44	-8.55	_	11.35	_	_	4.44	-8.55	_	11.35	_	-
$\{2, 3\}$	2.48(29)	-2.8(1.1)	_	-	0.68	38.3(2.8)	3.74(35)	-6.7(1.2)	_	_	1.48	51.6(3.5)
$\{2, 3, 4\}$	3.1(1.2)	-8(10)	10(20)	—	0.82	40.3(4.7)	6.7(1.6)	-31(13)	47(25)	—	0.84	61.6(6.4)
$\{2^{\chi},3^{\chi},4\}$	4.44	-8.55	-4.07(71)	_	12.2	58.50(24)	4.44	-8.55	-1.72(64)	_	2.30	59.28(21)
$\{2, 3^{\chi}, 4, 4L\}$	3.14(73)	-8.55	11(19)	-0.5(11.7)	0.82	40.4(4.7)	5.57(96)	-8.55	45(23)	26(15)	0.77	61.7(6.3)
$\{2, 3^{\chi}, 4, 4L^{\chi}\}$	3.86(17)	-8.55	29.6(2.2)	11.35	0.87	44.5(2.4)	4.65(21)	-8.55	21.7(2.4)	11.35	0.82	56.2(3.0)
$\{2^{\chi}, 3^{\chi}, 4, 4L\}$	4.44	-8.55	42.2(6.3)	19.8(2.7)	1.41	48.4(1.4)	4.44	-8.55	18.5(7.2)	8.9(3.2)	0.93	54.5(1.7)
$\{2^{\chi}, 3^{\chi}, 4, 4L^{\chi}\}$	4.44	-8.55	22.51(71)	11.35	3.13	52.72(24)	4.44	-8.55	23.97(64)	11.35	0.86	53.20(21)

Current status of $\sigma_{\pi N}$ from Lattice QCD

- Phenomenological estimates using πN -scattering data gives $\sigma_{\pi N} \sim 60 \text{ MeV}$
- Lattice results without $N\pi$ ES-terms gives $\sigma_{\pi N} \sim 40 \text{ MeV}$
- Lattice result with $N\pi$ ES-terms gives $\sigma_{\pi N} = 61.6(6.4)$ MeV

Summary

- Nucleon charges play important role in analysis of experimental data and probing new physics in BSM
- Lattice QCD provides precise estimates of the nucleon charges
- Removing excited state contamination may need proper incorporation of $N\pi$ excited states
 - Current statistics does not provide a good determination of the first excited state, but indirect evidences (PCAC relation, χ PT prediction) support strong effect of $N\pi$ excited states