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Motivation

Baryon asymmetry in the universe

Standard model cannot explain observed matter-antimatter
asymmetry

Baryogenesis under Sakharov conditions

Baryon number B violation
processes with |∆B| = 1 e.g., proton decay
processes with |∆B| = 2 e.g., neutron-antineutron oscillations,
Λ-Λ̄ oscillations

C-symmetry and CP-symmetry violation

Interactions out of thermal equilibrium
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Neutron-antineutron transition probability

Time evolution where a neutron can transform into an antineutron

i
∂

∂t

(
n
n̄

)
=

(
En δm
δm En̄

)(
n
n̄

)
Probability of a free neutron oscillating to an antineutron

Pn→n̄(t) =
δm2

∆E2 + δm2 sin2(
√

∆E2 + δm2 t)

δm = 1/τn−n̄ ... τn−n̄ is the free neutron-antineutron oscillation time
∆E = (En − En̄)/2
for En ≈ En̄

Pn→n̄(t) ≈ (δm t)2 =

(
t

τn−n̄

)2

For bound neutrons in nuclei, the probability is

Pnuc(n→ n̄) =
1

Tnuc
=

1
R τ 2

n−n̄

R ... reduced lifetime, intranuclear suppression factor
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Possible experimental observation

Oscillations of neutrons to antineutrons in free space
direct access to τn−n̄

Oscillations of neutrons to antineutrons in nuclei
1) measurement of Tnuc

2) estimation of τn−n̄ based on a knowledge of R
the latter can be/has to be provided by theory

examples:
Super-Kamiokande (K. Abe et al., PRD 103 (2021) 012008)

lower limit on n̄ appearance lifetime in 16O: 3.6× 1032 years
⇒ τn−n̄ > 4.7× 108 s at 90 % C.L.

(based on an R value from Friedman and Gal (2008))
Sudbury Neutrino Observatory (B. Aharmim et al., PRD 96 (2017) 092005)

lower limit on nuclear lifetime of 2H: 0.118× 1032 years
⇒ τn−n̄ > 1.23× 108 s at 90 % C.L.

(based on an R value from Dover, Gal, Richard (1983))
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Suppression factor R in the traditional approach
C. Dover, A. Gal, J.-M. Richard, PRD 27 (1983) 1090

|ψd 〉 =
u0(r)

r
|3S1〉 +

w0(r)

r
|3D1〉

NN: ψd ... deuteron wave function from Paris potential is used

−
u′′n̄p(r)

mN
+ Vn̄p un̄p(r)− Ed un̄p(r) = −δm u0(r), Vn̄p(r) = Un̄p(r)− iWn̄p(r)

Γd = −2
∫ ∞

0
|un̄p(r)|2 ImVn̄p(r) dr = −2δm

∫ ∞
0

u0(r) Im un̄p(r) dr

Ed = −2.2246 MeV ... deuteron binding energy
δm = 1/τn−n̄ = Vn−n̄ ... n − n̄ transition potential

Td = 1/Γd , Td = R τ2
n−n̄ → R = 1/(Γd τ

2
n−n̄)

N̄N: Dover-Richard N̄N potentials are used (PRC 21 (1980) 24, PRC 24 (1982) 1952)

• only S wave: R = 2.75× 1022 s−1 (DR1), R = 2.71× 1022 s−1 (DR2)
• S+D wave: R = 2.56× 1022 s−1 (DR1), R = 2.40× 1022 s−1 (DR2)

However, since 1983 ...

NN : chiral effective field theory (Weinberg, van Kolck, Epelbaum/Meißner, Entem/Machleidt, ...)

N̄N : wealth of new low-energy data from LEAR (CERN) (E. Klempt et al., Phys. Rep. 368 (2002) 119)
partial wave analysis (D. Zhou & R.G.E. Timmermans, PRC 86 (2012) 044003)
potentials from chiral EFT (X.-W. Kang, L.-Y. Dai, J.H., U.-G. Meißner)

⇒ re-evaluate R with modern tools
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Effective field theory

Oosterhof, Long, de Vries, Timmermans, van Kolck, PRL 122 (2019) 172501
construct an EFT for the |∆B| = 2 interaction
calculate n − n̄ oscillations and dinucleon decay up to NLO
Decay rate is obtained from the deuteron propagator

(a)

(c) (d)

(e)

(b)

(f)

FIG. 2. Diagrams that contribute to Im(iΣ) up to NLO. Circles denote gA or H0 vertices, the

circled circle denotes C2 or D2, and squares denote |∆B| = 2 vertices. The dashed line represents

a pion. Only one ordering per diagram is shown.

amount to only 13%. The limit mπ → ∞ recovers the result of Pionless EFT [36], where
pions are integrated out and Im B̃0 absorbs the surviving pion term. Use of an auxiliary
dibaryon field [36] automatically accounts for the enhancement of Eq. (11).

Our central value for Rd is smaller by a factor ≃ 2.5 than the often-used result from
Ref. [42] based on nuclear models for the nucleon-(anti)nucleon interactions. We have
checked that when the expressions from Refs. [42, 43] are applied to a zero-range poten-
tial we recover our LO term in Eq. (17). The difference therefore stems from the smaller
Im an̄p [44] of the NN̄ potentials of Ref. [42], and from corrections to the zero-range limit.
The diagrammatic approaches of Refs. [45, 46] also reduce to our LO for a zero-range
potential. (Reference [47] disagrees from these results by a factor of 2.)

Our result is based on a systematic and improvable framework for all interactions, and
we showed that NLO corrections are significant but of the expected size. In addition, we
have used an up-to-date n̄p scattering length [39]. We therefore propose to use Eq. (17) in
comparisons of deuteron stability and n-n̄ oscillation beam experiments. Taking the largest
value of Rd allowed by Eq. (17), the SNO limit on Γ−1

d [15] gives

τnn̄ = 1/
√
RdΓd > 5.1 yr = 1.6× 108 s , (18)

about a factor of 2 stronger than the direct ILL limit.
At higher orders we find some of the nuclear effects discussed in the literature, two

examples being shown in Fig. 3. Figure 3(a) can be seen as an in-medium modification of
the n-n̄ oscillation [14], due to the emission or absorption of pions in the n-n̄ transition
required by chiral symmetry and contained in the dots of Eq. (5). It is nominally of relative
O(κ2/ΛNNmN), but it actually vanishes. Corrections of this type should, therefore, be no
larger than about 5%, to be compared with the 25%-30% estimated for heavier nuclei in
Ref. [48]. The effect of direct two-nucleon annihilation [18], the right diagram in Fig. 1,
is represented by Fig. 3(b). It is proportional to the absorptive part of NN interactions,
ImC0, and appears at next-to-next-to-leading order (N2LO), O(κ2/Λ2

NN).
So far we have not discussed the operator Q4. Since it belongs to the (1L, 7R) irrep it can

7

Kaplan-Savage-Wise resummation scheme is employed (pion exchange is treated perturbatively)

G(Ē) =
Σ(Ē)

1 + i Re(C0) Σ(Ē)
=

iZd

Ē − Ed + iΓd/2
+ . . . ,

Σ(Ē) ... irreducible deuteron two-point function

Zd ... (real) wave-function renormalization

Γd =
2 Im(iΣ(Ē))

Re(idΣ(Ē)/dĒ)

∣∣∣∣∣
Ē=Ed

+ . . .
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Effective field theory

Oosterhof, Long, de Vries, Timmermans, van Kolck, PRL 122 (2019) 172501

Γd = −mN Im an̄p

κτ2
n−n̄

[
1+κ

(
rnp +2 Re an̄p−

g2
AmN

3πF 2
π

2− 2ξ − 5ξ2 + 6ξ3

1 + 2ξ
− (κ− µ) Im B̃0√

2π δm Im an̄p

)]

R = −
[mN

κ
Im an̄p (1 + 0.40 + 0.20− 0.13± 0.4)

]−1
= (1.1± 0.3)× 1022 s−1

τn−n̄ ... 1/δm + ....
an̄p = (0.44− i0.96) fm ... taken from (chiral EFT) N̄N potential
rnp ' 1.75 fm
κ =

√
mN |Ed | ' 45 MeV

ξ = κ/mπ ' 0.32

µ ... renormalization scale
B̃0 ... |∆B| = 2 four-baryon (NN → N̄N) contact term
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The N̄N interaction

✫✪
✬✩

N N

N N

V NN

❄

✻

G-parity

mesons

NN

N̄N +✫✪
✬✩N̄ N

N̄ N

✫✪
✬✩

N̄ N

V N̄N
el V N̄N

ann
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Traditional approach: meson-exchange

I) V N̄N
el ... derived from an NN potential via G-parity

(Charge conjugation plus 180o rotation around the y axis in isospin space)
⇒

V N̄N (π, ω) = −V NN (π, ω) odd G− parity

V N̄N (σ, ρ) = +V NN (σ, ρ) even G− parity

...

II) V N̄N
ann

employ a phenomenological optical potential, e.g.

Vopt (r) = (U0 + iW0) e−r2/(2a2)

with parameters U0, W0, a fixed by a fit to N̄N data

examples: Dover/Richard (1980,1982), Paris (1982,...,2009), Nijmegen (1984),
Jülich (1991,1995), ...
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NN in chiral effective field theory (E. Epelbaum et al.)

structure of the N̄N interaction is practically identical to the one for NN scattering, the

potential given in Ref. [38] can be adapted straightforwardly for the N̄N case. However,

for the ease of the reader and also for defining our potential uniquely we summarize the

essential features below and we also provide explicit expressions in Appendix A.

LO

Q0

NLO

Q2

N2LO

Q3

N3LO

Q4

Figure 1. Relevant diagrams up-to-and-including N3LO. Solid and dashed lines denote antinucle-

ons/nucleons and pions, respectively. The square and diamond symbolize contact vertices with two

and four derivatives, respectively. The dots denote a leading πN vertex, while the filled circle and

the ring symbolize subleading and sub-subleading πN vertices, respectively. Q denotes a small pa-

rameter (external momentum and/or pion mass). From the iterated diagrams at N2LO and N3LO,

only the irreducible contribution is part of the potential.

2.1 Pion-exchange contributions

The one-pion exchange potential is given by

V1π(q) =

(
gA
2Fπ

)2 (
1− p2 + p′2

2m2

)
τ 1 · τ 2

σ1 · qσ2 · q
q2 +M2

π

, (2.1)

where q = p′−p is the transferred momentum defined in terms of the final (p′) and initial

(p) center-of-mass momenta of the baryons (nucleon or antinucleon). Mπ andm denote the

– 4 –

• 4N contact terms involve low-energy constants (LECs) ... parameterize unresolved short-range physics

⇒ need to be fixed by fit to experiments (phase shifts)
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N̄N partial-wave analysis

R. Timmermans et al., PRC 50 (1994) 48

use a meson-exchange potential for the long-range part

apply a strong absorption at short distances (boundary condition) in each
individual partial wave (≈ 1.2 fm)

30 parameters, fitted to a selection of N̄N data (3646!)

However, resulting amplitudes are not explicitly given:
no proper assessment of the uncertainties (statistical errors)

phase-shift parameters for the 1S0 and 1P1 partial waves are not pinned down accurately

D. Zhou and R. Timmermans, PRC 86 (2012) 044003

use now potential where the long-range part is fixed from chiral EFT (N2LO)

somewhat larger number of N̄N data (3749!)

now, resulting amplitudes and phase shifts are given!

lowest momentum: plab = 100 MeV/c (Tlab = 5.3 MeV)

highest total angular momentum: J = 4
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N̄N PWA: p̄p → p̄p
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FIG. 5. (Color online) Differential cross sections and analyzing powers for elastic scattering as

function of angle in the center-of-mass system. The PWA result is given by the drawn red line

and the dotted blue lines indicate the one-sigma uncertainty region. The fit has for Sakamoto et

al. [59] χ2
min = 39.2 for 38 points dσ/dΩ; for Kunne et al. [70, 71] χ2

min = 25.1 for 26 points Ay; for

Eisenhandler et al. [81] χ2
min = 94.5 for 88 points dσ/dΩ; for Bertini et al. [83] χ2

min = 20.8 for 32

points Ay.

strong. The dominance of the tensor force is seen in particular in the charge-exchange

pp → nn reaction. For low energies of the final-state nn system the strong tensor force leads

to large cross sections for the transitions ℓ(nn) = ℓ(pp) − 2, in particular 3D1 → 3S1 and

3F2 → 3P2. This is similar to the strangeness-exchange reaction pp → ΛΛ, where these off-

diagonal tensor-force transitions due to K(494) and K∗(892) exchange dominate the cross

section in the ΛΛ threshold region [43, 44]. For these transitions, there is a large overlap

between the wave functions of the initial pp state and the final nn or ΛΛ state [44] at low

energy. The contributions from the spin-triplet states are much larger than the contributions

from the spin-singlet states, especially for pp → nn. The total annihilation cross section is

29
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The N̄N interaction in chiral EFT

V NN = V1π + V2π + V3π + ...+ Vcont

V N̄N
el = −V1π + V2π −V3π + ...+ Vcont

V N̄N
ann =

∑
X V N̄N→X X =̂ π, 2π, 3π, 4π, ...

• V1π , V2π , ... can be taken over from chiral EFT studies of the NN interaction

• Xian-Wei Kang, J.H., Ulf-G. Meißner, JHEP 02 (2014) 113 (N2LO)
starting point: NN interaction by Epelbaum, Glöckle, Meißner, NPA 747 (2005) 362

• Ling-Yun Dai, J.H., Ulf-G. Meißner, JHEP 07 (2017) 078 (N3LO)
starting point: NN interaction by Epelbaum, Krebs, Meißner, EPJA 51 (2015) 53

• Vcont ... same structure as in NN (C̃ + C (p2 + p′2) + ...). However, now the LECs have
to be determined by a fit to N̄N data (phase shifts, inelasticites)!
no Pauli principle→ more partial waves, more contact terms

• V N̄N
ann has no counterpart in NN

empirical information: annihilation is short-ranged and practically energy-independent

V N̄N
ann;eff =

∑
X V N̄N→X G0

X V X→N̄N , V N̄N→X (p, pX ) ≈ pL (a+b p2+...); pX ≈ const.
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regularized Lippmann-Schwinger equation

T L′L(p′, p) = V L′L(p′, p) +
∑
L′′

∫ ∞
0

dp′′p′′2

(2π)3

V L′L′′(p′, p′′) T L′′L(p′′, p)

2Ep − 2Ep′′ + iη

• N̄N potential up to N2LO (Kang et al., 2014)
employ the non-local regularization scheme of EGM (NPA 747 (2005) 362)

• N̄N potential up to N3LO (Dai et al., 2017)
employ the regularization scheme of EKM (EPJA 51 (2015) 53)

• Fit to phase shifts and inelasticity parameters in the isospin basis
(D. Zhou, R.G.E. Timmermans, PRC 86 (2012) 044003)

• Calculation of observables is done in particle basis:
? Coulomb interaction in the p̄p channel is included
? the physical masses of p and n are used

n̄n channels opens at plab = 98.7 MeV/c (Tlab = 5.18 MeV)
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N̄N phase shifts

Ling-Yun Dai, J.H., Ulf-G. Meißner, JHEP 07 (2017) 078 (N3LO)
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Figure 6: Real and imaginary parts of various̄NN phase shifts for the potential with cutoff R = 0.9 fm. Results at N3LO (black/solid line),
N2LO (blue/dashed line), and NLO (magenta/dotted line) are shown. Uncertainty bands at N3LO (dark/magenta), N2LO (medium/cyan), and NLO
(light/yellow) are included. The filled circles represent the solution of the p̄p PWA [32].
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—— N3LO; – – – N2LO; · · · NLO (bands represent a syst. uncertainty estimate; cutoffRc = 0.9 fm)
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Results for p̄p integrated cross sections

4.2. Observables
In our first study ofN̄N scattering within chiral EFT [42] we focused on the phase shifts and inelasticities. Ob-

servables were not considered. One reason for this was that,at that time, our computrt code was only suitable for
calculations in the isospin basis. A sensible calculation of observables, specifically at low energies where chiral EFT
should work best, has to be done in the particle basis becausethe Coulomb interaction in the ¯pp system has to be
taken into account and also the mass difference between proton and neutron. The latter leads to different physical
thresholds for the ¯pp andn̄nchannels which has a strong impact on the reaction amplitudeclose to those thresholds.

Another reason is related directly to the dynamics ofN̄N scattering, specifically to the presence of annihilation
processes. Annihilation occurs predominantly at short distances and yields a reduction of the magnitude of theS-
wave amplitudes. Because of that, higher partial waves start to become important at much lower energies as compared
to what one knows from theNN interaction [3]. Thus, already at rather moderate energiesa realistic description of
higher partial waves, in particular of theP- as well asD-waves, is required for a meaningful confrontation of the
computed amplitudes with scattering data.
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Figure 9: Total (σtot) and integrated elastic (σel), charge-exchange (σcex), and annihilation (σann) cross sections for ¯pp scattering. Results at
N3LO (black/solid line), N2LO (blue/dashed line), and NLO (magenta/dotted line) are shown. Uncertainty bands at N3LO (dark/magenta), N2LO
(medium/cyan), and NLO (light/yellow) are included. The filled circles represent the solution of the p̄p PWA [32]. Data are taken from Refs.
[62, 63, 64, 65] (σtot), [66, 67, 68] (σann), [69, 70, 71] (σcex), and [72, 73, 74] (σel).

In the present paper we extended our chiral EFTN̄N potential to N3LO. At that order the first LECs in the
D-waves appear, cf. Eq. (15), and can be used to improve substantially the reproduction of the corresponding partial-
wave amplitudes of thēNN PWA, cf. Figs. 6 and 7. Thus, it is now timely to perform also a calculation of observables
and compare those directly with measurements. Integrated cross sections are shown in Fig. 9. Results are provided
for the total reaction cross section, for the total annihilation cross section, and for the integrated elastic ( ¯pp→ p̄p)
and charge-exchange ( ¯pp → n̄n) cross sections. Similar to the presentation of the phase shifts before, we include
curves for the NLO (dotted lines), N2LO (dashed lines), and N3LO (solid lines) results and indicate the corresponding
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—— N3LO; – – – N2LO; · · · NLO (bands represent a systematic uncertainty estimate)
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n̄p cross sections

[102]. Usually the cross sections for exothermic reactionsbehave like 1/β so thatβσann is then practically constant,
cf. Fig. 14 forplab ≈ 100−300 MeV/c. However, the Coulomb attraction modifies that to a 1/β2 behavior for energies
very close to the threshold.
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Figure 15: Total (σtot) and integrated annihilation (σann) cross sections for ¯npscattering. For notations, see Fig. 9. Data are taken from Refs. [103,
104, 105].

Finally, for illustration we show our predictions for ¯np scattering, see Fig. 15. The ¯np system is a pure isospin
I = 1 state so that one can test theI = 1 component of theN̄N amplitude independently. Note that the PWA
results displayed in Fig. 15 include again partial-wave amplitudes from our N3LO interaction forJ ≥ 5. However, for
integrated cross sections the contributions of those higher partial waves is really very small, even atplab = 800 MeV/c.

6. Summary

In Ref. [38] a new generation ofNN potentials derived in the framework of chiral effective field theory was pre-
sented. In that work a new local regularization scheme was introduced and applied to the pion-exchange contributions
of theNN force. Furthermore, an alternative scheme for estimating the uncertainty was proposed that no longer de-
pends on a variation of the cutoffs. In the present paper we adopted their suggestions and applied them in a study of
the N̄N interaction. Specifically, āNN potential has been derived up to N3LO in the perturbative expansion, thereby
extending a previous work by our group that had considered the N̄N force up to N2LO [42]. Like before, the pertinent
low-energy constants have been fixed by a fit to the phase shifts and inelasticities provided by a recently published
phase-shift analysis of ¯ppscattering data [32].

We could show that an excellent reproduction of theN̄N amplitudes can be achieved at N3LO. Indeed, in many
aspects the quality of the description is comparable to thatone has found in case of theNN interaction at the same
order [38]. To be more specific, for theS-waves excellent agreement with the phase shifts and inelasticities of [32] has
been obtained up to laboratory energies of about 300 MeV, i.e. over the whole energy range considered. The same is
also the case for mostP-waves. Even many of theD-waves are described well up to 200 MeV or beyond. Because of
the overall quality in the reproduction of the individual partial waves there is also a nice agreement on the level ofN̄N
observables. Total and integrated elastic ( ¯pp→ p̄p) and charge-exchange ( ¯pp→ n̄n) cross sections agree well with
the PWA results up to the highest energy considered while differential observables (cross sections, analyzing powers,
etc.) are reproduced quantitatively up to 200-250 MeV. Furthermore, and equally important, in most of the considered
cases the achieved results agree with the ones based on the PWA within the estimated theoretical accuracy. Thus,
the scheme for quantifying the uncertainty suggested in Ref. [38] seems to work well and can be applied reliably to
the N̄N interaction as well. Finally, the low-energy representation of theN̄N amplitudes derived from chiral EFT
compares well with the constraints derived from the phenomenology of antiprotonic hydrogen.
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Results

J.H., U.-G. Meißner, CPC 44 (2020) 033101(
H0 + Vnp Vn−n̄

Vn−n̄ H0 + Vn̄p

)(
|ψnp〉
|ψn̄p〉

)
= (E − iΓ/2)

(
|ψnp〉
|ψn̄p〉

)
(H0 + Vnp − Ed )|ψd〉 = 0

(H0 + Vn̄p − Ed )|ψn̄p〉 ≈ −Vn−n̄|ψd 〉

Γd = −2 Vn−n̄ Im〈ψd |ψn̄p〉

χEFT N2LO χEFT N3LO DR1 DR2

R [s−1] 2.49× 1022 2.56× 1022 2.56× 1022 2.40× 1022

(Oosterhof) (1.1± 0.3)× 1022 (1.2± 0.3)× 1022 (1.4± 0.4)× 1022 (1.3± 0.3)× 1022

an̄p [fm] 0.44− i 0.91 0.44− i 0.96 0.87− i 0.66 0.89− i 0.71

χEFT N2LO ... X.-W. Kang, J.H., U.-G. Meißner, JHEP 02 (2014) 113
χEFT N3LO ... Lingyun Dai, J.H., U.-G. Meißner, JHEP 07 (2017) 078
DR1, DR2 ... Dover, Gal, Richard, PRD 27 (1983) 1090

R = −
κ

mN

1

Im an̄p

1

1 + 0.4 + 2κ Re an̄p − 0.13± 0.4
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Results for R [s−1]

χEFT N3LO

Rc [fm] 0.8 0.9 1.0 1.1

(EFT) 2.91× 1022 2.71× 1022 2.61× 1022 2.57× 1022

(MEX) 2.87× 1022 2.72× 1022 2.61× 1022 2.57× 1022

Oosterhof LO 1.62× 1022

Oosterhof NLO (1.2± 0.3)× 1022

an̄p [fm] 0.41− i 0.88 0.42− i 0.90 0.43− i 0.91 0.47− i 0.91

βσann [mb] 34.5 35.6 36.0 36.0

Rc ... different regulator in χEFT N3LO N̄N potential (Lingyun Dai et al., JHEP 07 (2017) 078)

⇒ uncertainty' ±0.2× 1022 s−1

(EFT) ... deuteron wave function from consistent χEFT N3LO NN potential
(MEX) ... deuteron wave function from meson-exchange potential (J.H. et al., PRC 48 (1993) 2190)
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Where does the difference come from?

Our calculation: |∆B| = 2 four-baryon contact term is neglected
non-perturbative aspects of NN and N̄N interactions are fully taken into account

Oosterhof et al.: Kaplan-Savage-Wise resummation scheme is used
has known deficiencies: convergence problem when tensor force of pion
exchange is relevant (3S1-3D1)
quadrupole moment of the deuteron is overestimated by 40 %

deuteron wave function versus deuteron two-point function
two-point function possibly inadequate for specific observables

0 200 400 600 800
p  (MeV/c)

-0.05
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w
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n

upper curves ... ψd (p) in the 3S1 partial wave
lower curves ... ψn̄p(p) in the 3S1 partial wave (imaginary part)

( —- N3LO; -·-· N2LO)
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Summary

N̄N interaction up to N3LO in chiral effective field theory

excellent description of N̄N amplitudes is achieved

nice agreement with p̄p (and p̄p → n̄n) observables
for Tlab ≤ 250 MeV is achieved

Neutron-antineutron oscillatons based on
up-to-date (N3LO) N̄N (and NN) interactions in chiral EFT

standard (leading-order) calculation of the suppression factor R for the
deuteron confirms results by Dover, Gal, Richard from 1983
(R = (2.7± 0.2)× 1022)

discrepany to EFT calculation by Oosterhof et al. based on the
Kaplan-Savage-Wise resummation scheme
(R = (1.2± 0.3)× 1022)
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N̄N PWA: p̄p → n̄n
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FIG. 9. (Color online) Differential cross sections and analyzing powers for charge-exchange scat-

tering as function of angle in the center-of-mass system. The PWA result is given by the drawn red

line and the dotted blue lines indicate the one-sigma uncertainty region. The fit has for Ahmidouch

et al. [72] χ2
min = 12.7 for 12 points dσ/dΩ at backward angles, χ2

min = 1.0 for 2 points dσ/dΩ at

forward angles; for Birsa et al. [73] χ2
min = 23.3 for 22 points Ay.

determined by the accuracy of the data. For the analyzing powers, on the other hand,

the theoretical uncertainties are in general smaller than the errors of the data points. The

theoretical uncertainty is very small for forward angles. For backward angles, where there

are no data available, this uncertainty increases. Fig. 8 shows the very limited data available

for the depolarization Dyy for elastic scattering at 679, 783, and 886 MeV/c. There are only

a few data points in the backward hemisphere and the data points have large error bars.

In this case, the theoretical uncertainty for the PWA prediction is much smaller than these

error bars, which implies that there is little new information in these data and that the fit

would not change significantly if they were left out of the fit. The theoretical uncertainty is

again very small for forward angles.

Figs. 9, 10, 11, and 12 show the differential cross sections dσ/dΩ and the analyzing

powers Ay for charge-exchange scattering pp → nn at 546, 656, 767, and 875 MeV/c,

respectively. Like for the elastic case, one observes that, in general, the uncertainty on

the PWA prediction for the differential cross sections is determined by the accuracy of the

data. For the analyzing powers, on the other hand, the theoretical uncertainties are in

general smaller than the errors of the data points. For some of the differential cross-section

measurements, we introduced different normalization parameters for the data in the forward
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FIG. 10. (Color online) Differential cross sections and analyzing powers for charge-exchange scat-

tering as function of angle in the center-of-mass system. The PWA result is given by the drawn red

line and the dotted blue lines indicate the one-sigma uncertainty region. The fit has for Ahmidouch

et al. [72] χ2
min = 12.9 for 10 points dσ/dΩ at backward angles, χ2

min = 14.6 for 7 points dσ/dΩ at

forward angles; for Birsa et al. [78] χ2
min = 11.2 for 17 points Ay; for Birsa et al. [73] χ2

min = 23.5

for 21 points Ay.

and in the backward hemisphere, which were taken with different detectors. The charge-

exchange differential cross section is highly anisotropic, because of the contributions of many,

high-ℓ partial waves. It has a “spike” at the most forward angles and it is flat at backward

angles. It exhibits a very typical dip-bump structure at forward angles, which is due to the

interference of the OPE interaction with a background due to short-range interactions [91].

The precise form of this structure evolves rapidly as function of energy, from a rather flat

plateau structure at 546 MeV/c to a pronounced dip-bump structure at 875 MeV/c. The

structure was measured accurately at 601 MeV/c by the PS206 experiment at the end of

the LEAR era [76, 77]. The high-quality charge-exchange differential cross sections from

Ref. [77] are shown in Fig. 13. At the time of Ref. [23], only the data at 693 MeV/c shown

in Fig. 13 were available [78], but these differential cross sections did not pin down the

dip-bump structure. The PWA of Ref. [23] predicted a more pronounced structure for this

data set.

In Fig. 14 the few data sets available for the depolarization Dyy at 546 and 875 MeV/c

and the spin transfer Kyy at 875 MeV/c in charge-exchange scattering are shown. The data

points have large error bars, and also in this case the theoretical uncertainty for the PWA
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Annihilation potential

experimental information:
• annihilation occurs dominantly into 4 to 6 pions
• thresholds: for 5 pions: ≈ 700 MeV for N̄N: 1878 MeV
⇒ annihilation potential depends very little on energy
• annihilation is a statistical process: individual properties of the produced
particles (mass, quantum numbers) do not matter
phenomenlogical models: bulk properties of annihilation can be described rather
well by simple energy-independent optical potentials
range associated with annihilation is around 1 fm or less
→ short-distance physics

⇒ describe annihilation in the same way as the short-distance physics in V N̄N
el ,

i.e. likewise by contact terms (LECs)
⇒ describe annihilation by a few effective (two-body) annihilation channels

(unitarity is preserved!)

V N̄N = V N̄N
el + V N̄N

ann;eff ; V N̄N
ann;eff =

∑
X

V N̄N→X G0
X V X→N̄N

V N̄N→X (pN̄N , pX ) ≈ pL
N̄N (a + b p2

N̄N + ...); pX ≈ const.

a, b, ...LECs
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Contributions of Vcont for N̄N up to N3LO

V N̄N
el

V L=0 = C̃α + Cα(p2 + p′2) + D1
αp2p′2 + D2

α(p4 + p′4)

V L=1 = Cβ p p′ + Dβ p p′(p2 + p′2)

V L=2 = Dγ p2p′2

C̃i ... LO LECs [4], Ci ... NLO LECs [+14], Di ... N3LO LECs [+30], p = |p |; p′ = |p ′|

V N̄N
ann;eff

V L=0
ann = −i (C̃a

α + Ca
αp2 + Da

αp4) (C̃a
α + Ca

αp′2 + Da
αp′4)

V L=1
ann = −i (Ca

βp + Da
βp3) (Ca

βp′ + Da
βp′3)

V L=2
ann = −i (Da

γ )2p2p′2

V L=3
ann = −i (Da

δ)2p3p′3

α ... 1S0 and 3S1
β ... 3P0, 1P1, and 3P1
γ ... 1D2, 3D2 and 3D3
δ ... 1F3, 3F3 and 3F4

• unitarity condition: higher powers than what follows from Weinberg power counting appear!

• same number of contact terms (LECs)
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p̄p → p̄p
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Figure 10: Differential cross sections, analyzing powers and spin correlation parametersDnn for p̄p elastic scattering. For notations, see Fig. 9.
The red/dash-double dotted line represents the result of the PWA [32]. Data are taken from Refs. [75, 67, 76, 73, 77, 78, 79, 80] (differential cross
sections), [81, 82, 83] (analyzing powers), and [84] (Dnn).
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p̄p → n̄n
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Figure 12: Differential cross sections, analyzing powers and spin correlation parametersDnn for charge-exchange scattering. For notations, see
Fig. 10. Data are taken from Refs. [85, 71, 86, 80, 87] (differential cross sections), [88, 89, 87]. (analyzing powers), and [89] (Dnn). Note that the
data forAon are for 546 and 656 MeV/c, respectively.
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n̄p annihilation cross section

0 100 200 300
p

lab
 (MeV/c)

0

20

40

60

80

100

βσ
a
n
n
 (

m
b

)

Bertin (1997)

Armstrong (1987)

PWA
3s1 only

full

np

Johann Haidenbauer Neutron-antineutron oscillations


	Introduction
	Antinucleon-nucleon interaction in chiral EFT
	Neutron-antineutron oscillations
	Summary

