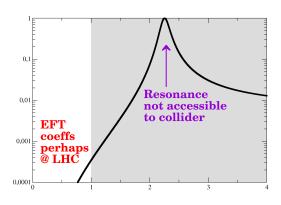
Controlling systematic uncertainties of IAM unitarization Alexandre Salas-Bernárdez et al. Universidad Complutense de Madrid

A VIRTUAL TRIBUTE TO QUARK CONFINEMENT AND THE HADRON SPECTRUM August 2nd - 6th, 2021 online

Is the LHC a high- or a low- energy machine?



Expand partial wave amplitudes

$$T_I(s,t,u) = 16\eta\pi\sum_{J=0}^{\infty}(2J+1)t_{IJ}(s)P_J(\cos\theta_s)$$

Expand partial wave amplitudes

$$T_I(s,t,u) = 16\eta\pi\sum_{J=0}^{\infty}(2J+1)t_{IJ}(s)P_J(\cos\theta_s)$$
 $t_{IJ}(s)\simeq\underbrace{t_0}_{O(s)}+\underbrace{t_1}_{O(s^2)}+\ldots$ (typical HEFT expansion)

Inverse Amplitude Method

$$rac{1}{t} \simeq rac{1}{t_0+t_1} \simeq rac{1}{t_0} - rac{t_1}{t_0^2} \implies \left\lfloor t^{\prime AM} \simeq rac{t_0^2}{t_0-t_1}
ight
floor$$

Inverse Amplitude Method

$$rac{1}{t} \simeq rac{1}{t_0+t_1} \simeq rac{1}{t_0} - rac{t_1}{t_0^2} \implies \boxed{t^{IAM} \simeq rac{t_0^2}{t_0-t_1}}$$

Advantage: for $s>s_{th}$,

$$\operatorname{Im}rac{1}{t_{IJ}(s)}=-\sigma(s)\simeq -1$$

Perturbative vs exact (elastic) unitarity

$$\operatorname{Im} t_{IJ}(s) = \sigma(s)|t_{IJ}(s)|^2$$

Perturbative vs exact (elastic) unitarity

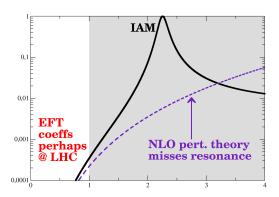
$$\operatorname{Im} t_{IJ}(s) = \sigma(s)|t_{IJ}(s)|^2$$

- Exact in IAM
- Only order by order in EFT

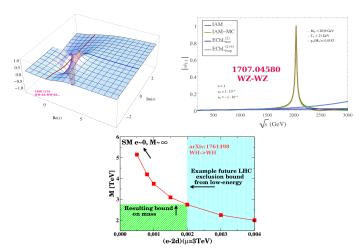
$$\operatorname{Im} t_{1}(s) = \sigma(s)|t_{0}(s)|^{2}$$

Why would anyone care?

▶ EFT reliable only near threshold

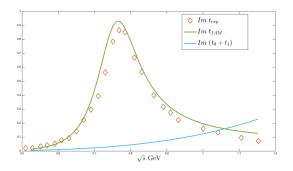


Prediction of resonances from HEFT



LHC bounds on HEFT coeffs \implies bounds on new physics scale

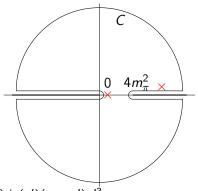
Much used in hadron physics to obtain resonances



(This is an IAM prediction from threshold data, not a fit)

Use its dispersive derivation: 2010.13709

- ► Causality ⇒ analiticity
- Large circumference convergence $G \propto e^{-s}$ (1912.08747)
- Can apply Cauchy's theorem



to the function $t_0^2(s')/t(s')(s-s')s'^3$.

Master formula is a dispersion relation for $G(s) \equiv \frac{t_0^2(s)}{t(s)}$

$$G(s) = G(0) + G'(0)s + \frac{1}{2}G''(0)s^{2} + PC(G) + \frac{s^{3}}{\pi} \int_{RC} ds' \frac{\operatorname{Im} G(s')}{s'^{3}(s'-s)} + \frac{s^{3}}{\pi} \int_{LC} ds' \frac{\operatorname{Im} G(s')}{s'^{3}(s'-s)}$$

Dispersion relation: approximations

NLO subtraction constants
$$G(s) = G(0) + G'(0)s + \frac{1}{2}G''(0)s^2 + PC(G) + \frac{s^3}{\pi} \int_{RC} ds' \frac{\operatorname{Im} G(s')}{s'^3(s'-s)} + \frac{s^3}{\pi} \int_{LC} ds' \frac{\operatorname{Im} G(s')}{s'^3(s'-s)}$$
NLO imaginary part Im G \longrightarrow -Im t1
$$Gives \quad t \simeq t_0^2/(t_0-t_1) = t_{IAM} \quad .$$

Sources of uncertainty

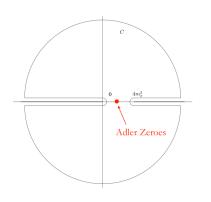
Neglected pole contributions of t⁻¹: subthreshold Adler zeroes and CDD zeroes of t.

▶ Inelasticities due to KK (hh in HEFT), 4π , etc.

 \triangleright $\mathcal{O}(p^4)$ truncation of subtraction constants.

▶ Left cut approximation $Im~G \simeq -Im~t_1$.

Adler zeroes of t near threshold



$$t_0 + t_1 = a + bs + cs^2$$

vanishes near $s = -a/b$

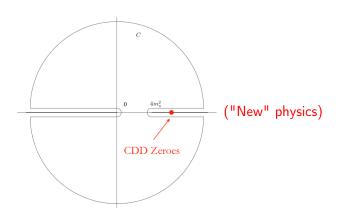
Adler zeroes of t near threshold

Tiny uncertainty in resonance region because at/below threshold these poles are nearly cancelled.

Adler zeroes of t near threshold

Tiny uncertainty in resonance region because at/below threshold these poles are nearly cancelled.

Uncertainty	Behavior	Displacement $\sqrt{s}=m_{ ho}$	improvable?
Adler zeroes of t	$(m_\pi/m_ ho)^4$	$10^{-3} - 10^{-4}$	Yes: mIAM



Can affect a resonance calculation dramatically

Need to

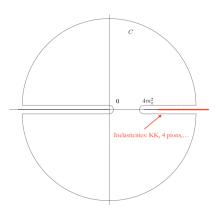
Can affect a resonance calculation dramatically

Need to

- 1. Check for CDD pole appearance: $t_0(s_C) + \operatorname{Re} t_1(s_C) = 0$
- 2. If present, modify

$$t_{\rm IAM} = \frac{t_0^2}{t_0 - t_1} \rightarrow \frac{t_0^2}{t_0 - t_1 + \frac{s}{s - s_c} {\rm Re}(t_1)} \ .$$

Uncertainty	Behavior	Displacement $m_ ho$	improvable?
Adler zeroes of t	$(m_{\pi}/m_{ ho})^4$	$10^{-3} - 10^{-4}$	Yes: mIAM
CDD poles at M_0	M_R^2/M_0^2	0 – $\mathcal{O}(1)$	Yes



▶ Hadrons: $\pi\pi \to \pi\pi$ couples to KK

$$\operatorname{Im} \frac{1}{t_{\pi\pi}} \to -\sigma_{\pi\pi} \left(1 + \frac{\sigma_{K\bar{K}}}{\sigma_{\pi\pi}} \frac{|t_{\pi\pi\to K\bar{K}}|^2}{|t_{\pi\pi\to \pi\pi}|^2} \right)$$

▶ Hadrons: $\pi\pi \to \pi\pi$ couples to KK

$$\operatorname{Im} \frac{1}{t_{\pi\pi}} \to -\sigma_{\pi\pi} \Big(1 + \frac{\sigma_{K\bar{K}}}{\sigma_{\pi\pi}} \frac{|t_{\pi\pi\to K\bar{K}}|^2}{|t_{\pi\pi\to\pi\pi}|^2} \Big)$$

suppressed by phase-space $rac{\sigma_{Kar{K}}}{\sigma_{\pi\pi}}$ and low inelasticity in $t_{\pi\pi o Kar{K}}$

▶ Hadrons: $\pi\pi \to \pi\pi$ couples to KK

$$\operatorname{Im} \frac{1}{t_{\pi\pi}} \to -\sigma_{\pi\pi} \left(1 + \frac{\sigma_{K\bar{K}}}{\sigma_{\pi\pi}} \frac{|t_{\pi\pi\to K\bar{K}}|^2}{|t_{\pi\pi\to\pi\pi}|^2} \right)$$

suppressed by phase-space $rac{\sigma_{Kar{K}}}{\sigma_{\pi\pi}}$ and low inelasticity in $t_{\pi\pi o Kar{K}}$

▶ In HEFT only inelasticity in $\omega\omega-hh$ (actually zero in SM)

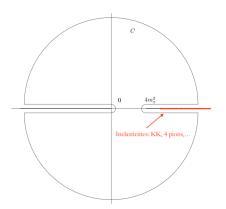
▶ Hadrons: $\pi\pi \to \pi\pi$ couples to KK

$$\operatorname{Im} \frac{1}{t_{\pi\pi}} \to -\sigma_{\pi\pi} \left(1 + \frac{\sigma_{K\bar{K}}}{\sigma_{\pi\pi}} \frac{|t_{\pi\pi\to K\bar{K}}|^2}{|t_{\pi\pi\to \pi\pi}|^2} \right)$$

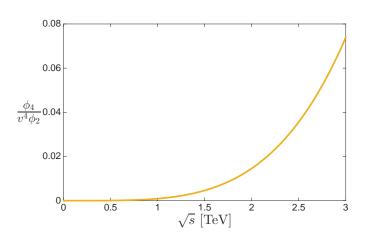
suppressed by phase-space $rac{\sigma_{Kar{K}}}{\sigma_{\pi\pi}}$ and low inelasticity in $t_{\pi\pi o Kar{K}}$

- ▶ In HEFT only inelasticity in $\omega\omega hh$ (actually zero in SM)
- We can use the coupled channel IAM directly or to estimate uncertainty in elastic IAM

Uncertainty	Behavior	Displacement $m_{ ho}$	improvable?
Adler zeroes of t	$(m_\pi/m_ ho)^4$	$10^{-3} - 10^{-4}$	Yes: mIAM
CDD poles at M_0	M_R^2/M_0^2	0 – $\mathcal{O}(1)$	Yes
Inelastic 2-body	$(\sqrt{s}/(4\pi f_{\pi}))^4$	10^{-3}	Yes



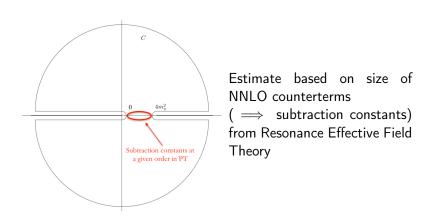
▶ Difference with SMEFT: here, in ChPT or HEFT, additional particles *not* suppressed by the chiral counting. But phase space helps.



In hadron physics, (with elastic and 4- π inelastic amplitudes taken as similar)

Uncertainty	Behavior	Displacement $m_{ ho}$	improvable?
Adler zeroes of t	$(m_\pi/m_ ho)^4$	$10^{-3} - 10^{-4}$	Yes: mIAM
CDD poles at M_0	M_R^2/M_0^2	0 – $\mathcal{O}(1)$	Yes
Inelastic 2-body	$(\sqrt{s}/(4\pi f_{\pi}))^4$	10^{-3}	Yes
Inelastic 4-body	$(\sqrt{s}/(4\pi f_{\pi}))^4$	10^{-4}	No

$O(p^4)$ truncation

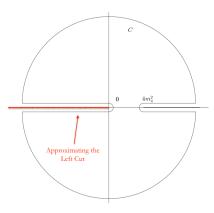


$O(p^4)$ truncation

Uncertainty	Behavior	Displacement $m_{ ho}$	improvable?
Adler zeroes of t	$(m_\pi/m_ ho)^4$	$10^{-3} - 10^{-4}$	Yes: mIAM
CDD poles at M_0	M_R^2/M_0^2	0 – $\mathcal{O}(1)$	Yes
Inelastic 2-body	$(\sqrt{s}/(4\pi f_{\pi}))^4$	10^{-3}	Yes
Inelastic 4-body	$(\sqrt{s}/(4\pi f_{\pi}))^4$	10^{-4}	No
$O(p^4)$ truncation	$(\sqrt{s}/(4\pi f_{\pi}))^4$	10^{-2}	Yes

$$G(s) = rac{t_0^2}{t} \simeq t_0 - t_1 - t_2 + rac{t_1^2}{t_0}$$

Approximate left cut



Need to check

$$\int_{LC} ds' \frac{\operatorname{Im} G + \operatorname{Im} t_1}{s'^3 (s'-s)} \ .$$

i.e., failure of IAM's

$$Im G = -Im t_1$$

over the left cut

Approximate left cut

Split interval in 3:

- ► Low-|s| (ChPT/HEFT \checkmark) $|s|^{\frac{1}{2}} < 470 \text{MeV}$.
- ► Intermediate-|s|: Match to ChPT + natural-size counterterm. Currently studying LC parameterizations from GKPY eqns.
- ► High -|s|: Sugawara-Kanazawa relates it to right cut: Regge asymptotics there. Far from RC anyway.

Approximate left cut

Uncertainty	Behavior	Displacement $m_ ho$	improvable?
Adler zeroes of t	$(m_\pi/m_ ho)^4$	$10^{-3} - 10^{-4}$	Yes
CDD poles at M_0	M_R^2/M_0^2	0 – $\mathcal{O}(1)$	Yes
Inelastic 2-body	$(\sqrt{s}/(4\pi f_{\pi}))^4$	10^{-3}	Yes
Inelastic 4body	$(\sqrt{s}/(4\pi f_{\pi}))^4$	10^{-4}	No
$O(p^4)$ truncation	$(\sqrt{s}/(4\pi f_{\pi}))^4$	10^{-2}	Yes
Left Cut	$(\sqrt{s}/(4\pi f_\pi))^4$	0.17	Perhaps

lacktriangle It often fails little above threshold $s\simeq 4m^2+\epsilon$

- ▶ It often fails little above threshold $s \simeq 4m^2 + \epsilon$
- Inverse Amplitude Method extends it to first resonance or 4πF or new: first zero (CDD-IAM)

- ▶ It often fails little above threshold $s \simeq 4m^2 + \epsilon$
- Inverse Amplitude Method extends it to first resonance or 4πF or new: first zero (CDD-IAM)
- ► We have laid out (2010.13709 [hep-ph]) its systematic theory uncertainties

- ▶ It often fails little above threshold $s \simeq 4m^2 + \epsilon$
- Inverse Amplitude Method extends it to first resonance or 4πF or new: first zero (CDD-IAM)
- ► We have laid out (2010.13709 [hep-ph]) its systematic theory uncertainties
- ► To make it more useful for BSM searches

Thank You!

Funding acknowledgments

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093; grants MINECO:FPA2016-75654-C2-1-P, FPA2016-77313-P MICINN: PID2019-108655GB-I00, PID2019-106080GB-C21, PID2019-106080GB-C22 (Spain); UCM research group 910309 and the IPARCOS institute; and the VBSCAN COST action CA16108.

