Measurement of charged particle multiplicity distributions in DIS at HERA and its implication to entanglement entropy of partons

> Austin Baty for the H1 Collaboration August 5, 2021

XIVth Quark confinement and the Hadron spectrum conference

Entropy in particle collisions

- Partons within a proton are confined and must combine to form a color-singlet state
 - The proton is a pure quantum state, $S_{proton} = 0$
 - How do we reconcile this with detailed proton substructure, i.e. incoherent partons having many potential micro states, so $S_{proton} \neq 0$?
- Theory prediction¹ that entanglement entropy of region A, of size ~1/Q, will be related to gluon pdf at sufficiently small x

•
$$S_{gluon} = \ln[xG(x,Q^2)]$$

• Assuming hadronization doesn't increase entropy much, this is predicted to equal the entropy calculated from the hadron multiplicity probability distribution

•
$$S_{hadron} = -\sum P(N) \ln[P(N)]$$

• Is it true that $S_{gluon} = S_{hadron}$?

1. D. Kharzeev and E. Levin, Phys. Rev. D 95, 114008 (2017) 2

Supported in pp collisions?

- Previous phenomenology studies using CMS pp multiplicity data indicate that this could be the case at low x
 - 'Sub-nucleonic EPR paradox'
 - Analysis is complicated by the presence of two protons
- ep collisions can provide a much cleaner test

H1 Detector

- Using 2006-2007 data
- 136 pb⁻¹ of e⁺p data
 - $\sqrt{s} = 318 \text{ GeV}$
- DIS variables calculated using ECAL and tracking
- Multiplicity measurement uses both central and forward tracking for large kinematic coverage

	Laboratory frame	HCM frame
$\overline{Q^2}$	$5 < Q^2 < 100 \mathrm{GeV}^2$	$5 < Q^2 < 100 \mathrm{GeV}^2$
У	0.0375 < y < 0.6	0.0375 < y < 0.6
$p_{ m T,lab}$	$p_{\rm T,lab} > 150 {\rm MeV}$	$p_{\rm T,lab} > 150 { m MeV}$
${\eta}_{ m lab}$	$-1.6 < \eta_{\rm lab} < 1.6$	$-1.6 < \eta_{\rm lab} < 1.6$
η^*	_	$0 < \eta^* < 4$

MC Comparisons

DIS variables calculated ep √s = 319 GeV 10¹⁰ with 'e- Σ ' method: 10⁹ **H1** \circ Data, L_{int}=136 pb⁻ 10⁸ Photoproduction -DJANGÖH $Q^{2} = 4E_{e}E_{e}^{'}\cos\frac{\theta_{e}^{2}}{2},$ $y = 2E_{e}\frac{\Sigma}{[\Sigma + E_{e}^{'}(1 - \cos\theta_{e})]^{2}},$ -RAPGAP 10^{6} tuno 104 count 10³ 10² $x_{\rm bj} = \frac{Q^2}{sv}.$ 0.6 50 100 0.2 0.4 Q^2 (GeV²) y 10⁸ 10⁸ Very good agreement for 10⁷ 107 basic event reconstruction 10⁵ variables between data and 10⁶ count count MC 10³ 10⁵ 10 Effects of photoproduction 10⁴ are found to be less than 10--2 0 2 20 40 0.5% in this analysis η_{lab} $\mathsf{N}_{\mathsf{rec}}$

Lab frame Multiplicity

- Measure multiplicity distribution P(N) vs Q², y
- Also measured in differential η_{lab} windows (not shown)
- Large y leads to broader distribution of P(N)
 - Little Q² dependence
- MC matches data well around peak of distribution but under predict at high and low multiplicity
- RAPGAP and DJANGOH seem to agree better than PYTHIA 8

HCM Multiplicity

- Hadronic Center of Mass (HCM) frame defined by: p + q = 0
- Define positive η*as photon-going hemisphere in HCM frame
 - Similar conclusions as lab frame
- In further plots, only RAPGAP is shown but DJANGOH gives similar results

Average Multiplicity

- $\langle N \rangle$ calculated as a function of $W = \sqrt{sy Q^2 + M_P^2}$, hadronic CoM energy
- More particles produced with higher W, as expected
 - Larger Q² causes quicker increase vs W
- Reasonable agreement between data and RAPGAP

Multiplicity variance

- Variance of N vs W
- Variance strongly rises with W, very little Q² dependence observed.
- Hemisphere restriction does not affect Var(N) much
- MC does a good job for high Q² but seems to under predict data at lower Q²

KNO Scaling

- $\Psi(z) = \langle N \rangle P(N)$
 - Predicted to only be a function of z and not other variables 'KNO scaling'
- Calculated in the HCM frame
- KNO scaling observed, as seen in many previous experiments

Shadron VS. <X>

•
$$S_{hadron} = -\sum P(N) \ln[P(N)]$$

- Multiplicity calculated in η_{lab} window based on <x> using LO Quark Parton Model (QPM)
- Very little x dependence, slight increase with Q²
- $S_{gluon} = \ln[xG(x,Q^2)]$
 - Data do not agree with S_{gluon}
 from HERAPDF

HCM frame

HCM frame **H1** Similar rising behavior seen for 4 different Q² gluon RAPGAP generally agrees with Shadron' S data 2 Slight deviations related to H1 data differences seen in P(N) distributions 0 S_{gluon} predictions from 10^{-4} HERAPDF do not match Shadron

No sliding η_{lab} cut applied in

Conclusions

- P(N) distributions measured vs Q², y, η
 - MC generally matches data well
- P(N) moments measured vs Q², W
- KNO scaling seen in these data
- Data do not support $S_{hadron} = S_{gluon}$
- Important data for understanding particle production and entanglement at subnucleonic scales

Full paper at: Eur. Phys. J. C 81 (2021), 212 13

