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• Holographic descriptions of chiral symmetry breaking by 
running g and NJL operators 

• "perfected QCD” & the space of SCGT



The classification table for SU(Nc) gauge theories with Nf fermions in the fundamental representation.
Click on an individual theory to learn more.

Key:

 Theories in a lighter colour lie in the conformal window; those in a darker colour have a mass gap
 Results in shades of grey are derived from the two loop running results with Appelquist and

Terning's critical coupling for chiral symmetry breaking
 Lattice (and other results) are highlighted in green
 Theories in the conformal window are marked by their value of the anomalous dimension at the

fixed point
 Gapped theories are marked by R - the one loop gap ratio between the scales for chiral symmetry

breaking and the IR pole - a crude measure of the gap between confinement and chiral symmetry
breaking

 Gapped theories are marked by S - the ratio of the scales at which the coupling passes half the
critical coupling and that for the critical coupling using the two loop running - a crude measure of the
degree of walking in the theory above the chiral symmetry breaking scale

 I'd also like to mark the order of the finite T phase transition at zero quark mass - not sure how at
the moment!

SCGT Forum - Nick Evans https://www.southampton.ac.uk/~evans/SCGT/Fundamental/

1 of 2 30/07/2021, 08:59

The SCGT Periodic Table
Asymptotically free gauge 
theories are key to the SM –
SU(3)xSU(2)

They likely play a role in BSM 
physics: techicolour (WTC), 
composite higgs, strongly coupled 
dark matter; susy breaking….

Yet we barely know the 
behaviours of the set of strongly 
coupled gauge theories (UV 
defined  (+asymptotic safety))

We should do better…

Figure from SCGT Forum web site
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Holographic Magic

Provides a new description of RG 
flow at strong coupling…

Describes chiral 
symmetry breaking

as a radially dependent higgs
mechanism in AdS… with the potential 
related to the anomalous dimension of  

the qq operator

Dm2 = -1    corresponds to   g = 1   
and is special – the 
Breitenlohner Freedman bound 
instability…

More Holographic Magic 



The gauge DYNAMICS is input through a guess for Dm

The only free parameters  are Nc, Nf, L

Dynamic AdS/YM Timo Alho, NE, KimmoTuominen    
1307.4896

More complex models exist – especially note VQCD of Kiritsis-
Jarvinen’ group - that attempt to decouple the quarks, include 
confinement below the chiral symmetry breaking scale, and explain 
stringy Regge trajectories…. Heroic but many built in features….



Formation of the Chiral Condensate
We solve for the vacuum 
configuration of L

3 Two-flavour QCD

To demonstrate the Dynamic AdS/YM model and the role of HDOs, we begin with a study

of Nc = 3, Nf = 2 QCD. We first determine the vacuum of the theory for the massless theory

by finding the function L(⇢) using eq. (2.4). Then we compute the spectrum of the model by

looking at fluctuations, study the quark mass dependence and the n dependence of excited

states. Finally we consider introducing a cut o↵ where the theory runs to a perturbative

regime and include HDOs at that scale to improve the IR description.

The key input for any theory we study is the form of � we input in eq. (2.6). The formulae

for the one and two-loop coe�cients of the �-function and the one-loop anomalous dimension

for QCD are, with Nf the number of Weyl flavours in the fundamental and N̄f the number

in the anti-fundamental representations

b0 =
1

6⇡

�
11Nc � (Nf + N̄f )

�
,

b1 =
1

24⇡2

✓
34Nc

2
� 5Nc(Nf + N̄f )�

3

2

Nc
2
� 1

Nc
(Nf + N̄f )

◆
,

� =
3(Nc

2
� 1)

4Nc⇡
↵ .

(3.1)

We choose an initial value for ↵(µ = 1) = 0.65 for the numerical analysis but will set the

scale with the ⇢-meson mass below. The resulting running of �m2 in the Dynamic AdS/QCD

model is shown in fig. 1 on the left - the BF bound is violated close to the scale r = µ = 1.

We can now compute the vacuum for the theory by solving eq. (2.4) subject to the

boundary conditions in eq. (2.10). We solve the equation numerically and show the results

on the right in fig. 1 for di↵erent asymptotics of L(⇢) corresponding to di↵erent UV masses.
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Figure 1: The Nc = 3, Nf = 2 QCD model: on the left we display the running of the AdS

scalar mass �m2 against log RG scale (we use µ =
p
⇢2 + L2 in the holographic model). On

the right we show the the vacuum solution for |X| = L(⇢) against ⇢. The 45� line is where

we apply the on mass shell IR boundary condition in eq. (2.10). The L(⇢) with a massless

UV quark has LIR = 0.43. The quark masses from top to bottom are 1, 0.75, 0.5, 0.25, 0.05,

0. Here units are set by ↵(⇢ = 1) = 0.65.
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Yet More Holographic Magic 
Fluctuations in the holographic model translate to the effective meson 
Lagrangian

Predicts r, a, p ,s, baryon masses and 
couplings

Cf AdS/QCD



Higher Dimension/Nambu Jona-Lasinio
Operators

3 Two-flavour QCD

To demonstrate the Dynamic AdS/YM model and the role of HDOs, we begin with a study

of Nc = 3, Nf = 2 QCD. We first determine the vacuum of the theory for the massless theory

by finding the function L(⇢) using eq. (2.4). Then we compute the spectrum of the model by

looking at fluctuations, study the quark mass dependence and the n dependence of excited

states. Finally we consider introducing a cut o↵ where the theory runs to a perturbative

regime and include HDOs at that scale to improve the IR description.

The key input for any theory we study is the form of � we input in eq. (2.6). The formulae
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scale with the ⇢-meson mass below. The resulting running of �m2 in the Dynamic AdS/QCD

model is shown in fig. 1 on the left - the BF bound is violated close to the scale r = µ = 1.

We can now compute the vacuum for the theory by solving eq. (2.4) subject to the

boundary conditions in eq. (2.10). We solve the equation numerically and show the results

on the right in fig. 1 for di↵erent asymptotics of L(⇢) corresponding to di↵erent UV masses.
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Figure 1: The Nc = 3, Nf = 2 QCD model: on the left we display the running of the AdS

scalar mass �m2 against log RG scale (we use µ =
p
⇢2 + L2 in the holographic model). On

the right we show the the vacuum solution for |X| = L(⇢) against ⇢. The 45� line is where

we apply the on mass shell IR boundary condition in eq. (2.10). The L(⇢) with a massless

UV quark has LIR = 0.43. The quark masses from top to bottom are 1, 0.75, 0.5, 0.25, 0.05,

0. Here units are set by ↵(⇢ = 1) = 0.65.
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Witten’s multi-trace prescription is to 
reinterpret the massive solutions as 
massless + four fermion term

Read off m,c and 
compute g
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Figure 6: The instability of the massless embedding in the presence of an NJL interaction:

on the left we show the mass of the � scalar in the massless background of fig. 1 (shown in

red there) - it becomes tachyonic beyond a critical value of g2s . On the right we show the IR

quark mass LIR against the NJL coupling as interpreted from the embeddings with a source

in fig. 1. We see that the tachyon instability is related to the NJL interaction changing the

vacuum by enhancing chiral symmetry breaking.

enhances this mass generation. If the � mass is computed in the true vacuum, where L0(⇢)

includes the e↵ect of g2s , then at any g2S there is no tachyonic behaviour.

It is important to note that the vacuum embeddings in fig. 1 have two interpretations -

either there is an explicit UV mass for the quarks or a UV HDO is present. At the level of

the solutions in fig. 1 there is no distinction but there is at the level of the fluctuations. If

there is a UV quark mass only present, then in the fluctuation calculation we must require

that asymptotically in the UV there is only a vev for the operator and no J . On the other

hand, if we interpret all of the UV source in the embedding as being due to the NJL operator

then we must determine the value of gS from the background. Then we have to enforce that

same value at the level of the fluctuations. Of course, most generally there can also be a

mixture of quark mass and NJL operator in which case one needs to be careful to apply the

appropriate g2S for the fluctuation calculation.

Finally we can introduce a baryon squared HDO,
g2B

⇤5
UV

|qqq|2, to change the baryon mass.

The results are shown in fig. 7. In fact this plot was our initial motivation for this work

since we were interested in bringing the proton mass down relative to the ⇢-meson mass in

AdS/QCD. As we will see later, they may be similarly used to generate light baryonic top

partners in BSM models. Fig.7 shows similar features to the ones for the masses of the vector

meson and axial-vector meson.
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Witten hep-th/0112258; NE + K Kim 1601.02824 [hep-th]
Jarvinen 1501.07272 [hep-ph]



QCD Dynamics – Nc=3, Nf=2, mq=0

3.1 The meson and baryon spectrum of QCD

To compute the meson masses, we must set g5 in eq. (2.1) by matching to the UV vector-vector

correlator in perturbative QCD

g25 =
48⇡2

Nc(Nf + N̄f )
. (3.2)

Having found the massless vacuum, we can now study the spectrum as described in

Section 2. We set all sources to zero in the UV. The results for the ground states in each

channel are shown at the top of Table 1 using the ⇢-meson mass to set the scale. Note we

begin to use notation we will use later - labelling the holographic model as AdS/SU(3) to

indicate the gauge group and 2F 2 F̄ to show there are 2 Weyl fermions in the fundamental

and two in the anti-fundamental representation (ie 2 Dirac fermions in the fundamental).

Comparing to the physically measured QCD values for the ground states, we see the ⇢- and

A-meson sectors are reasonably described but the pion decay constant is low (although we

have not yet included a UV quark mass). The � (S) mass is high, but possibly should be

compared to the f0(980) if the f0(500) is a pion bound state [63] (in which case it fits well).

The proton mass is clearly too high though.

We can compute the quark mass dependence of the meson masses also. We display the

results in fig. 2 including fits and comparisons to lattice data. The top two plots show that at

low quark mass the pion mass squared is linear in mq as required by the Gell-Mann-Oakes-

Renner relation whilst at larger mq the behaviour reverts to depending on m2
q as for the other

mesons. In the lower plot we show the other meson masses as a function of M2
⇡ . The lattice

Observables QCD AdS/SU(3) Deviation

(MeV) here’s the hidden text 2 F 2 F̄

M⇢ 775 775⇤ fitted

MA 1230 1183 - 4%

MS 500/990 973 +64%/-2%

MB 938 1451 +43%

f⇡ 93 55.6 -50%

f⇢ 345 321 - 7%

fA 433 368 -16%

M⇢,n=1 1465 1678 +14%

MA,n=1 1655 1922 +19%

MS,n=1 990 /1200-1500 2009 +64%/+35%

MB,n=1 1440 2406 +50%

Table 1: The predictions for masses and decay constants (in MeV) for Nf = 2 massless

QCD. The ⇢-meson mass has been used to set the scale (indicated by the *).
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Scale fixed by V-
meson

Pattern sensible

Pion decay 
constant needs a 
mass term

Baryon mass 
high

Radial excitations 
scale wrongly –
no string physics 
included



Perfecting with HDOs

The weakly coupled gravity dual should only live 
between the red lines… probably we need HDOs 
at the UV scale to include matching effects…
and stringy effects in the gravity model….

2.4 Higher dimensional operators

Another key ingredient we wish to explore here is the inclusion of higher dimension quark

operators using Witten’s double trace prescription [40, 42]. This prescription amounts to

introducing a cut-o↵ at some scale ⇤UV in the gauge theory or an upper boundary in AdS

at ⇢ = ⇤UV . In the field theory for some operator O we include a “double trace” higher

dimensional operator (HDO) by

LUV = GO
†
O, , (2.29)

where G is a dimensionful coupling. Now were O to acquire a vacuum expectation value then

via eq. (2.29) there would be an e↵ective source at the boundary

J = GhO
†
i . (2.30)

Note that the analysis of [40, 42] shows that adding the HDO as a boundary term in AdS

and then minimizing the bulk and boundary action naturally reproduces eq. (2.30).

Until now we have considered a sourceless theory and in any computation of the back-

ground (L0(⇢)) or any fluctuation we have only allowed solutions where the appropriate source

vanish. For example, it is precisely this prescription that picks out discrete values of the bound

state masses. Now though we will allow all of the solutions with non-zero J and re-interpret

them as part of the source free theory but with the HDO present: asymptotically we read o↵

J ,O and then use eq. (2.30) to compute G. Now we can sort through these solutions and

find the masses of bound states which match the boundary condition for a particular G.

The operators we will consider in Dynamic AdS/YM, which we will explore below, are

g2S
⇤2
UV

|q̄q|2 ,
g2V
⇤2
UV

|q̄�µq|2 ,
g2A
⇤2
UV

|q̄�µ�5q|
2 ,

g2B
⇤5
UV

|qqq|2 , (2.31)

where the gi are dimensionless couplings.
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Observables QCD Dynamic AdS/QCD HDO coupling

(MeV) here’s the hidden text here’s the hidden text

MV 775 775 sets scale

MA 1230 1230 fitted by g2A = 5.76149

MS 500/990 597 prediction +20%/� 40%

MB 938 938 fitted by g2B = 25.1558

f⇡ 93 93 fitted by g2S = 4.58981

fV 345 345 fitted by g2V = 4.64807

fA 433 444 prediction +2.5%

MV,n=1 1465 1532 prediction +4.5%

MA,n=1 1655 1789 prediction +8%

MS,n=1 990/1200-1500 1449 prediction +46%/0%

MB,n=1 1440 1529 prediction +6%

Table 2: The spectum and the decay constants for two-flavour QCD with HDOs from fig. 7

used to improve the spectrum.

Clearly this is a much better description of the ground state QCD spectrum than in

Table 1 if only because we have tuned most of the parameters! fA is a prediction and lies

closer to the data than before. The scalar mass is also a prediction and here, where we

have interpreted the UV quark mass as the presence of g2S , the result has dropped closer

to the mass of the f0(500) resonance. The predictions for the first excited states’ masses,

the final four entries in the table, have all moved closer to the experimental values too -

possibly this means that the HDOs are including some of the stringy e↵ects the supergravity

approximation excludes. The mass of the first excited state of the scalar is quite far o↵ again,

as in section 3.1, suggesting that interpreting these states is di�cult. Overall though we

conclude that the improvement method used is sensible. In principle one could go further

and allow corrections to the UV matchings of the coupling g25 and the normalization of the

correlators in eq. (2.17) but then we would lose essentially all predictivity.
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Pretty good… but 
we’ve lost some 
predictivity….

NE, Johanna Erdmenger, Kostas Rigatos 
and Werner Porod: 2010.10279 [hep-ph]



Beyond QCD – Multi-Flavour Theories

We run the model with two scalars – one for the F condensate and one for the 
A2 condensate.. We input perturbative runnings of g in each case to fix Dm2…

Sp(4)   4F  6A2

AdS/Sp(4) AdS/Sp(4) AdS/Sp(4) lattice [79] lattice [80] AdS/Sp(4)

no decouple A2 decouple quench quench unquench + NJL

f⇡A2 0.120 0.120 0.103 0.1453(12) 0.120

f⇡F 0.0569 0.0701 0.0756 0.1079(52) 0.1018(83) 0.160

MV A2 1* 1* 1* 1.000(32) 1*

fV A2 0.517 0.517 0.518 0.508(18) 0.517

MV F 0.61 0.814 0.962 0.83(19) 0.83(27) 1.03

fV F 0.271 0.364 0.428 0.411(58) 0.430(86) 0.449

MAA2 1.35 1.35 1.28 1.75 (13) 1.35

fAA2 0.520 0.520 0.524 0.794(70) 0.520

MAF 0.938 1.19 1.36 1.32(18) 1.34(14) 1.70

fAF 0.303 0.399 0.462 0.54(11) 0.559(76) 0.449

MSA2 0.375 0.375 1.14 1.65(15) † 0.375

MSF 0.325 0.902 1.25 1.52 (11)† 1.40(19) † 0.375

MBA2 1.85 1.85 1.86 1.85

MBF 1.13 1.53 1.79 1.88

Table 4: AdS/Sp(4) 4F, 6A2. Ground state spectra and decay constants for our various

holographic models and comparison to lattice results - we use the subscript A2 and F for

the quantity in each of the two di↵erent representation sectors. Note the lattice scalar is the

a0 not the isospin singlet � which we compute holographically - we present the results as a

guide to lattice expectations of quark anti-quark meson masses though. Note here for the

unquenched lattice results, which do not include the A2 fields, we have normalized the F

vector meson mass to that of the quenched computation.

Similarly we split the normalizations for the external currents in eq. (2.17).

We show the resulting spectrum for each of the cases we consider in Table 4 for the case

where all fermion representations are massless.

In each case, without a NJL term, the bound states of the A2 fields are heavier and

have higher decay constants than those made of the fundamental fields F , reflecting the A2s’

higher condensation scale. The separation in scale between the two sectors does depend quite

strongly on the decoupling assumptions. If the A2s are not decoupled at all, the separation,

as measured by the vector meson masses, is almost a factor of two whilst in the quenched

limit it barely exists. The slowing of the running of the gauge coupling with the inclusion of

flavours is important. The case where the A2s are integrated out at their IR mass scale lies

between these two extremes.

The greatest impact in the spectrum shows up in the scalar meson (S) masses. The rate

of running measures the departure from conformality which shows up in the flatness of the

e↵ective potential for the quark condensates. The slower the running the lighter the resultant

scalar - here there is as much as a factor of four in the prediction.
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the pattern of mass scales is 
right…
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Again F sector - right pattern
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holographic model over estimates the top partner mass by 30%.

There is lattice data for an additional spin zero state made of four quarks (either all

F s or all A2s), that we refer to as a tetraquark, and denote as the J in table 5. We have

computed the mass of such a state using eq. (2.23) - here the holographic prediction is that

the F and A2 tetraquarks’ masses lie within 10%. In contrast the lattice prediction suggests

a factor of two between the masses of the states. It is hard to understand how such a large

separation could occur when the constituent quark masses are very similar for the F s and A2

as measured by the vector meson masses. It would be interesting to look into the origin of

the splitting in the lattice simulations further.

Finally in fig. 16 we display the M⇡ dependence of the spectrum in the non-decoupling

scenario although here we do not have lattice data for comparison.
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Table 5: SU(4) theories - the spectrum in a variety of scenarios and lattice data for com-

parison.
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We’ve also computed for

which shows the simplicity of the method to get decent stabs at 
the spectrum….

(within a factor of 2) and our work on the previous two models suggest the precise form

of the decoupling is an interesting but small e↵ect. We will not present as much detail as

in section 4.3 and section 4.4, instead we will just display the results for the masses and

couplings from the holographic description by theory. In each case we will normalize to one

of the vector meson state’s mass. For the numerical analysis below we fix ↵(0) = 0.65 and

require a massless quark in the UV, mq|UV = 0.

4.5.1 Models with exceptional gauge groups

The first models for which we compute the spectrum and decay constants are those with

exceptional gauge groups that have been proposed in [27]. The gauge group can be either

G2 or F4 with matter in the fundamental representation. There are singlet baryons made of

three quarks in these cases (see [26] for a detailed discussion). The symmetry breaking pattern

with Nf Weyl fermions is SU(Nf ) ! SO(Nf ). If Nf � 11 then the SM gauge group can be

embedded in the global symmetry and a Higgs doublet and coloured top partners generated.

In fact it has been argued that these models are not very promising phenomenologically [27]

since there is a high number of pNGBs and some of them mediate proton decay.

The G2 group is asymptotically free until Nf = 22. The theory lies in the conformal

window according to the criteria discussed below eq. (4.27) down to Nf = 16. The Nf = 16

theory actually has the fixed point value equal to the chiral symmetry breaking coupling so is

maximally walking and would presumably have a massless scalar meson. We present results

for the extreme cases we can compute, i.e. for Nf = 11 and Nf = 15, in Table 6.

F4 theory is asymptotically free until Nf = 16. The edge of the conformal window lies

between Nf = 12 and Nf = 13 flavours. We present spectra for the Nf = 11 and 12 cases

also in Table 6 - both of these theories have a slowly running coupling, resulting in a very

light scalar. The A and V mesons in these present models are more degenerate than in QCD.

Observables AdS/G2 AdS/G2 AdS/F4 AdS/F4

11F 15F 11F 12F

f⇡ 0.0749 0.0797 0.0486 0.0489

MV 1* 1* 1* 1*

fV 0.456 0.488 0.49 0.501

MA 1.15 1.11 1.03 1.03

fA 0.438 0.470 0.483 0.494

MS 0.288 0.114 0.000431 0.00039

MB 1.78 1.76 1.55 1.55

Table 6: Holographic predictions for the spectra and decay constants of AdS/G2, 11F ,

AdS/F4, 11F , and AdS/F4, 16F .
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4.5.2 Models with matter in two representations

Composite Higgs models with fermionic matter in two representations can only have either a

Sp(2N) or SO(Nc) gauge group and generate the Higgs and top partners.

There are three possible scenarios with a symplectic gauge group:

Sp(2N) 5S2, 6F N � 6 These theories are all in the conformal window.

Sp(2N) 5A2, 6F N � 2 Theories with N < 8 are below the conformal window,

and break chiral symmetry.

Sp(2N) 4F, 6A2 N  18 Theories with N < 5 are below the conformal window,

and break chiral symmetry.

We present the spectra for examples of the second and third models that break chiral symme-

try. In particular we present for the minimum and maximum number of colours, in Table 7

(note the final model with Sp(4) is the one we studied in more detail in section 4.3). The

two theories that lie close to the edge of the conformal window (the Sp(14) and Sp(8) cases

in Table 7, are very slowly walking and have very low scalar masses.

Observables AdS/Sp(4) AdS/Sp(14) AdS/Sp(4) AdS/Sp(8)

5A2, 6F 5A2, 6F 4F, 6A2 4F, 6A2

f⇡F 0.066 0.0521 0.057 0.0154

f⇡A2 0.113 0.114 0.12 0.152

MV F 0.618 0.364 0.61 0.102

fV F 0.304 0.229 0.27 0.0534

MV A2 1* 1* 1* 1*

fV A2 0.494 0.851 0.52 0.733

MAF 0.862 0.414 0.938 0.141

fAF 0.316 0.219 0.303 0.0511

MAA2 1.4 1.02 1.35 1.07

fAA2 0.507 0.843 0.52 0.712

MSF 0.348 0.000476 0.33 1.46 · 10�7

MSA2 0.376 0.000296 0.38 0.000263

MBF 1.15 0.639 1.13 0.186

MBA2 1.85 1.48 1.85 1.75

Table 7: Holographic results for masses and decay constants in the Sp(2Nc) theories with

two di↵erent matter representations that can trigger chiral symmetry breaking.
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In the case of SO(Nc) gauge theories, there is a discrete set of cases with two quark

representations that generate both the SM Higgs and the top partners in [27]. The models

have matter in the fundamental and spinor representations, and Nc and Nf are fixed. Those

theories within this set that break chiral symmetry are

SO(7) 5F, 6s SO(7) 5s, 6F SO(9) 5F, 6s SO(9) 5s, 6F

SO(10) 5F, 6s SO(11) 5F, 6s SO(11) 4s, 6F SO(13) 4s, 6F .

We display holographic results for the masses and decay constants for these theories in Table 8

as well as in Table 9. Note that the SO(13) 4s, 6F theory has a very light scalar meson,

resulting from the slow running of the coupling. The SO(9) theories are of note since the F

fields condense at a higher scale than the spinor fields s so the F bound states are heavier

than the s counter parts - here the critical coupling eq. (4.26) for the F lies lower than that

for the s representation. In the other theories shown, the critical couplings for F is higher

Observables AdS/SO(7) AdS/SO(7) AdS/SO(9) AdS/SO(9)

5F, 6s 5s, 6F 5F, 6s 5s, 6F

f⇡F 0.125 0.132 0.115 0.121

f⇡s 0.126 0.119 0.149 0.143

MV F 1.08 1.07 0.913 0.926

fV F 0.58 0.601 0.518 0.55

MV s 1* 1* 1* 1*

fV i 0.581 0.555 0.683 0.653

MAF 1.39 1.33 1.13 1.11

fAF 0.578 0.593 0.507 0.537

MAs 1.21 1.25 1.12 1.14

fAi 0.571 0.55 0.665 0.636

MSF 0.744 0.687 0.508 0.579

MSs 0.728 0.725 0.511 0.568

MBF 1.98 1.98 1.68 1.71

MBs 1.85 1.85 1.84 1.84

Table 8: Holographic results for the masses and decay constants in the two SO(7) and

the two SO(9) theories with two matter representations that can trigger chiral symmetry

breaking.
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Observables AdS/SO(10) AdS/SO(11) AdS/SO(11) AdS/SO(13)

5F, 6s 5F, 6s 4s, 6F 4s, 6F

f⇡F 0.11 0.0811 0.103 0.0615

f⇡s 0.147 0.104 0.156 0.0878

MV F 0.876 0.918 0.753 0.57

fV F 0.51 0.456 0.468 0.322

MV s 1* 1* 1* 1*

fV i 0.682 0.681 0.727 0.694

MAF 1.06 1.05 0.878 0.636

fAF 0.5 0.432 0.455 0.308

MAs 1.12 1.04 1.09 1.03

fAs 0.664 0.666 0.708 0.684

MSF 0.614 0.142 0.404 0.0453

MSs 0.578 0.154 0.44 0.0615

MBF 1.61 1.33 1.38 0.884

MBs 1.83 1.46 1.82 1.34

Table 9: Holographic results for the masses and decay constants for the two SO(10), the

SO(11) and the SO(13) theories with two matter representations that can trigger chiral

symmetry breaking.

than that for s and the F sector is then lighter. In addition, we find the following four models

to lie in the conformal window and thus do not display chiral symmetry breaking,

SO(13) 5F, 6s SO(14) 5F, 6s SO(15) 5G, 6F SO(55) 5S2, 6F .

4.5.3 Models with matter in three representations

The SU(4) model of section 4.4 falls into this class. In addition, there are four SO(Nc)

gauge theories in [27] with specific matter in the F , spinor s and the opposite chirality s̄

representations (note the dimensions of the fundamental and the spin are equal for eight

colour). Three of these break chiral symmetry,

SO(8) 5F, 3s, 3s̃ SO(10) 5F, 3s, 3s̃ SO(12) 5F, 3s, 3s̃

and one lies in the conformal window,

SO(14) 5F, 3s, 3s̃.

We analyze the first three in Table 10.
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Observables AdS/SO(8) AdS/SO(10) AdS/SO(12)

5F, 3s, 3s̃ 5F, 3s, 3s̃ 5F, 3s, 3s̃

f⇡F 0.117 0.11 0.0796

f⇡s 0.123 0.147 0.140

MV F 1 0.876 0.608

fV F 0.553 0.51 0.356

MV s 1* 1* 1*

fV s 0.579 0.682 0.732

MAF 1.24 1.06 0.718

fAF 0.547 0.5 0.341

MAs 1.21 1.12 1.06

fAs 0.569 0.664 0.732

MSF 0.817 0.614 0.177

MSs 0.817 0.578 0.324

MBF 1.85 1.61 1.08

MBs 1.85 1.83 1.68

Table 10: Results for the gauge theories with matter in three representations.

4.5.4 Models with QCD-like breaking patterns

This variety of composite Higgs models has classes with three and four representations. While

we could have presented the three representation models in the previous section we chose to

separate them in order to follow the classification of [26]. They each have a symmetry breaking

sector for one representation where SU(Nf )L ⇥ SU(Nf )R ! SU(Nf )V .

In addition to the model of section 4.4, there are two models with three representations,

SO(10) 4s, 4s̃, 6F SU(4) 4F, 4F̄ , 6A2 ,

Both of these models allow chiral symmetry breaking to occur. We display our results

for the masses and decay constants in these cases in Table 11.

Moreover, there are the following models with four representations: the isolated model

SU(7) 4F, 4F̄ , 3A3, 3Ā3,

two classes which break chiral symmetry through the full range of Nc,

SU(Nc) 4F, 4F̄ , 3A2, 3Ā2 Nc � 5 SU(Nc) 3F, 3F̄ , 4A2, 4Ā2) Nc � 5
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Observables AdS/SO(10) AdS/SU(4)

4s, 4s̃, 6F 4F, 4F̄ , 6A2

f⇡F 0.107 0.0922

f⇡i 0.156 0.122

MV F 0.777 0.805

fV F 0.470 0.424

MV s 1* 1*

fV i 0.723 0.540

MAF 0.922 1.05

fAF 0.455 0.427

MAi 1.09 1.29

fAi 0.704 0.536

MSF 0.311 0.494

MSi 0.376 0.488

MBF 1.42 1.49

MBi 1.81 1.85

Table 11: Holographic results for masses and decay constants in the the SO(10) 4s, 4s̃, 6F

and SU(4) 4F, 4F̄ , 6A2 models. i = s for the former and i = A2 for the latter.

and two classes that are only outside the conformal window at large Nc,

SU(Nc) 4F, 4F̄ , 3S2, 3S̄2 Nc � 5 below the conformal window for Nc > 10

and break chiral symmetry.

SU(Nc) 3F, 3F̄ , 4S2, 4S̄2 Nc � 8 below the conformal window for Nc > 70

and break chiral symmetry.

The first theory with Nc > 10 and the second with Nc > 70 are clearly very hard to reconcile

with any phenomenology. For example, the S parameter would be expected to be huge.

However, for lower Nc values these models are very finely tuned to the conformal window.

This leads to a very small scalar meson mass. For these classes we just present models for

the smallest value of Nc, for which they break chiral symmetries in Table 12.
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AdS/SU(5) AdS/SU(5) AdS/SU(7) AdS/SU(10) AdS/SU(71)

4F, 4F̄ , 3A2, 3Ā2 4A2, 4Ā2, 3F, 3F̄ 4F, 4F̄ , 3A3, 3Ā3 4F, 4F̄ , 3S2, 3S̄2 3F, 3F̄ , 4S2, 4S̄2

f⇡F 0.0834 0.0598 0.0803 0.0469 0.0210

f⇡i 0.14 0.153 0.164 0.0746 0.0192

MV F 0.67 0.486 0.628 0.386 0.627

fV F 0.372 0.251 0.378 0.228 0.395

MV i 1* 1* 1* 1* 1*

fV i 0.608 0.65 0.82 0.726 1.49

MAF 0.845 0.661 0.741 0.434 0.63

fAF 0.368 0.25 0.37 0.217 0.394

MAi 1.19 1.15 1.06 1.02 1

fAi 0.59 0.628 0.805 0.683 1.48

MSF 0.338 0.13 0.534 0.000155 0.000849

MSi 0.399 0.273 0.439 0.000479 0.00140

MBF 1.24 0.897 1.16 0.634 0.643

MBi 1.84 1.83 1.82 1.3 0.952

Table 12: Results for gauge theories with matter in four representations. i = A2 for the

first two models. i = A3 for the next one. For the final two we have i = S2.

5 Phenomenological implications and constraints

The above analysis of the spectra of possible composite Higgs models has been a purely

field theoretic exercise, without taking into account experimental constraints. Now we briefly

consider their experimental impact. We immediately note than many of the theories have

very large field content and this is liable to be in conflict with the precision S parameter [85]

constraints.

We will briefly summarize some generic phenomenological implications for searches at

the LHC based on the mass hierarchies in the models presented in the previous sections.

The following discussion neglects contributions to the masses arising from the gauging of the

SM forces, analogous to the electric mass splitting between the charged and neutral pions in

the SM. These small di↵erences are only likely to play a role in accidentally very fine tuned

cases. We will concentrate on the models in sections 4.3 and 4.4 where there are counterparts

of explicit models presented in [81]. In these models the global group related to the A2

representations contains the electroweak SM group whereas the one related to F (and in the

case of SU(4) also F̄ ) contains SU(3)c. Thus, given the measured Higgs mass is about 125

GeV and the bounds on heavy spin one resonance are well above one TeV [86], the ratio of

the pion mass to the vector meson masses for the A2 condensate shown in figs. 12 and 18 is

confined to small values to be consistent with the data. On the other, the other pions related

to the F condensate can be substantially heavier.
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These are the sub-set of 
theories that do not lie in the 
conformal window at the level 
of our parametrizations of the 
runnings.



Holographic Model Building Highlights 
Key Dynamical Questions

Holographic models are good at telling you how masses & couplings will 
change as the running changes due to unquenching, added flavours etc…

They high light questions such as the way in which quarks decouple at 
strong coupling… 

We’ve seen multi-rep theories with gaps between chiral symmetry 
breaking scales…. How big can they be? 

This would be a measure of the gap to confinement also…
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close to ↵⇤ and the lattice will most likely struggle to
identify the point. The NF

f = 8 theory might repre-
sent a compromise that allows the separation to be seen
more cleanly even though the gap is smaller. Incidentally
NF

f = 8 can be implemented with staggered fermions so
would also be cheaper (the single adjoint field would need
more sophisticated methods). Further it has been identi-
fied as lying outside the conformal window on the lattice
already [43–45].

In a similar vein it is probably not sensible to add
fundamental fields to the SU(2) theory with a Weyl S3

since the gap is predicted to be large already so adding in
walking behaviour will only complicate the simulations.

Finally we note a number of other promising candi-
date theories with large gaps where fundamental fields
could be included as staggered fermions, albeit at larger
N values:

{SU(5) | 16 F, 1/2G} with Q = 12.2
{SU(9) | 28 F, 1/2G} with Q = 9.55
{SU(10) | 32 F, 1/2G} with Q = 11.5
{SU(7) | 20 F, 1S2} with Q = 9.24
{SU(8) | 24 F, 1S2} with Q = 11.3

1. Two Representation Lattice Studies

There have already been a number of lattice studies of
SU(N) theories with two representations. In [68] SU(4)
with two F and two A2 has been studied and a single de-
confinement and chiral symmetry restoration transition
observed (it is first order). This is not surprising given
that NF

f = 2 is low and the theory lies close to the pure
A2 theory running. Here we do not expect really a bigger
gap that in QCD (see Figure 1).

In [69] the SU(3) theory with adjoints was supple-
mented by NF

f = 2 fundamentals where a gap between
chiral symmetry breaking and confinement was again
seen as in the NF

f = 0 model [52] (again care may be
needed to find the continuum limit). This does not push
NF

f up as high as 10 as we have suggested to maximise
the gap but shows the lattice technology does exist to
study such theories.

Very recently [70] has begun a study of theories with a
Weyl adjoint and fundamentals. For NF

f = 2 the theory
has been identified as breaking chiral symmetries but the
temperature phase structure has not yet been explored.
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also that the IR fixed point value (10) lies above the
critical coupling for the higher dimension representation
↵R
c (4). We then ask what is the maximum value of Nf

such that ↵⇤ > ↵R
c . In that theory we assume that at

some scale ⇤�SB R the coupling has run equal to ↵R
c and

the heavy fermions are integrated out. Next we run the
coupling numerically into the IR for the theory with just
the (maximal number of Nf ) fundamentals. We ask at
what scale, ⇤�SB F it reaches the critical coupling for
the fundamental fields.

The ratio of these two scales which we denote by Q(R)

Q(R) =
⇤�SB R

⇤�SB F
(13)

is the gap between the two condensation scales for the
given representation R. Since we expect the confinement
scale to lie (probably not very far) below ⇤�SB F , this
also measure the gap between the chiral symmetry break-
ing scale for R and the confinement scale.

We present our results in Figure 2, where we display
the maximum value of Q(R) we can find by varying NF

f
as a function of Nc for each possible representation R.
We label the points by the number of Dirac fermions in
the fundamental representation which has been used to
maximize the gap.

One immediately sees that there are many theories
with adjoint, S2 or A2 representations that have gaps
in excess of a factor of ten. Adding four fundamentals
to the SU(2) theory with an S3 raises the gap to over a
factor of 30. The convincing discovery of such a gap in a
lattice simulation would certainly show confinement and
chiral symmetry breaking to be totally separate phenom-
ena.

We must be careful though because by tuning the gap
large we are also potentially making life harder for lattice
simulations. As an example lets consider SU(3) with a
single Weyl fermion in the adjoint. This is just N=1 super
Yang Mills. Now we can consider adding fundamental
fermions (which breaks supersymmetry) to observe the
gap growing - here our b0, ↵c and ↵⇤ are for the theory
with both representations present above the first chiral
symmetry breaking transition for the adjoint:

NF
f =0 b0=1.43 ↵c=0.35 ↵⇤=1

NF
f =4 b0=1.01 ↵c=0.35 ↵⇤=1 ⇤�SB R

⇤�SB F
= 2.6

NF
f =8 b0=0.58 ↵c=0.35 ↵⇤=0.97 ⇤�SB R

⇤�SB F
=5.8

NF
f =10 b0=0.37 ↵c=0.35 ↵⇤=0.40 ⇤�SB R

⇤�SB F
=20.3

The NF
f = 0 theory is QCD-like with fast running

(large b0) and ↵c ⌧ ↵⇤. As we add in fundamental fields
we slow the running (b0 decreases) and ↵⇤ falls, as the
gap between chiral symmetry breaking for the two repre-
sentations widens. The NF

f = 10 theory has ↵c very close
to ↵⇤ and the lattice will most likely struggle to identify

the point. The NF
f = 8 theory might represent a compro-

mise that allows the separation to be seen more cleanly
even though the gap is smaller. Incidentally NF

f = 8 can
be implemented with staggered fermions so would also
be cheaper (the single adjoint field would need more so-
phisticated methods). Further it has been identified as
lying outside the conformal window on the lattice already
[40–42].
In a similar vein it is probably not sensible to add

fundamental fields to the SU(2) theory with a Weyl S3

since the gap is predicted to be large already so adding in
walking behaviour will only complicate the simulations.
Finally we note a number of other promising candidate

theories with large gaps where fundamental fields could
be included as staggered fermions, albeit at larger Nc

values:

{SU(5) | 16 F, 1/2G} with Q = 12.2
{SU(9) | 28 F, 1/2G} with Q = 9.55
{SU(10) | 32 F, 1/2G} with Q = 11.5
{SU(7) | 20 F, 1S2} with Q = 9.24
{SU(8) | 24 F, 1S2} with Q = 11.3

1. Two Representation Lattice Studies

There have already been a number of lattice studies of
SU(Nc) theories with two representations. In [65] SU(4)
with two F and 2 A2 has been studied and a single de-
confinement and chiral symmetry restoration transition
observed (it is first order). This is not surprising given
that NF

f = 2 is low and the theory lies close to the pure
A2 theory running. Here we do not expect really a bigger
gap that in QCD (see Figure 1).

In [66] the SU(3) theory with adjoints was supple-
mented by NF

f = 2 fundamentals where a gap between
chiral symmetry breaking and confinement was again
seen as in the NF

f = 0 model [49] (again care may be
needed to find the continuum limit). This does not push
NF

f up as high as 10 as we have suggested to maximise
the gap but shows the lattice technology does exist to
study such theories.

IV. CONCLUSIONS

We have reviewed old arguments that chiral symme-
try breaking and confinement may be distinct phenom-
ena that are just accidentally close in scale for QCD. We
have presented some simple computations based on the
two loop running results for ↵ and � for gauge theories
with higher dimensional representations. We have sought
theories with one representation with the largest possible
gap between the scale where � = 1 and chiral symmetry
breaking occurs and the pole of the running in the deep
IR pure glue theory where confinement might be associ-
ated. We have found example theories with much larger
gaps than QCD. This view is supported by the work in
[49] which shows such a gap for adjoint matter.

These theories are quite walking

Two loop results for SU(N) with fundamentals + another rep. g=1/2 criteria

Nick Evans,Kostas Rigatos. 2012.00032 [hep-ph]
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Summary

* we need to understand SCGT better!

* The lattice is key but slow

* holographic modelling provides insight into how spectra change as change the 
running of a theory 

* holographic modelling highlights key dynamics questions – eg separating 
confinement and chiral symmetry breaking

* studies complement lattice!

* Online SCGT Forum (NE, Biagio Lucini) is bringing results together – do please 
contribute with your work 

https://www.southampton.ac.uk/~evans/SCGT/


