Higgs Compositeness in Sp(2N) - P1

Biagio Lucini

Motivations

DEWSB

Numerical Results

Conclusions and outlook

Sp(4) gauge theories and beyond the standard model physics

Biagio Lucini

(with E. Bennett, J. Holligan, D.K. Hong, H. Hsiao, J.-W. Lee, C.-J. David Lin, M. Mesiti, M. Piai and D. Vadacchino)

Virtual Confinement 2021, Stavanger, August 2021

Motivations

5...

Higgs (Com-
positen	ess in
Sp(2N)	– P1

Biagio Lucini

Motivations

DEWSB

Numerical Results

Conclusions and outlook

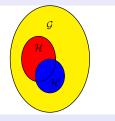
- Fundamental mechanism for electroweak symmetry breaking
- 2 Dark matter/dark energy
- Insights on gauge dynamics
 - Connections with analytic frameworks
- All important, but this talk will focus on motivations related to Dynamical Electroweak Symmetry Breaking (DEWSB)

▲ロ → ▲周 → ▲ 国 → ▲ 国 → の Q ()

The DEWSB framework

Higgs Compositeness in Sp(2N) - P1

Biagio Lucini


Motivations

DEWSB

Numerical Results

Conclusions and outlook Motivation: provide a fundamental Electroweak Symmetry Breaking Mechanism based on strong dynamics that solves the hierarchy problem

Consider a gauge theory with some gauge group \mathcal{G}' coupled to fermionic matter

 $\begin{array}{l} \mbox{Global symmetry group } \mathcal{G} \mbox{ spontaneously broken to } \mathcal{H} \subset \mathcal{G} \\ \Rightarrow \mbox{Number of Goldstone bosons: } \mbox{dim}_{\mathcal{G}} \mbox{ - dim}_{\mathcal{H}} \end{array}$

Gauge some $\mathcal{H}' \subset \mathcal{G}$ such that $SU(2)_L \otimes U(1)_Y \subset H'$

Two main possible scenarios:

- Technicolour if $\mathcal{H}' \cap \mathcal{H} \neq \mathcal{H}'$
- Pseudo-Nambu-Goldstone-Boson (PNGB) Higgs if $\mathcal{H}' \subset \mathcal{H}$

The Higgs as a PNGB

Higgs Compositeness in Sp(2N) - P1

Biagio Lucini

Motivations

DEWSB

Numerical Results

Conclusions and outlook

Little Hierarchy Problem: if the Higgs boson is composite, how can its mass be significantly lower than that of other states of the novel strong interaction?

Possible solution: the Higgs is a PNGB arising from the global symmetry breaking (GSB) of the new strong interaction [Kaplan and Georgi, 1984]

Patterns of GSB $G \mapsto H$ for a theory with N_f Dirac fermions

SU(N) gauge group:	$SU(N_f)_V \times SU(N_f)_A \mapsto SU(N_f)_V$
Peal gauge group:	$SU(2 N_f) \mapsto SO(2 N_f)$
Pseudoreal gauge group:	$SU(2 N_f) \mapsto Sp(2 N_f)$

Embedding of the standard model: $SU(2)_L \times U(1)_Y \subset H \subset G$ \hookrightarrow The physical Higgs is identified with four of the pions

Partial Top Compositeness [Kaplan, 1991]: the mixing between the top quark and a hybrid (chimera) baryon, formed by fermions in two different representations, can explain the large mass of the top quark itself Necessary conditions: large anomalous dimension of the chimera baryon

Hunting for candidate models

Higgs Compositeness in Sp(2N) - P1

Biagio Lucini

Motivations

DEWSB

Numerical Results

Conclusions and outlook

[Coset	HC	ψ	χ	$-q_\chi/q_\psi$	Baryon	Name	Lattice
ſ	$\boxed{\frac{\mathrm{SU}(5)}{\mathrm{SO}(5)}\times\frac{\mathrm{SU}(6)}{\mathrm{SO}(6)}}$	SO(7)	$SO(7) = 5 \times F$	$6 \times Sp$	5/6	ψχχ	M1	
		$SO(9)$ $3 \times \mathbf{r}$	0 × 3P	5/12	ψχχ	M2		
		SO(7)	$5\times {\bf Sp}$	$6\times F$	5/6	$\psi\psi\chi$	M3	
l		SO(9)			5/3		M4	
	$\frac{\mathrm{SU}(5)}{\mathrm{SO}(5)}\times\frac{\mathrm{SU}(6)}{\mathrm{Sp}(6)}$	Sp(4)	$5 \times \mathbf{A}_2$	$6 imes \mathbf{F}$	5/3	$\psi \chi \chi$	M5	\checkmark
	$\frac{\mathrm{SU}(5)}{\mathrm{SO}(5)} \times \frac{\mathrm{SU}(3)^2}{\mathrm{SU}(3)}$	SU(4)	5 × A a	3 × (F F)	5/3		M6	\checkmark
		SO(10)	$O(4)$ $5 \times \mathbf{R}_2$ $O(10)$ $5 \times \mathbf{F}$	$3 \times (\mathbf{Sp}, \overline{\mathbf{Sp}})$ $3 \times (\mathbf{Sp}, \overline{\mathbf{Sp}})$	5/12	$\psi \chi \chi$	M7	v
Ľ		~~()			•/			
	$\frac{\mathrm{SU}(4)}{\mathrm{Sp}(4)}\times\frac{\mathrm{SU}(6)}{\mathrm{SO}(6)}$	Sp(4)	$4\times {\bf F}$	$6 \times A_2$ 1/	1/3	1/1/1/2V	M8	\checkmark
		SO(11)	$4\times \mathbf{Sp}$	$6 \times \mathbf{F}$	8/3		M9	
	$SU(4)^2$ $SU(6)$	$\begin{array}{l} \mathrm{SO}(10) \ 4 \times (\mathbf{Sp}, \overline{\mathbf{Sp}}) \\ \mathrm{SU}(4) 4 \times (\mathbf{F}, \overline{\mathbf{F}}) \end{array}$	$4 \times (\mathbf{Sp}, \overline{\mathbf{Sp}})$	$6 \times \mathbf{F}$	8/3		M10	
	<u> </u>			2/3	$\psi\psi\chi$	M11	\checkmark	
	$\frac{\mathrm{SU}(4)^2}{\mathrm{SU}(4)}\times\frac{\mathrm{SU}(3)^2}{\mathrm{SU}(3)}$	SU(5)	$4\times ({\bf F},\overline{{\bf F}})$	$3\times \left(\mathbf{A}_{2},\overline{\mathbf{A}_{2}}\right)$	4/9	$\psi\psi\chi$	M12	

G. Ferretti and T. Karataev, arXiv:1312.5330

J. Barnard, T. Gherghetta and T. S. Ray, arXiv:1311.6562

G. Cacciapaglia, G. Ferretti, T. Flacke and H. Serodio, arXiv:1902.06890

Hunting for candidate models

Higgs Compositeness in Sp(2N) - P1

Biagio Lucini

Motivations

DEWSB

Numerical Results

Conclusions and outlook

[Coset	HC	ψ	χ	$-q_\chi/q_\psi$	Baryon	Name	Lattice
Ī		SO(7)	$5 \times \mathbf{F}$	$6 \times \mathbf{Sp}$	5/6	$\psi \chi \chi$	M1	
	$\frac{\mathrm{SU}(5)}{\mathrm{SO}(5)}\times\frac{\mathrm{SU}(6)}{\mathrm{SO}(6)}$	SO(9) SO(7)			5/12 5/6		M2 M3	
		SO(9)	$5 \times \mathbf{Sp}$	$6 \times F$	5/3	$\psi\psi\chi$	M4	
	$\frac{\mathrm{SU}(5)}{\mathrm{SO}(5)}\times\frac{\mathrm{SU}(6)}{\mathrm{Sp}(6)}$	Sp(4)	$5 \times \mathbf{A}_2$	$6 imes \mathbf{F}$	5/3	$\psi \chi \chi$	M5	\checkmark
	$\frac{\mathrm{SU}(5)}{\mathrm{SO}(5)}\times\frac{\mathrm{SU}(3)^2}{\mathrm{SU}(3)}$	SU(4)	$5 \times \mathbf{A}_2$	$3 \times (\mathbf{F}, \overline{\mathbf{F}})$	5/3		M6	\checkmark
l		SO(10)	$5 \times \mathbf{F}$	$3\times ({\bf Sp}, \overline{{\bf Sp}})$	5/12	$\psi \chi \chi$	M7	
	$\frac{\mathrm{SU}(4)}{\mathrm{Sp}(4)} \times \frac{\mathrm{SU}(6)}{\mathrm{SO}(6)}$	Sp(4)	$4 \times \mathbf{F}$	$6 \times \mathbf{A}_2$	1/3		M8	\checkmark
		SO(11)	4 × 5 p	$0 \times \mathbf{F}$	8/3	$\psi\psi\chi$	M9	
	$SU(4)^2$ $SU(6)$	SO(10)	$4 \times (\mathbf{Sp}, \overline{\mathbf{Sp}})$	$6 \times \mathbf{F}$	8/3	$\psi\psi\gamma$	M10	
	$\frac{\mathrm{SU}(4)^2}{\mathrm{SU}(4)}\times\frac{\mathrm{SU}(6)}{\mathrm{SO}(6)}$	SU(4)	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$6 \times \mathbf{A}_2$	2/3		M11	\checkmark
	$\frac{\mathrm{SU}(4)^2}{\mathrm{SU}(4)} \times \frac{\mathrm{SU}(3)^2}{\mathrm{SU}(3)}$	SU(5)	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$3 \times (\mathbf{A}_2, \overline{\mathbf{A}_2})$	4/9	$\psi\psi\chi$	M12	

G. Ferretti and T. Karataev, arXiv:1312.5330

J. Barnard, T. Gherghetta and T. S. Ray, arXiv:1311.6562

G. Cacciapaglia, G. Ferretti, T. Flacke and H. Serodio, arXiv:1902.06890

The lattice programme (Bennett et al., arXiv:1712.04220)

Higgs Compositeness in Sp(2N) - P1

Goal: establish whether the $SU(4) \mapsto Sp(4)$ global symmetry breaking pattern is viable as a mechanism of DFWSB

Target calculation

DEWSB

Sp(4) gauge theory with two fundamental Dirac flavours and three antisymmetric Dirac flavours

compute spectral observables and decay constants 2

extract parameters of the effective field theory

compare with experiments

Needed validations

- Study the pure gauge model
- Compute the quenched spectrum
- Study separately the gauge system with fundamental dynamical matter only and with antisymmetric dynamical matter only

Perform calculations of the chimera baryon in a quenched and partially quenched setup

Status: most of the validation calculations have been completed or are nearly completed, and initial exploratory results for the target calculations are available (Earlier exploration of Sp(2N) at finite temperature: Holland, Pepe and Wiese, hep-lat/0312022) ◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ∽ のへ⊙

Sp(2N) groups

Higgs Compositeness in Sp(2N) - P1

Biagio Lucini

Motivations

DEWSB

Numerical Results

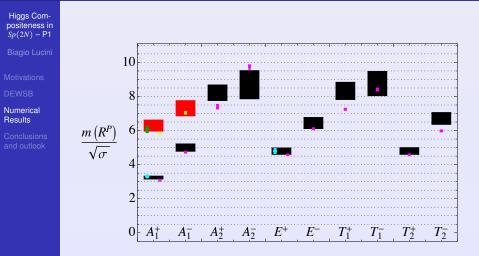
Conclusions and outlook $\operatorname{Sp}(2N)$ can be defined as the subgroup of $\operatorname{SU}(2N)$ whose elements U fulfil the condition

$$U\Omega U^T = \Omega , \qquad \Omega = \left(egin{array}{cc} 0 & \mathbb{I} \\ -\mathbb{I} & 0 \end{array}
ight)$$

This constrains the structure of U as follows:

$$U = \begin{pmatrix} A & B \\ -B^* & A^* \end{pmatrix}, \quad \text{with } AA^{\dagger} + BB^{\dagger} = \mathbb{I} \text{ and } A^T B = B^T A$$

For an element **u** in the algebra, this implies


$$\mathbf{u} = \left(\begin{array}{cc} \mathbf{a} & \mathbf{b} \\ \mathbf{b}^* & -\mathbf{a}^* \end{array} \right) \;, \qquad \text{with } \mathbf{a} = \mathbf{a}^\dagger \; \; \text{and} \; \; \mathbf{b} = \mathbf{b}^T$$

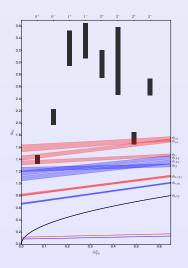
Other properties:

- 1
- The dimension of the group is N(2N + 1)
- 2) The group is pseudoreal
- The group has rank N
- \Rightarrow N independent SU(2) subgroups

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ∽ のへ⊙

The glueball spectrum for $Sp(\infty)$

イロン 不得 とくほ とくほ とうほ


[E. Bennett et al., arXiv: 2010.15781]

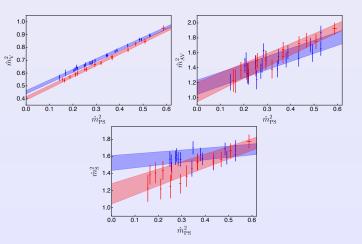
The quenched spectrum of Sp(4) Yang-Mills

Numerical Results

Conclusions and outlook

Glueball data from E. Bennett *et al.*, arXiv: 2010.15781 Meson data from E. Bennett em et al., arXiv:1912.06505

$N_f = 2$ Meson spectrum: quenched vs unquenched



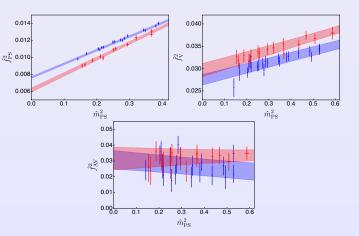
Motivations

DEWSB

Numerical Results

Conclusions and outlook

[E. Bennett et al., arXiv:1909.12662]


$N_f = 2$ decay constants: quenched vs unquenched

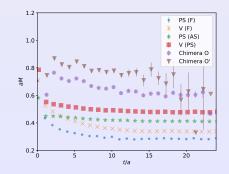
Higgs Com-

Numerical Results

Conclusions and outlook

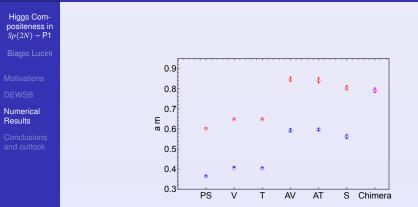
[E. Bennett et al., arXiv:1909.12662]

Partially quenched spectrum


Higgs Compositeness in Sp(2N) - P1Biagio Lucini

Motivations

DEWSB


Numerical Results

Conclusions and outlook Sp(4) gauge theory with three dynamical antisymmetric Dirac flavours and two quenched fundamental Dirac flavours

Clear identification of parity partner baryons

Mixed representation spectrum

Mass hierarchy for mesons qualitatively similar to the quenched case

◆□ > ◆□ > ◆三 > ◆三 > ・三 のへの

Conclusions and outlook

Higgs Compositeness in Sp(2N) - P1

Biagio Lucini

Motivations

DEWSB

Numerical Results

Conclusions and outlook

- Strongly interacting theories other than QCD are relevant for both phenomenology and theory
- Motivated originally by phenomenology, we have started a comprehensive programme of investigations in Sp(2N) models
- The string tension and the glueball spectrum have been studied in pure Yang-Mills in the large-*N* limit, yielding values that are compatible with the extrapolation of SU(*N*)
- The mesonic spectrum has been studied in Sp(4) in the quenched case, for fermions in the fundamental and in the antisymmetric representation
- Quenched results for the fundamental fermion case have been compared to the dynamical theory with $N_f = 2$
- We have provided first results for the partially quenched chimera baryon
- A preliminary calculation of the spectrum for the mixed representation case has been presented

A full simulation of the target phenomenological model is now within reach