

Der Wissenschaftsfonds.

Doktoratskolleg Particles and Interactions On transverse momentum broadening in real-time lattice simulations of the glasma and in the weak-field limit

Daniel Schuh

Institute for Theoretical Physics, TU Wien, Austria

Introduction

Glasma

Momentum broadening

Results

Conclusions & Outlook

On transverse momentum broadening in real-time lattice simulations of the glasma and in the weak-field limit for vConf 2021

Daniel Schuh

Institute for Theoretical Physics, TU Wien, Austria

August 5, 2021

based on:

[1] A. Ipp D. I. Müller and D. Schuh, Phys. Rev. D 102 (2020) 074001, [hep-ph/2001.10001]
[2] A. Ipp D. I. Müller and D. Schuh, Phys. Let. B 810 (2020) 135810, [hep-ph/2009.14206]

Table of Contents

Introduction

Glasma

Momentum broadening

Results

Conclusions & Outlook

On transverse momentum broadening in real-time lattice simulations of the glasma and in the weak-field limit

Daniel Schuh

Institute for Theoretical Physics, TU Wien, Austria

Introduction

Glasma

Momentum broadening

Results

Introduction

high energy nuclei collisions \rightarrow jets hit detector

jet quenching, elliptical shape of the jet ightarrow momentum broadening

seeds of jets: highly energetic partons (created by hard scatterings during collision)

 \rightarrow all stages of the medium that is created by the collision may contribute to momentum broadening

consider first stage: glasma (pre-equilibrium precursor state of the quark-gluon plasma)

On transverse momentum broadening in real-time lattice simulations of the glasma and in the weak-field limit

Daniel Schuh

Institute for Theoretical Physics, TU Wien, Austria

Introduction

Glasma

Momentum broadening

Results

Glasma

high energy nuclei collisions \rightarrow Color Glass Condensate framework classical effective theory for high energy QCD; main idea: separation of scales:

- hard partons: high momentum (valence quarks, high energy gluons)
 - \rightarrow described by thin sheets of classical color charge (Lorentz contracted)

 \rightarrow color configuration frozen with respect to QCD time scales (time dilation); specified by MV model

• soft partons: low momentum (low energy gluons)

 \rightarrow described by a highly occupied color field

effective degrees of freedom: color currents and classical color fields equations of motion: classical Yang-Mills equations

On transverse momentum broadening in real-time lattice simulations of the glasma and in the weak-field limit

Daniel Schuh

Institute for Theoretical Physics, TU Wien, Austria

Introduction

Glasma

Momentum broadening

Results

Glasma

consider limit of infinitely thin nuclei ightarrow 2+1D system, independent of rapidity

On transverse momentum broadening in real-time lattice simulations of the glasma and in the weak-field limit

Daniel Schuh

Institute for Theoretical Physics, TU Wien, Austria

Introduction

Glasma

Momentum broadening Results

Momentum broadening

color fields exert Lorentz forces on the parton

no deflection in this limit, but the parton accumulates momentum

On transverse momentum broadening in real-time lattice simulations of the glasma and in the weak-field limit

Daniel Schuh

Institute for Theoretical Physics, TU Wien, Austria

Introduction

Glasm

Momentum broadening

Results

Momentum broadening

components of jet broadening parameter \hat{q} :

$$\hat{q}_i(au) = rac{\mathrm{d}}{\mathrm{d} au} \langle p_i^2(au)
angle$$

Wong equations:

$$\frac{\mathrm{d}\boldsymbol{p}_{\mu}}{\mathrm{d}\tau} = gQ^{a}(\tau)\frac{\mathrm{d}x^{\nu}}{\mathrm{d}\tau}F^{a}_{\mu\nu}(\tau)$$
$$\frac{\mathrm{d}Q^{a}}{\mathrm{d}\tau} = g\frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau}f^{abc}A^{b}_{\mu}(\tau)Q^{c}(\tau)$$

solution for a quark:

$$\langle p_i^2(\tau) \rangle_q = \frac{g^2}{N_c} \int_0^\tau \mathrm{d}\tau' \int_0^\tau \mathrm{d}\tau'' \langle \mathrm{Tr}\left[f^i(\tau')f^i(\tau'')\right] \rangle$$

On transverse momentum broadening in real-time lattice simulations of the glasma and in the weak-field limit

Daniel Schuh

Institute for Theoretical Physics, TU Wien, Austria

Introduction

Glasm

Momentum broadening

Results

Momentum broadening

$$\langle p_i^2(\tau) \rangle_q = \frac{g^2}{N_c} \int_0^\tau \mathrm{d}\tau' \int_0^\tau \mathrm{d}\tau'' \langle \mathrm{Tr}\left[f^i(\tau')f^i(\tau'')\right] \rangle$$

 f^i is a function representing the color rotated Lorentz force:

$$f^{y}(\tau) = U(\tau) \left(E_{y}(\tau) - B_{z}(\tau) \right) U^{\dagger}(\tau)$$

$$f^{z}(\tau) = U(\tau) \left(E_{z}(\tau) + B_{y}(\tau) \right) U^{\dagger}(\tau)$$

lightlike Wilson line in the fundamental representation along particle trajectory:

$$U(au,0) = \mathcal{P} \exp igg(- ig \int\limits_0^ au d au' A_x(au') igg)$$

result for gluon can be found by Casimir scaling:

$$\langle p_i^2 \rangle_g = \frac{C_A}{C_F} \langle p_i^2 \rangle_q$$

On transverse momentum broadening in real-time lattice simulations of the glasma and in the weak-field limit

Daniel Schuh

Institute for Theoretical Physics, TU Wien, Austria

Introduction

Glasm

Momentum broadening

Results

On transverse momentum broadening in real-time lattice simulations of the glasma and in the weak-field limit

Daniel Schuh

Institute for Theoretical Physics, TU Wien, Austria

Introduction

Glasma

Momentum broadening

Results

Conclusions & Outlook

Figure: Accumulated transverse momentum (top) and momentum broadening anisotropy (bottom) at $\tau_0=0.6\,{\rm fm/c}$

On transverse momentum broadening in real-time lattice simulations of the glasma and in the weak-field limit

Daniel Schuh

Institute for Theoretical Physics, TU Wien, Austria

Introduction

Glasma

Momentum broadening

Results

Conclusions & Outlook

Figure: Jet broadening parameter \hat{q}_{\perp} for quarks as a function of proper time au

momentum broadening in real-time lattice simulations of the glasma and in the weak-field limit

On transverse

Daniel Schuh

Institute for Theoretical Physics, TU Wien, Austria

Introduction

Glasma

Momentum broadening

Results

Conclusions & Outlook

Figure: Accumulated transverse momentum in the dilute glasma: weak field approximation and lattice approximation

On transverse momentum broadening in real-time lattice simulations of the glasma and in the weak-field limit

Daniel Schuh

Institute for Theoretical Physics, TU Wien, Austria

Introduction

Glasma

Momentum broadening

Results

3

Conclusions & Outlook

(a) Initial correlators in momentum space

(b) Initial correlators in coordinate space multiplied by the dimensionless distance *mr*

On transverse momentum broadening in real-time lattice simulations of the glasma and in the weak-field limit

Daniel Schuh

Institute for Theoretical Physics, TU Wien, Austria

Introduction

Glasma

Momentum broadening

Results

Conclusions & Outlook

Figure: Visualization of the physical origin of the anisotropy in momentum broadening

Conclusions & Outlook

this talk:

- momentum broadening in the very early stages of heavy ion collisions
- amount, anisotropy and its origin
- weak field approximation and lattice approximation

future work:

- relax approximations (nuclei moving at the speed of light, test parton moving at the speed of light, no backreaction of the parton in the glasma)
- energy loss
- improve understanding of physics behind the form of the initial correlators

open source code: gitlab.com/openpixi/curraun

On transverse momentum broadening in real-time lattice simulations of the glasma and in the weak-field limit

Daniel Schuh

Institute for Theoretical Physics, TU Wien, Austria

Introduction

Glasma

Momentum broadening

Results