Hadron Structure in Lattice QCD Status and Challenges

Hartmut Wittig

CERN and PRISMA+ Cluster of Excellence, Johannes Gutenberg-Universität Mainz

A Virtual Tribute to Quark Confinement and the Hadron Spectrum
2-6 August 2021

Nucleon structure observables and BSM physics searches

Scattering experiments probe interactions of $e^{-}, p, \nu^{\prime} s, \mathrm{DM}$ particles with nuclear targets \rightarrow precise knowledge of nucleon / nuclear matrix elements of currents, quark bilinears

DUNE - neutrino oscillation experiment: (anti-)neutrino beam onto $\mathrm{C}, \mathrm{O}, \mathrm{Ar}$ targets

Neutrino-nucleus cross section dominates uncertainty

Is there a proton radius puzzle?

Discrepant measurements of r_{p} in muonic / electronic hydrogen and ep scattering

Muonic hydrogen: [Antognini et al., 2013]

$$
r_{\mathrm{E}}=0.84087 \pm 0.00039 \mathrm{fm}
$$

CODATA:

$$
\begin{array}{ll}
r_{\mathrm{E}}=0.8414 \pm 0.0019 \mathrm{fm} & \text { [CODATA 2018] } \\
r_{\mathrm{E}}=0.8775 \pm 0.0051 \mathrm{fm} & \text { [CODATA 2012] }
\end{array}
$$

Signal for new physics or poorly understood systematic effects?
\rightarrow calls for $a b$ initio calculation of the proton radius from QCD

Weak charge of the proton and the running of $\sin ^{2} \theta_{\mathrm{W}}$

Running of electroweak mixing angle at low energies constrains BSM physics models

P2@MESA: parity-violating ep scattering

$$
\begin{gathered}
A_{L R} \equiv \frac{\sigma_{L}-\sigma_{R}}{\sigma_{L}+\sigma_{R}}=-\frac{G_{F} Q^{2}}{4 \pi \sqrt{2} \alpha}\left(Q_{W}^{P}-F\left(Q^{2}\right)\right) \\
Q_{W}^{P}=1-4 \sin ^{2} \theta_{W} \quad \text { (tree level) }
\end{gathered}
$$

[D. Becker et al., 1802.04759]
Hadronic contributions

$$
\begin{gathered}
F\left(Q^{2}\right)=F_{\mathrm{EM}}\left(Q^{2}\right)+F_{\mathrm{A}}\left(Q^{2}\right)+F_{\mathrm{str}}\left(Q^{2}\right) \\
Q^{2} \approx 4 E_{i} E_{f} \sin ^{2}\left(\theta_{f} / 2\right)
\end{gathered}
$$

This talk

Methodology: The noise problem and excited states

Nucleon charges and pion-nucleon σ-term

Electromagnetic form factors

Axial and strange form factors

Related talks at this conference: Krzysztof Cichy, Mon 15:50 Boram Yoon, Wed 17:30

Summary and Outlook

Nucleon form factors

Dirac and Pauli form factors:

$$
\begin{aligned}
& \left\langle N\left(p^{\prime}, s^{\prime}\right)\right| J_{\mu}^{\mathrm{em}}(0)|N(p, s)\rangle=\bar{u}\left(p^{\prime}, s^{\prime}\right)\left[\gamma_{\mu} F_{1}\left(Q^{2}\right)+\sigma_{\mu v} \frac{Q_{\nu}}{2 m_{\mathrm{N}}} F_{2}\left(Q^{2}\right)\right] u(p, s) \\
& G_{\mathrm{E}}\left(Q^{2}\right)=F_{1}\left(Q^{2}\right)-\frac{Q^{2}}{\left(a m_{\mathrm{N}}\right)^{2}} F_{2}\left(Q^{2}\right), \quad G_{\mathrm{M}}\left(Q^{2}\right)=F_{1}\left(Q^{2}\right)+F_{2}\left(Q^{2}\right)
\end{aligned}
$$

Axial and induced pseudoscalar form factors:

$$
\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| A_{\mu}(0)|N(p, s)\rangle=\bar{u}\left(p^{\prime}, s^{\prime}\right)\left[\gamma_{\mu} \gamma_{5} G_{\mathrm{A}}\left(Q^{2}\right)-i \gamma_{5} \frac{Q_{\mu}}{2 m_{\mathrm{N}}} \widetilde{G}_{\mathrm{P}}\left(Q^{2}\right)\right] u(p, s)
$$

Charge radii, magnetic moment, axial charge:

$$
\begin{gathered}
G_{\mathrm{E}}\left(Q^{2}\right)=\left(1-\frac{1}{6}\left\langle r_{\mathrm{E}}^{2}\right\rangle Q^{2}+\mathrm{O}\left(Q^{2}\right)\right), \quad G_{\mathrm{M}}\left(Q^{2}\right)=\mu\left(1-\frac{1}{6}\left\langle r_{\mathrm{M}}^{2}\right\rangle Q^{2}+\mathrm{O}\left(Q^{2}\right)\right) \\
G_{\mathrm{A}}\left(Q^{2}\right)=g_{\mathrm{A}}\left(1-\frac{1}{6}\left\langle r_{\mathrm{A}}^{2}\right\rangle Q^{2}+\mathrm{O}\left(Q^{2}\right)\right)
\end{gathered}
$$

Challenges for lattice QCD

Quark-disconnected diagrams

- large inherent statistical noise
- contribute to isoscalar quantities and sigma-terms
- contribute exclusively to strange form factors

"Noise problem"

- exponentially decreasing signal-to-noise ratio in baryonic correlators
- calculations of baryonic three-point functions limited to source-sink separations $t_{s} \lesssim 1.7 \mathrm{fm}$
\Rightarrow potential bias from unsuppressed excited-state contributions

Excitation spectrum

Nucleon charges from ratios of three- and two-point functions: $\Delta=\left(E_{1}-E_{0}\right), \Gamma=A, S, T, \ldots$

$$
R_{\Gamma}\left(t, t_{s}\right) \equiv \frac{C_{3}^{\Gamma}\left(\boldsymbol{q}=0 ; t, t_{s}\right)}{C_{2}\left(\boldsymbol{p}=0 ; t_{s}\right)}=g_{\Gamma}+c_{01} \mathrm{e}^{-\Delta t}+c_{10} \mathrm{e}^{-\Delta\left(t_{s}-t\right)}+c_{11} \mathrm{e}^{-\Delta t_{s}}+\ldots
$$

Dense spectrum of $N \pi, N \pi \pi, \ldots$ states:

ChPT analyses of excited-state contamination:
[Hansen \& Meyer, 1610.03843]

[O. Bär, 1705.02806, 1802.10442, 1812.09191, 1906.03652, 1912.05873]

Fighting the noise problem

$$
R_{\Gamma}\left(t, t_{s}\right)=g_{\Gamma}+c_{01} \mathrm{e}^{-\Delta t}+c_{10} \mathrm{e}^{-\Delta\left(t_{s}-t\right)}+c_{11} \mathrm{e}^{-\Delta t_{s}}+\ldots,
$$

Multi-state fits

Include sub-leading terms in $R_{\Gamma}\left(t, t_{s}\right)$,
(or individual two- and three-point functions)
with or without priors for the excitation spectrum

"Summation Method"

Excited-state contributions more strongly suppressed
"Sensitivity" to excited-state effects:

$$
S_{\Gamma}\left(t_{s}\right) \equiv \sum_{t=0}^{t_{s}-a} R_{\Gamma}\left(t, t_{s}\right)=K_{\Gamma}+\left(t_{s}-a\right) g_{\Gamma}+\left(t_{s}-a\right) \mathrm{e}^{-\Delta t_{s}} d_{\Gamma}+\mathrm{e}^{-\Delta t_{s}} f_{\Gamma}+\ldots
$$

Variational approach

Compute correlator matrices; solve GEVP; optimise projection on ground state

Multi-state fits

Nucleon interpolating operators may have small overlap onto multi-particle states: $N \pi, N \pi \pi, \ldots$ Energy gaps from nucleon two-functions do not capture $N \pi$ states: $\Delta^{2 \mathrm{pt}}>\left(E_{N \pi}-E_{N}\right)$

Violations of PCAC relation (Goldberger-Treiman) as indicator of excited-state contamination

$$
\partial_{\mu} A_{\mu}^{a}(x)=2 m P^{a}(x) \Leftrightarrow 2 M_{\mathrm{N}} G_{\mathrm{A}}\left(Q^{2}\right)-\frac{Q^{2}}{2 M_{\mathrm{N}}} \widetilde{G}_{\mathrm{P}}\left(Q^{2}\right)=2 \hat{m} G_{\mathrm{P}}\left(Q^{2}\right)
$$

Needs further investigation - dedicated calculation using multi-hadron interpolators

Summed operator insertions

Variants: Fixed sink ("summation method") versus fixed operator ("Feynman-Hellman")

$$
S_{\Gamma}\left(t_{s}\right)=K_{\Gamma}+\left(t_{s}-a\right) g_{\Gamma}+\left(t_{s}-a\right) \mathrm{e}^{-\Delta t_{s}} d_{\Gamma}+\mathrm{e}^{-\Delta t_{s}} f_{\Gamma}+\ldots
$$

"Summed-subtracted" ratio:
$g_{\Gamma}^{\text {eff }}\left(t_{s}\right) \equiv \frac{1}{t_{s}}\left(S_{\Gamma}\left(t_{s}+a\right)-S_{\Gamma}\left(t_{s}\right)\right)$

Faster convergence to ground state

Extend source-sink separations into region with sensitivity to sub-leading terms:

Improved statistical precision

FLAG Report

2019 edition ("FLAG 4") contains section on nucleon matrix elements
Quantities include

- Isovector axial, scalar and tensor charges: $g_{A}^{u-d}, g_{S}^{u-d}, g_{T}^{u-d}$
- Flavour-diagonal charges: $g_{A}^{u, d, s}, g_{S}^{u, d, s}, g_{T}^{u, d, s}$
- Sigma terms: $\quad \sigma_{q}=m_{q}\langle N| \bar{q} q|N\rangle \equiv m_{q} g_{S}^{q} \quad \sigma_{\pi N}=m_{u d}\langle N| \bar{u} u+\bar{d} d|N\rangle \approx m_{\pi}^{2} \frac{\partial m_{N}}{\partial m_{\pi}^{2}}$

Control over systematics assessed according to quality criteria:

- Chiral extrapolation
- Finite-volume effects
- Continuum extrapolation
- Excited states
- Renormalisation

FLAG 5: Three or more source-sink separations τ, at least two of which must be above 1.0 fm . - Two or more souree-sink separations, τ, with at least one value above 1.0 fm .

Otherwise
Form factors and non-forward matrix elements, not (yet) included

Isovector charges: preliminary FLAG 5 update

[blue: new results since FLAG 4; grey: FLAG 4 averages; solid green: basis for FLAG 4 average]
Many new results since FLAG 4 - confirmation of previous global estimates

- Axial charge: percent-level precision reached - agreement with experimental values
- Scalar and tensor charges: consistent picture; larger errors for g_{S}^{u-d}

Pion-nucleon sigma-term

Two different methods:

$$
\sigma_{\pi N}=m_{u d} \frac{\langle N| \bar{u} u+\bar{d} d|N\rangle}{\text { "direct" }} \approx m_{\pi}^{2} \frac{\partial m_{N}}{\partial m_{\pi}^{2}}
$$

Feynman-Hellman

FLAG 4 average for $N_{f}=2+1$:

$$
\sigma_{\pi N}=(39.7 \pm 3.6) \mathrm{MeV}
$$

2.5σ tension with result from $N \pi$-scattering:

$$
\sigma_{\pi N}=(58 \pm 5) \mathrm{MeV} \quad[\text { Ruiz de Elvira et al., 1706.01465] }
$$

Bias from excited-state contributions?
\rightarrow talk by Boram Yoon

Form factor calculations

Form factors obtained for a discrete set of Q^{2}-values, at a given value of m_{π} and non-zero lattice spacing

- Describe the Q^{2}-dependence: dipole fits or z-expansion [Hill \& Paz, PRD 82 (2010) 113005]

$$
G_{\mathrm{E} / \mathrm{M}}\left(Q^{2}\right)=\sum_{k} a_{k}^{\mathrm{E} / \mathrm{M}} z\left(Q^{2}\right)^{k}, \quad z\left(Q^{2}\right)=\frac{\sqrt{t_{\mathrm{cut}}+Q^{2}}-\sqrt{t_{\mathrm{cut}}}}{\sqrt{t_{\mathrm{cut}}+Q^{2}}+\sqrt{t_{\mathrm{cut}}}}
$$

\rightarrow Fits yield electric, magnetic and axial charge radii, magnetic moment, axial charge

- Extrapolate to the physical point: continuum and infinite-volume limits, physical m_{π}
- Systematic error estimate by performing variations in the procedures and applying cuts to the data
- Alternative: Direct fits to the dependence of form factors on Q^{2} and m_{π}, supplemented by terms describing the a-dependence and finite-volume corrections
[Bauer et al., PRC 86 (2012) 065206; Capitani et al., 1504.04628, Djukanovic et al., 2102.07460]

Electromagnetic form factors

Recent calculations for a variety of different discretisations

Isovector form factors: Q^{2}-dependence

[Park et al. (NME), 2103.05599]

[Alexandrou et al. (ETMC), 1812.10311]

Direct chiral EFT fits to Q^{2} and m_{π} dependence
[Djukanovic et al. (Mainz/CLS), 2102.07460]

Isovector electric and magnetic charge radii \& magnetic moment

Comparison with experiment:

- combine proton and neutron charge radii

$$
\begin{aligned}
& \left\langle r_{\mathrm{E}}^{2}\right\rangle^{u-d}=\left\langle r_{\mathrm{E}}^{2}\right\rangle_{\mathrm{p}}-\left\langle r_{\mathrm{E}}^{2}\right\rangle_{\mathrm{n}} \\
& \left\langle r_{\mathrm{E}}^{2}\right\rangle_{\mathrm{n}}^{\exp }=-0.1161(22) \mathrm{fm}^{2}
\end{aligned}
$$

- Tension of 2.7σ between A1 and Mainz/CLS 21

Isoscalar form factors

Requires the calculation of quark-disconnected diagrams:
\rightarrow stochastic sources, hierarchical probing, "one-end trick", frequency splitting [Dinter et al., 1202.1480; Stathopoulos et al., 1302.4018; Giusti et al., 1903.10447]

Lattice results at physical m_{π} versus experimental data:

[Alexandrou et al., 1812.10311]

Isoscalar form factors

Higher precision required to discriminate between scenarios

Axial form factor and charge radius

Results in the continuum limit:

[Bali et al. (RQCD), 1911.13150]

Treatment of excited states has significant impact on $\left\langle r_{\mathrm{A}}^{2}\right\rangle$

$\begin{array}{lcc}0.2 & 0.4 & 0.6 \\ & & \left\langle r_{\mathrm{A}}^{2}\right\rangle^{u-d}\left[\mathrm{fm}^{2}\right]\end{array}$

NME 21
PACS 19
ETMC 19
RQCD 19
LHPC 19
PNDME 17

Mainz/CLS 17

Strange form factors

Measured by SAMPLE, HAPPEX, G0, A4 experiments, e.g.

$$
\begin{gathered}
G_{\mathrm{E}}^{s}\left(Q^{2}=0.22 \mathrm{GeV}^{2}\right)=0.050 \pm 0.038 \pm 0.019 \\
G_{\mathrm{M}}^{s}\left(Q^{2}=0.22 \mathrm{GeV}^{2}\right)=-0.14 \pm 0.11 \pm 0.11
\end{gathered}
$$

[Baunack et al. (A4 Collab.), PRL 102 (2009) 151803]

Lattice QCD exceeds experimental precision

Summary

* Lattice QCD calculations of nucleon matrix elements have made substantial progress
* Systematic effects such as excited state contamination must be explored further
* Percent-level precision achieved for nucleon isovector axial charge
* Lattice calculations "favour" small values for the proton radius, but precision must be further increased
* Strange form factors and magnetic moment obtained with high precision

Thank you!

