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Scattering	experiments	probe	interactions	of	 ,	DM	particles	with	nuclear	targets


		 		precise	knowledge	of	nucleon	/	nuclear	matrix	elements	of	currents,	quark	bilinears

e−, p, ν′￼s

→

Nucleon	structure	observables	and	BSM	physics	searches
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DUNE	—	neutrino	oscillation	experiment:	(anti-)neutrino	beam	onto		 		targetsC, O, Ar

Neutrino-nucleus	cross	section	dominates	uncertainty
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Is	there	a	proton	radius	puzzle?
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Discrepant	measurements	of	 	in	muonic	/	electronic	hydrogen	and	 	scatteringrp ep

Signal	for	new	physics	or	poorly	understood	systematic	effects?

			 			calls	for	ab	initio	calculation	of	the	proton	radius	from	QCD→
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rE = 0.84087 ± 0.00039 fm

Muonic	hydrogen: [Antognini	et	al.,	2013]

CODATA:
[CODATA	2018]
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rE = 0.8775 ± 0.0051 fm
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Figure 1. Collection of experimental results on the proton charge radius, and a (small) selection of fits by other authors. CODATA
values (dark blue) [3, 46] are global fits, using electron spectroscopy and scattering data as input. Bernauer [2], Zhan [47], Mihovilovič
[44] and Xiong [45] (black) are results from scattering experiments, sometimes including the world data set. Sick [21] and Alarćon
[17] (purple) are refits of existing data, in the latter case based on dispersion relations. Beyer, Fleurbaey and Bezignov [40–42] (green)
are electron spectroscopy results, Pohl and Antognini [1, 5] (orange) are the results from the muon spectroscopy experiment.

measurement, several systematics can be avoided or re-
duced. The main improvement is the new target system,
which will exchange the cryogenic cell with a hydrogen
cluster-jet target [50], which puts no extraneous material
in the main beam trajectory. In combination with an up-
stream collimator and and active veto to suppress electrons
in the beam halo, the experiment aims for a completely
background-free measurement. Additionally, the point-
like intersection of electron and hydrogen beam simplify
track reconstruction, and the comparatively thin target re-
duces external radiation drastically.

With the smaller beam energies of MESA, the exper-
iment will be able to measure not only cross section data
relevant for the proton charge radius, but will also achieve
an order of magnitude better precision on the magnetic
form factor in the region most interesting for the determi-
nation of the magnetic radius (see Fig. 3), and from that,
the Zemach radius, which is another connection point to
atomic physics.

5.2 MUSE

MUSE [51], to take place at the Paul Scherrer Institute,
CH, will measure e

±, µ± and ⇡± scattering using a com-
bined beam. Particle separation will be performed using
Time-Of-Flight. Due to the simultaneous measurement
of all three species, many systematic e↵ects cancel, and
MUSE can probe lepton universality. In combination with
the charge-reversed beam, these data further allow to ex-
tract the two-photon exchange (TPE) contribution in the
radiative corrections for comparison with theory, and to
cancel this e↵ect in the analysis without theory input.

The experiment will measure at three beam momenta
(115, 153 and 210 MeV/c) with statistical uncertainties

on the cross section of better than 1% for most of the data
points, and few per mill systematic uncertainties.

5.3 COMPASS++/AMBER

As one of the planned measurements, COM-
PASS++/AMBER [52] will employ a similar hydrogen
TPC to measure the muon-proton cross section in the
Q

2 range of 0.001 to 0.037 (GeV/c)2. The experiment
aims to measure both outgoing lepton as well as the
recoiling proton, and will use both muon charges. From
the kinematics, it is very similar to PRad, with even more
extreme forward scattering using a multiple tens of GeV/c
beam. The radiative corrections for muons are smaller,
and, similar to MUSE, the measurement of both charges
allows to extract and cancel TPE.

5.4 ULQ2

The ULQ2 project at Tohoku University, Sendai, Japan,
aims to measure the electron proton cross section in the
Q

2 range of 0.0003 to 0.008 (GeV/c)2 using beam en-
ergies between 20 and 60 MeV. The experimenters plan
to use a CH2 target to achieve an absolute measurement
on the 3 per mill level, by measuring relative to the well
known carbon cross section. This unique approach will
produce di↵erent systematic errors than those employed
by the other experiments.

An overview of the Q
2 ranges and projected errors is

given in Fig. 4.

6 Conclusion

After almost a full decade, the proton radius puzzle is
still not resolved, but it has motivated uncounted work

4

EPJ Web of Conferences 234, 01001 (2020) https://doi.org/10.1051/epjconf/202023401001
FCCP2019

[Bernauer,	EPJ	Web	Conf.	234	(2020)	01001]
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Weak	charge	of	the	proton	and	the	running	of	sin2 θW
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Running	of	electroweak	mixing	angle	at	low	energies	constrains	BSM	physics	models

P2@MESA:		parity-violating	 	scatteringep
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Hadronic	contributions
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This	talk

Methodology:	The	noise	problem	and	excited	states

Nucleon	charges	and	pion-nucleon	 -termσ

Electromagnetic	form	factors

Axial	and	strange	form	factors

Summary	and	Outlook

Related	talks	at	this	conference:
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						Boram	Yoon,	Wed	17:30
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Nucleon	form	factors
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Dirac	and	Pauli	form	factors:

Axial	and	induced	pseudoscalar	form	factors:
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Charge	radii,	magnetic	moment,	axial	charge:
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Challenges	for	lattice	QCD
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Quark-disconnected	diagrams
• large	inherent	statistical	noise

• contribute	to	isoscalar	quantities 
and	sigma-terms


• contribute	exclusively	to	strange 
form	factors

0, !p, s ts, !p′, s′
t

γµ

∼ 〈N(p′, s′) |Vµ(x)|N(p, s)〉

0, !p, s ts, !p ′, s′
t

Vµ, Aµ

0, !p, s ts, !p ′, s′

t

Vµ, Aµ

2

“Noise	problem”
• exponentially	decreasing	signal-to-noise	ratio	in	baryonic	
correlators


• calculations	of	baryonic	three-point	functions	limited	to	
source-sink	separations		 

potential	bias	from	unsuppressed	excited-state	
contributions

ts ≲ 1.7 fm

ts

Nucleon	2pt	function
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Nucleon	charges	from	ratios	of	three-	and	two-point	functions:

Excitation	spectrum
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Dense	spectrum	of		 	states:Nπ, Nππ, …
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for J = 1/2 or 3/2. These can be reexpressed as

�(q) + �J,`=1(p) = n⇡ , (26)

where n is an arbitrary integer and

cot �(q) = F 11;11 = � 1

q⇡3/2
Z00(1, q2) . (27)

We comment that this has the same form as the s-wave,
scalar quantization condition. The quantity � is often
referred to as the pseudophase.

The fact that the J = 1/2 and J = 3/2 sectors decou-
ple can be explained by examining the symmetry group
of the finite-volume system. For the case of one scalar
and one spin-half particle in a finite cubic box with zero
total momentum, the symmetry group is 2O ⌦ S2 and
the irreps are G±

1 , G±
2 and H± [31]. If we neglect ` � 3

and thus also neglect J � 5/2, then we find a perfect
correspondence between finite- and infinite-volume irreps
G�

1 ⌘ (J = 1/2) and H� ⌘ (J = 3/2). This implies that,
within this approximation, the two partial-waves cannot
mix, as we have seen by explicit calculation.

B. Predicting the spectrum from the experimental
N⇡ phase shift

To predict the finite-volume spectrum of N⇡ states
we use experimental data made available by the
George Washington University Institute for Nuclear
Studies. Their data analysis center is available on-
line at http://gwdac.phys.gwu.edu/analysis/pin_
analysis.html. In this study we use their partial wave
analysis WI08 solution. The relevant phase shift data
are plotted in Fig. 2. For detailed information about
the experimental data set and the WI08 fit solution see
Refs. [32, 33].

Substituting this phase shift into Eq. (26) we reach the
prediction for the two-particle energies, shown in Fig. 3.
Note that, relative to the gap to the single nucleon state,
the shift is relatively small between free- and interacting
levels. This means that it makes little di↵erence whether
one uses the free or interacting finite-volume spectrum
for the values of �En that enter R(T, t).7 Also apparent
from Fig. 3 is that no avoided level crossing is visible.
This is because the Roper resonance is too broad to gen-
erate such an e↵ect. It follows that, near the physical
point, no direct association between LQCD energies and
the resonance can be made and a careful Lüscher based
analysis will be needed to extract resonance properties
from LQCD.

7 In this work we do not plot an explicit comparison but, as we
comment in Sec. V below, if one uses LO ChPT for the infinite-
volume matrix elements, then the e↵ect of interactions in the
energies and Lellouch-Lüscher factors a↵ects the prediction for
R(T, T/2) at the percent level.

FIG. 2. The experimental phase shift for N⇡ scattering with
I(JP ) = 1/2(1/2+). The slow rise through ⇡/2 is associated
with the broad Roper resonance.

FIG. 3. Interacting finite-volume N⇡ states with I(JP ) =
1/2(1/2+). The dashed, black curves show the non-interacting
energy levels.

To better understand these results consider the form of
the pseudophase curves, plotted together with the experi-
mental phase shift for M⇡L = 4 in Fig. 4. The interacting
energies, at this L value, are given by the intersections of
the curves. This shows that there are universal features
for the levels predicted by certain types of phase shifts.
In particular, for any phase shift that slowly rises from
0 to ⇡, the spectrum is given by a smooth deformation
of the free levels. When �(p) is near 0 or ⇡ the energies
coincide with free values. As one follows a given interact-
ing level from high energies to low (by increasing M⇡L)
it rises by one free level. This implies that, for any slowly
rising phase shift, interacting levels tend to be separated

[Hansen	&	Meyer,	1610.03843]

ChPT	analyses	of	excited-state	contamination:

[O.	Bär,	1705.02806,	1802.10442,	1812.09191,	1906.03652,	1912.05873]
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FIG. 4: The relative deviation ✏
mid
X (Q2

, t = 2 fm) for the midpoint estimates as a function of Q2. Results
for X = E, 4 in red, X = M in blue and X = E, 2 in purple. Results for three di↵erent spatial volumes
with M⇡L = 4 (diamonds), 5 (squares) and 6 (circles). Open symbols for the approximation with the
excited-to-excited state contributions c, c̃ ignored, see main text.

Naively we expect the excited-to-excited state N⇡ contribution to be significantly smaller than
the excited-to-ground state contribution. In terms of the coe�cients we introduced this expectation
says that the bµ, b̃µ contributions are the dominant ones in eq. (3.12) for t

0 ⇡ t/2. The reason is
the additional suppression by an exponential factor exp(��Et/2) in the cµ, c̃µ contributions.

Figure 5 shows the individual contributions to the relative deviations, e.g. ✏mid
X,b (Q

2
, t) denotes the

bµ contribution (red symbols), and analogously for b̃µ (blue), cµ (orange) and c̃µ (green). The N⇡

state contribution stemming from the 2-pt functions is shown by the brown symbols. Apparently,
the bµ and b̃µ contributions are significantly larger than the other three. Note the relative sign
between the bµ and b̃µ contributions in case of the X = E, 2 (bottom panel), which is responsible
for the sinh-like behaviour in the e↵ective form factor Ge↵

E,2, seen in fig. 3.
The sum of all individual contributions in fig. 5 gives the total results shown in fig. 4. Since the

cµ and c̃µ contributions are small we can ignore them and still obtain a very good approximation
for the total result. It is shown by the open symbols in fig. 4.

As stated before, the results shown so far are obtained with a finite number of N⇡ states
in eq. (3.8) and (3.17). The spatial momentum of the pion in the N⇡ state was restricted to
|~pn| . pmax with pmax/⇤� = 0.45. We have checked that for t = 2 fm these low-momentum N⇡

states essentially saturate the sums in (3.8), (3.17) i.e. the contribution of the high-momentum N⇡

states is negligible.
Two examples are shown in figure 6. The lower panel shows the relative deviation ✏

mid
M (Q2

, t)
as a function of t for M⇡L = 4 and the smallest accessible momentum transfer, i.e. with nq = 1.
The black line corresponds to our canonical choice pmax/⇤� = 0.45. In addition, the results for
two other momentum bounds are shown, a smaller one with pmax/⇤� = 0.3 (blue) and a larger
one with pmax/⇤� = 0.6 (red). In terms of the integer np these bounds correspond to np,max = 2
(blue), 5 (black) and 10 (red). For t = 2 fm and larger the di↵erence between the black and red
curves is tiny and negligible, and this does not change if pmax is chosen even larger. However, a
spread of about 25% is seen between pmax/⇤� = 0.3 and 0.45 (for t = 2 fm).
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Fighting	the	noise	problem

9

Multi-state	fits
Include	sub-leading	terms	in		 ,	 
(or	individual	two-	and	three-point	functions) 
with	or	without	priors	for	the	excitation	spectrum

RΓ(t, ts)

<latexit sha1_base64="Sbh29mktjeeTuJuUTdBpzj+508A="></latexit>

S �(ts) ⌘
ts�aX

t=0

R�(t, ts) = K� + (ts � a) g� + (ts � a) e��ts d� + e��ts f� + . . .

“Summation	Method”
Excited-state	contributions	more	strongly	suppressed

Compute	correlator	matrices;	solve	GEVP;	optimise	projection	on	ground	state
Variational	approach

<latexit sha1_base64="rws5bwJfxnMkyfasyZNS0Pa+gzE="></latexit>

R�(t, ts) = g� + c01 e��t + c10 e��(ts�t) + c11 e��ts + . . . , � = (E1 � E0)
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“Sensitivity”	to	excited-state	effects:



Hartmut	Wittig

Multi-state	fits

10

Nucleon	interpolating	operators	may	have	small	overlap	onto	multi-particle	states:		 


Energy	gaps	from	nucleon	two-functions	do	not	capture	 		states:			

Nπ, Nππ, …
Nπ Δ2pt > (ENπ − EN)

Hartmut	Wittig 18

Excited-state	treatment
(3)	PNDME:	axial	form	factor	and	viola;ons	of	PCAC

4-state	fits	to	2pt	func6on	misiden6fy	excita6on	spectrum

[Jang	et	al.,	arXiv:1905.06470]
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FIG. 2. Comparison of the fits used to remove ESC in the A4 3-point function using the S2pt (left) and SA4 (right) strategies
defined in the text. This data for p = (1, 0, 0)2⇡/La show the largest ESC. The values of ⌧ and �

2/DOF are given in the
legend.
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FIG. 3. Mass and energy gaps �M1 = M1 � M0 and
�E1(n

2) = E
2pt
1 � E0 in units of M⇡ are obtained from the

4-state fit to the 2-point correlator. The values �M
A4
1 and

�E
A4
1 for the a09m130W ensemble are obtained using strat-

egy SA4. The dotted lines show the corresponding values for
non-interacting N(p)⇡(�p) and N(0)⇡(p) states.

the �
2
/DOF of the fits, we cannot distinguish between

the two strategies except for the P channel in spite of
having high statistics data (165K measurements on 1290
configurations) [13]. The key point in each of the four
channels is the convergence–it is from below and includ-
ing the “new” lower excited state (SA4) gives significantly
larger values of the matrix elements and thus the form
factors. This pattern persists for n2 . 5, above which
the di↵erence in the mass gap does not have a significant
e↵ect.

The results for the three form factors GA, eGP and GP

are compared in Fig. 5. The e↵ect of using SA4 is clear
and largest for n = (1, 0, 0). Also, the change in GA(Q2)
is only apparent for n = (1, 0, 0), consequently data at
smaller Q2 are needed to quantify its Q2

! 0 limit.
The pattern, that the e↵ect increases as Q2

! 0, a ! 0
and M⇡ ! M

physical
⇡ , is confirmed by the analysis of the

11 ensembles described in Ref. [13], and these detailed
results will be presented in a separate longer paper [19].

With GA, eGP and GP in hand, we present the test of

the PCAC relation, Eq. (3), in Fig. 6. The figure also
shows data for the pion-pole dominance (PPD) hypoth-

esis that relates eGP to GA as G̃P (Q2) = GA(Q2) 4M2

Q2+M2
⇡
.

It is clear that both relations are satisfied to within 5% at
all Q2 with SA4, whereas the deviation grows to about
40% with S2pt at n = (1, 0, 0) as first pointed out in
Ref. [6]. What is also remarkable is that the PPD rela-
tion with the expected proportionality factor 4M2 pro-
vided by the Goldberger-Treiman relation [20] tracks the
improvement in PCAC. In fact, the data for the two tests
overlap at all Q2.

The last test we perform is the relation @4A4 = (M �

E)A4 that should be satisfied by the ground state matrix
element. The data and fits for @4A4 are shown in Fig. 7.
The values of (M � E)A4 are essentially zero in both
cases; for S2pt because M �E is small. Again, it is clear
that the relation is only satisfied for SA4.

The bottom line is that the two relations, PCAC and
@4A4 = (M � E)A4, and the pion-pole dominance hy-
pothesis are all satisfied using SA4 but not with S2pt.
The data shown in Fig. 3 is consistent with the picture
that the “new” lower energy state is mainly due to the
current Aµ(q) injecting a pion with momentum q. There
are two open questions: (i) how do we extract gA, ie,
what is the analogous lowest excited state at zero mo-
mentum since we cannot determine its parameters from
the A4 correlator, and (ii) why it was not clear from the
data shown in Figs. 2 and 4 that the mass gaps used in
S2pt were too large. These points are addressed below.

Results for gA have been obtained from the A3 corre-
lator at zero-momentum in all previous calculations be-
cause it has the best signal. The states with the low-
est energy that are candidates for the 1

2 (
1
2

+
) excited

state at zero momentum in this correlator are N⇡⇡ and
N(p)⇡(�p). Both of these are lighter than the radial ex-
citations N(1440) and N(1710) and dominate their decay.
Their relativistic non-interacting energies, in a box of size
L/a = 64 used for the a09m130W ensemble, are about
1230 MeV (�M1a ⇡ 0.12). Our previous argument fa-
vorsN⇡⇡: the current A3(p = 0) is more likely to insert a

Viola6ons	of	PCAC: 2m̂GP(Q2) = 2MN GA(Q2) � Q2

2MN
G̃P(Q2)

<latexit sha1_base64="LMcabMtogBnBK/Pf8GaldO7Zdfw="></latexit>
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FIG. 1. The left panel shows the e↵ective energy Ee↵(⌧) = log C2pt(⌧)
C2pt(⌧+1)

and the 4-state fit for various momentum channels.

The right panel compares the nucleon Me↵ at p = 0 with M0 (red band), the first mass gap �M1 ⌘ M1 �M0 (blue band), and
the second mass gap �M2 ⌘ M2 �M0 (green band). These are obtained using the Prony’s method with fits to the intervals
[ti, ti + 6], where ti is the starting time slice. Sensitivity to �M1 (�M2) is lost at ti = 8 (ti = 4). All data are in lattice units.

state in all the fits used to remove the ESC.

TABLE I. The goodness of the fits to C
3pt
A4

. The new 2-state
fits correspond to strategy SA4 defined in the text. The con-
ventional 3⇤-state fit values (strategy S2pt) are taken from
Refs. [17, 18].

New 2-state Conventional 3⇤-state
n2

�
2
/d.o.f p �

2
/d.o.f p

1 0.817 0.73 21.78 < 5⇥ 10�5

2 1.314 0.13 19.36 < 5⇥ 10�5

3 1.263 0.16 11.79 < 5⇥ 10�5

4 0.778 0.79 4.757 < 5⇥ 10�5

5 1.268 0.16 5.348 < 5⇥ 10�5

6 1.712 0.01 4.834 < 5⇥ 10�5

8 0.815 0.74 1.724 0.03
9 (2,2,1) 1.865 0.01 2.726 0.001
90 (3,0,0) 0.539 0.98 0.974 0.49
10 0.865 0.67 1.089 0.35

To highlight the di↵erences and improvements, we de-
fine two analysis strategies, “conventional”, S2pt, and
“new”, SA4:

• S2pt: All the ground and excited state Mi and Ei,
are taken from 4-state fits to the nucleon 2-point
function and used in the 3⇤-state analysis of all the
3-point functions as detailed in Ref. [13].

• SA4: The ground state parameters M0 and E0 are
taken from the 4-state fits to the nucleon 2-point
function. These are considered reliable based on
the observed plateau in the e↵ective-mass data at
large ⌧ as shown in Fig. 1. The parameters for
the first excited state, M1 and E1, are taken from
fits to the A4 3-point correlator as discussed above.
These are then used in a two-state analysis of all
other 3-point functions.

In both cases, it is important to note that residual ESC
may still be present in the Mi and Ei. Future higher
precision calculations will improve the precision of the
calculations by steadily including more states in the fits.

In Fig. 3, we show three sets of data for the energy gaps
of the first excited state: �E

2pt
1 ⌘ E

2pt
1 � E0 obtained

from fits to the 2-point correlator. These are compared
with the two values on either side of the A4 operator
insertion, which are expected to be di↵erent since the
correlator is projected to zero-momentum at the sink:
�M

A4
1 ⌘ M

A4
1 � M0, the zero momentum case on the

sink side and the non-zero-momentum values �E
A4
1 ⌘

E
A4
1 � E0 on the source side. It is clear that �E

A4
1 and

�M
A4
1 are much smaller than �E

2pt
1 for n2 . 6 indi-

cating the contribution of a lower energy excited state.
Secondly, �E

A4
1 and �M

A4
1 are significantly di↵erent.

Strategy S2pt corresponds to using �E
2pt
1 and �M

2pt
1 ,

whereas SA4 corresponds to using �E
A4
1 and �M

A4
1 .

In Fig. 3, we also show, using dotted lines, the ex-
pected values for �E and �M if we assume that the
leading contribution of the current A4(q) is to insert
or remove a pion with momentum q. Thus the plotted
�E corresponds to the values for a non-interacting state
N(p = 0)⇡(p), while �M1 to N(p)⇡(�p). In calculat-
ing these values, we have used the lattice values for M0

and M⇡ and the relativistic dispersion relation, which is
consistent with the data from the 2-point function. The
values and variation of �E

A4
1 and �M

A4
1 with n2 are

roughly consistent with this picture.

Using the excited-state parameters extracted from the
analysis of the A4 correlator, and following the strategy
SA4 gives very di↵erent values for the ground state ma-
trix elements extracted from the three spatial, Ai, and
the P correlators. A comparison of the 2-state fits us-
ing SA4 and the 3⇤-state fit using S2pt is shown in Fig. 4
for the lowest non-zero momentum channels. Based on

PCAC	viola6ons	reduced/removed	
arer	including	“missed”	energy	level

[Jang	et	al.,	1905.06470]

Needs	further	investigation	—	dedicated	calculation	using	multi-hadron	interpolators
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Figure 8. Energy gaps between the ground state and the excited states on the ensemble D200.
The crosses have been obtained from a fit using the ansatz from eqs. (2.44) and (2.45) but taking
�E3pt = �EN⇡ and �E0

3pt = �E0

N⇡ as free fit parameters, while �E2pt = �E corresponds
to the energy of the generic excited state determined from two- and three-point functions. The
dots have been obtained from a fit without an explicit N⇡ state (i.e., c = c0 = d = d0 = 0 in
eqs. (2.44) and (2.45)) but relaxing the condition that the excited state energies in two- and three-
point function have to match (i.e., �E3pt = �E and �E0

3pt = �E0 from the three-point function
and �E2pt = �E from the two-point function). The orange, dotted line and the green, dashed line
show the energy gaps for a noninteracting nucleon-pion system in the initial and the final state,
respectively, as obtained from the diagrams in the left and the right column of figure 1. For our
kinematics the energys are EN⇡ = E⇡(q) + EN (0) and E0

N⇡ = E⇡(q) + EN (�q).

Q2 = 0) gives results di↵erent from those obtained using A1, A2, and A3, can be attributed

to the same N⇡ excited state contaminations that have been problematic at nonzero Q2

in other studies.

3.3 Excited state energies

In ref. [73] it has been proposed to use the signal of the timelike axialvector channel to

determine the energy of the low-lying N⇡ excitation. The main di↵erence with respect

to the traditional excited state fit method is that one does not impose that the leading

excited states in the two- and three-point functions have the same energy. In figure 8 (which

roughly reproduces Fig. 3 of ref. [73]11) we show the energy gaps to the various excited

states obtained from two di↵erent fits to the correlation functions on ensemble D200 (with

m⇡ ⇡ 201 MeV). The dots (fit 1) have been obtained using the method proposed in ref. [73]

(with the slight di↵erence that we perform a simultaneous fit to all the channels instead

of the two-step method presented in ref. [73]), while the crosses (fit 2) have been obtained

using our fit ansatz from eqs. (2.44) and (2.45) but leaving �EN⇡ and �E0

N⇡ as free fit

parameters. In contrast to fit 1, fit 2 contains the additional excited states known from

the two-point function, which leads to larger statistical uncertainties, in particular when

the energy levels of the N⇡ state and the excited state from the two point function (blue

11Figure number from the arXiv v2 version.

– 26 –

[Bali	et	al.,	1911.13150]

Violations	of	PCAC	relation	(Goldberger-Treiman)	as	indicator	of	excited-state	contamination
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@µAa
µ(x) = 2m Pa(x)
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, 2MN GA(Q2) � Q2

2MN
eGP(Q2) = 2m̂ GP(Q2)
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Summed	operator	insertions

11

Variants:		Fixed	sink	(“summation	method”)	versus	fixed	operator	(“Feynman-Hellman”)
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S �(ts) = K� + (ts � a) g� + (ts � a) e��ts d� + e��ts f� + . . .

“Summed-subtracted”	ratio: Extend	source-sink	separations	into	region	with	
sensitivity	to	sub-leading	terms:

Improved	statistical	precision

<latexit sha1_base64="1sNALXgHmhjKQFB6SpfcracSELo="></latexit>
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�

Faster	convergence	to	ground	state

Introduction Lattice setup Excited states CCF extrapolation & results

Single-state vs simultaneous two-state summation method (local NMEs)
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All six observables are fitted simultaneously.
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FIG. 1. Left: (Psychedelic Moose/Water Bu↵alo plot) We plot the numerical results of RA3(tsep, ⌧) for tsep = 2 (the single
gray point in the middle) to tsep = 14, the top (red) dataset. In addition, we plot the resulting posterior description of the
correlation function from our 5-state fit as the (correspondingly colored) fit bands. The (gray) squares in the upper left/right
of the “moose antlers” are not included in the analysis, as indicated by the break in the fit band from the inner region. The
horizontal (gray) band is the ground state matrix element, g̊A. Right: The FHA3(tsep, ⌧c = 1) numerical data from the global
analysis is plotted along with the posterior description of the correlation function. As a comparison, for even values of tsep, we
plot RA3(tsep, ⌧ = tsep/2) with open (colored) symbols (the numcerical data in the middle of the “moose”). The time-axis is
converted from lattice units (top) to fm (bottom) using our scale-setting [51].

Our sources and sinks are generated with a local three-
quark interpolating field using only the upper-spin com-
ponents of the quark field in the Dirac-Pauli basis (lower
components for the negative parity states), which gives
the largest overlap onto the ground state of the nucleon
at rest [85, 86]. In App. A, we present further details
of our computation, including the cost-benefit analysis
of improving the stochastic sampling by combining 8 co-
herent sinks [10] for each sequential propagator, the use
of spin up and spin down sources and sinks (versus utiliz-
ing a spin-projector that isolates one of the spin states)
and the use of time-reversed negative parity correlators.

A. Full results

We begin with a presentation of our final results which
come from a fully-correlated Bayesian constrained curve-
fit [3] with a five-state model to describe

C2(tsep) , RA3(tsep, ⌧) , RV4(tsep, ⌧) ,

FHA3(tsep, ⌧c = 1) , FHV4(tsep, ⌧c = 1) .

The final result is obtained with all values of ⌧ between
the source and sink time, ⌧ = [1, tsep�1]. For R�(tsep, ⌧),
the results are symmetrized about ⌧ = tsep/2 and half the
data (plus ⌧ = tsep/2 point for even values of tsep) is used
in the analysis.

In the left panel of Fig. 1 (the “Psychedelic Moose”),
we plot the numerical results for the ratio of the three-
point function generated with the A3 = q̄�3�5⌧3q current,
divided by the two-point function at the given value of
tsep (cfr. Eq. (5)). We also plot the resulting posterior
description with our 5-state model. The fit quality is
good and visually one can see that the model accurately

FIG. 2. We plot the numerical FHA3(tsep, ⌧c) data for various
values of ⌧c as well as the posterior reconstruction of these
correlation functions from the global analysis that uses ⌧c = 1.

describes the numerical results over the full range of tsep
and ⌧ used in the analysis. The horizontal (gray) band
is the value of the ground state matrix element g̊A. In
the right panel we plot the FHA3(tsep, ⌧c = 1) data that
are used in the global fit as well as the resulting posterior
distribution of this correlation function.

In Fig. 2, we explore the FHA3(tsep, ⌧c) data as the
number of data near the source and sink time are cut from
the sum over current insertion time denoted by increasing
⌧c. The posterior fit bands are from the global analysis
that uses ⌧c = 1. As ⌧c is increased, for a fixed tsep,
one observes that the excited state contribution becomes
larger. This can be understood by looking at the leading
excited state contribution to FH�(tsep, ⌧c) that depends

[He	et	al.	(CalLat),	2104.05226]
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Given the lack of knowledge about the convergence of the expansions and the resulting
plethora of possibilities for extrapolation models at differing orders, it is important to include
statistical tests of model selection for a given set of data. Bayesian model averaging [903]
or use of the Akaike Information Criterion [904] are common choices which penalize over-
parameterized models.

10.2 Quality criteria for nucleon matrix elements and averaging procedure

There are two specific issues which call for a modification and extension of the FLAG quality
criteria listed in Sec. 2. The first concerns the rating of the chiral extrapolation: The FLAG
criteria reflect the ability of χPT to provide accurate descriptions of the pion mass depen-
dence of observables. Clearly, this ability is linked to the convergence properties of χPT in a
particular mass range. Quantities extracted from nucleon matrix elements are extrapolated
to the physical pion mass using some variant of baryonic χPT, whose convergence is not as
well established compared to the mesonic sector. Therefore, we have opted for stricter quality
criteria concerning the chiral extrapolation of nucleon matrix elements, i.e.,

! Mπ,min < 200 MeV with three or more pion masses used in the extrapolation
or two values of Mπ with one lying within 10 MeV of 135 MeV (the physical neutral
pion mass) and the other one below 200 MeV

◦ 200 MeV ≤Mπ,min ≤ 300 MeV with three or more pion masses used in the extrapolation;
or two values of Mπ with Mπ,min < 200 MeV;
or a single value of Mπ lying within 10 MeV of 135MeV (the physical neutral pion mass)

! Otherwise

In Sec. 10.1.2 we have discussed that insufficient control over excited state contributions,
arising from the noise problem in baryonic correlation functions, may lead to a systematic
bias in the determination of nucleon matrix elements. We therefore introduce an additional
criterion that rates the efforts to suppress excited state contamination in the final result. As
described in Sec. 10.1.2, the source-sink separation τ , i.e., the Euclidean distance between
the initial and final nucleons, is the crucial variable. The rating scale concerning control over
excited state contributions is thus

! Three or more source-sink separations τ , at least two of which must be above 1.0 fm.

◦ Two or more source-sink separations, τ , with at least one value above 1.0 fm.
! Otherwise

Despite the enormous progress achieved in reducing excited state contamination, we em-
phasize that more stringent quality criteria may have to be adopted in future editions of the
FLAG report to control this important systematic effect at the stated level of precision.

As explained in Sec. 2, FLAG averages are distinguished by the sea-quark content. Hence,
for a given configuration of the quark sea (i.e., for Nf = 2, 2+1 or 2+1+1), we first identify
those calculations that pass the FLAG and the additional quality criteria defined in this
section, i.e., excluding any calculation that has a red tag in one or more of the categories. We
then add statistical and systematic errors in quadrature and perform a weighted average. If
the fit is of bad quality (i.e., if χ2

min/dof > 1), the errors of the input quantities are scaled
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• Isovector	axial,	scalar	and	tensor	charges:
<latexit sha1_base64="lfqrnpOAbhOOf+sO8JKIwdHjy50="></latexit>

gu�d
A , gu�d

S , gu�d
T

• Flavour-diagonal	charges:
<latexit sha1_base64="rnFpcGcpStvk0VRfveJaoRqXqMc="></latexit>

gu,d,s
A , gu,d,s

S , gu,d,s
T

• Sigma	terms:
<latexit sha1_base64="AycgAlFK0LDi8RjoaIB8SYpdG/0=">AAACynicbVFdb9MwFHXC1yhfHTzyEtEh8TBVSVet8IA0CYF4QNMQdJtUh8h2ndSa7SS2M1Z5fuMX8sY/4REndIi1u5Klo3POPb66F1ecaRPHv4Lw1u07d+9t3e89ePjo8ZP+9tNjXTaK0CkpealOMdKUM0mnhhlOTytFkcCcnuCzd61+ck6VZqX8apYVTQUqJMsZQcZTWZ9DzQqBsvqtyGrIaW4gR7LgNDq8hBgpW7v68hAqViwMVJ0Cad2w86j171rYjTBTBU5tPJyM3oyT0W48jLvyINkfT+J9V2RfvtUu6w+upOgfSNbBAKzqKNsOPsB5SRpBpSEcaT1L4sqkFinDCKeuBxtNK0TOUEFnHkokqE5tN5OLXnpmHuWl8k+aqGP/77BIaL0U2DsFMgu9rrXkjZq5aAP1te9ta8O45GtDmfx1apmsGkMl8WlkgRQixp+kByX9TkohkJxbKHCuhZslaQvLCwt91LzN3IGaKFYZbZac2kHidpzbaL2x8crciyK/+Y09b4Ljkb/XcO/zeHDwfnWDLfAcvACvQAIm4AB8BEdgCgj4CX4HQRCGn0IVLkP71xoGq55n4FqFP/4AY8jelA==</latexit>

�q = mq hN |q̄q|Ni ⌘ mq gq
S

<latexit sha1_base64="oysmxu+KOZvRcGC3Mpd4LavzLFM="></latexit>

�⇡N = mud hN| ūu + d̄d |Ni ⇡ m2
⇡

@mN

@m2
⇡

Quantities	include

[Aoki	et	al.,	1902.08191]

Form	factors	and	non-forward	matrix	elements,	not	(yet)	included

Control	over	systematics	assessed	according	to	quality	criteria:
• Chiral	extrapolation

• Finite-volume	effects

• Continuum	extrapolation

• Renormalisation

• Excited	states

2019	edition	(“FLAG	4”)	contains	section	on	nucleon	matrix	elements

FLAG	5:
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Isovector	charges:		preliminary	FLAG	5	update

13

[blue:	new	results	since	FLAG	4;	grey:	FLAG	4	averages;	solid	green:	basis	for	FLAG	4	average]

• Axial	charge:	percent-level	precision	reached		—	agreement	with	experimental	values

• Scalar	and	tensor	charges:	consistent	picture;	larger	errors	for		 	gu−d

S

Many	new	results	since	FLAG	4	—	confirmation	of	previous	global	estimates
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Two	different	methods:

Pion-nucleon	sigma-term

14

<latexit sha1_base64="oysmxu+KOZvRcGC3Mpd4LavzLFM="></latexit>

�⇡N = mud hN| ūu + d̄d |Ni ⇡ m2
⇡

@mN

@m2
⇡

FLAG	4	average	for		Nf = 2 + 1 :

σπN = (39.7 ± 3.6) MeV

	tension	with	result	from	 -scattering:2.5σ Nπ

σπN = (58 ± 5) MeV [Ruiz	de	Elvira	et	al.,	1706.01465]

Bias	from	excited-state	contributions?
		talk	by	Boram	Yoon→

“direct” Feynman-Hellman



Hartmut	Wittig

Form	factors	obtained	for	a	discrete	set	of	 -values,	at	a	given	value	of	 	and	non-zero	lattice	
spacing

Q2 mπ

Form	factor	calculations

15

• Extrapolate	to	the	physical	point:	continuum	and	infinite-volume	limits,	physical	mπ

• Describe	the	 -dependence:		dipole	fits	or	 -expansionQ2 z
<latexit sha1_base64="xzcSFiVr55f/roUp+AMXlpgoOmI="></latexit>

GE/M(Q2) =
X

k

aE/M
k z(Q2)k, z(Q2) =

p
tcut + Q2 � ptcutp
tcut + Q2 +

p
tcut

• Systematic	error	estimate	by	performing	variations	in	the	procedures	and	applying	cuts	to	the	data

• Alternative:	Direct	fits	to	the	dependence	of	form	factors	on	 	and	 supplemented	by	terms 
																						describing	the	 -dependence	and	finite-volume	corrections

Q2 mπ ,
a

[Bauer	et	al.,	PRC	86	(2012)	065206;	Capitani	et	al.,	1504.04628,	Djukanovic	et	al.,	2102.07460]

[Hill	&	Paz,	PRD	82	(2010)	113005]

		Fits	yield	electric,	magnetic	and	axial	charge	radii,	magnetic	moment,	axial	charge→
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Isovector	form	factors:		 -dependenceQ2

Electromagnetic	form	factors

16

hr2i ¼ −
3A
2m2

N
: ð22Þ

Another fit form, which has been applied recently to
experimental data of both electromagnetic and axial form
factors, is the model-independent z-expansion [9]. In this
case, the form factor is expanded in a series given by

GðQ2Þ ¼
Xkmax

k¼0

akzk; ð23Þ

where

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þQ2

p
− ffiffiffiffiffiffi

tcut
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þQ2

p
þ ffiffiffiffiffiffi

tcut
p ð24Þ

and tcut is the timelike cut of the form factor. We take tcut ¼
4m2

π for the isovector combination Gu −Gd and tcut ¼ 9m2
π

for the isoscalar combination Gu þ Gd [9]. For conver-
gence of the truncated series of Eq. (23), the coefficients ak
should be bounded in size and convergence should be
demonstrated by increasing kmax. The interested reader is
referred to Ref. [6] for details about our procedure. The
mean square radius is given by

hr2i ¼ −
3a1

2a0tcut
; ð25Þ

while the value of the form factor at zero momentum
transfer is Gð0Þ ¼ a0.

B. Fits to lattice QCD results

We consider first the isovector form factors where only
the connected diagram contributes. In Figs. 15 and 16 we

show fits using the dipole form, comparing between results
from the plateau method at ts=a ¼ 20 and from two-state
fits for Gu−d

E ðQ2Þ and Gu−d
M ðQ2Þ, respectively. As can be

seen, fits using the plateau and two-state methods are fully
consistent and do not show any significant systematic effect
on the determination of the Q2 dependence of the form
factors, indicating that excited states are sufficiently

FIG. 15. Gu−d
E ðQ2Þ from the plateau method for ts=a ¼ 20

(circles) and two-state fits (stars). The dashed (dotted) curve and
corresponding band is a dipole fit to the plateau (two-state) fit
results, which overlap.

FIG. 16. Gu−d
M ðQ2Þ from the plateau method for ts=a ¼ 20

(circles) and two-state fits (stars). The rest of the notation is as
in Fig. 15.

FIG. 17. The isovector electric form factor as a function of Q2

(circles). We show fits to our results using a dipole form (top) and
using the z-expansion (bottom) for kmax ¼ 4. Black crosses are
experimental results taken from the A1 Collaboration [1] for the
proton and from Refs. [4,46–59] for the neutron.

C. ALEXANDROU et al. PHYS. REV. D 100, 014509 (2019)

014509-14

[Alexandrou	et	al.	(ETMC),	1812.10311]
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Recent	calculations	for	a	variety	of	different	discretisations
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• The dipole fits to the a071m170 data with the
{4N⇡

, 2sim} strategy shown in Fig. 31 miss the low
Q

2 points, and the results di↵er from those from
the z

3 or the P2 analyses.

In short, these CCFV fits are not yet robust. For our best
estimate, we take the average of the z3 and P2 fits to the
{4N⇡

, 3⇤} strategy data and the larger of the two analyses
error. The same is done for µu�d

⌘ µ
p�n even though er-

rors in it at the two values of M⇡ are comparable and the
CCFV fits are reasonable. In both cases we use half the
spread between the {4N⇡

, 3⇤} and the {4N⇡
, 2sim} val-

ues as an additional systematic uncertainty for possible
residual ESC and Q

2 fit ansatz dependence.
With the above selections, our final results are

hr
2
E
i
u�d = 0.85(12)(19)sys fm

2
) rE = 0.92(12) fm ,

hr
2
M
i
u�d = 0.71(19)(23)sys fm

2
) rM = 0.84(18) fm ,

µ
u�d = 4.15(22)(10)sys . (54)

These radii are consistent with values obtained from
the Kelly parameterization [21] of the experimental data
given in Eq. (12) (see our review in appendix D in
Ref. [9]), and µ

p�n is about 2� smaller than the pre-
cisely measured value µ

p�n
|exp = 4.7059. The errors in

the lattice results are, of course, much larger.

XIV. PARAMETERIZING THE FORM
FACTORS GA, GE AND GM USING PADÉ FITS

The axial form factors of the nucleon are important in-
puts in the analysis of neutrino-nucleus scattering. They
are, however, not well measured due to safety concerns
with the use of liquid hydrogen targets. On the other
hand, GE and GM are well measured in electron scat-
tering experiments, so they provide a check on lattice
calculations of form factors in general. Since Kelly pa-
rameterization [21] of them has been very useful for phe-
nomenology, it would therefore be useful to a have similar
simple parameterization of the lattice axial form factor
to analyze the neutrino-nucleus scattering data.

It has been traditional to use a dipole ansatz to pa-
rameterize it, with the axial mass, MA, ranging from 1
to 1.35 GeV. While our data for ZAGA in Fig. 5 exhibit
some dependence on a and M⇡ for the {4N⇡

, 2sim} strat-
egy, it is clear that a dipole ansatz is not a good fit of
the data even over the range 0.04 < Q

2
< 1 GeV2. The

analysis in the previous section suggests that while the
data for the form factors have small errors, the CCFV
fits to charges and charge radii derived from them are
not yet robust, a consequence of having only seven en-
sembles and larger errors in the M⇡ ⇡ 170 MeV data.
However, we also note the small dependence of GA, GE

and GM on {a,M⇡,M⇡L} as shown in Figs. 5, 12 and 14.
This motivated the following alternate analysis.

We start with a simple parameterization assuming that
the dependence on a, M⇡ and M⇡L can be neglected,
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FIG. 16. Comparison of the dipole, P2 Padé, and z-expansion
fits to the combined data from the five larger volume ensem-
bles. We selected {4N⇡, 2sim} data for GA and {4N⇡, 3⇤} for
GE and GM as they show the least dependence on a and M⇡,
which is neglected in these fits. Result of the P2 fit to GA is
given in Eq. (55), and to GE and GM in Eq. (58).

and subsequently include a and M⇡ dependent correc-
tions as allowed. (This assumption is the least-well mo-
tivated for GA.) We also neglect data from the two
small volume ensembles, a094m270 and a091m170 with
M⇡L . 4, which show some evidence of finite volume
corrections. With the remaining data from five ensem-
bles (fifty Q

2
6= 0 points for GA and thirty for GE,M ), we

compare six parameterizations for each of the three form
factors: the dipole, two Padé, P (g, 0, 2) and P (g, 1, 3),
and three z-expansion fits, z

2,3,4. For GA, we use the

[Park	et	al.	(NME),	2103.05599] [Djukanovic	et	al.	(Mainz/CLS),	2102.07460]

Direct	chiral	EFT	fits	to	 	and	 	dependenceQ2 mπ
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Isovector	electric	and	magnetic	charge	radii	&	magnetic	moment
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µu�d

μH		(CREMA	Collab.) 	scattering		(A1	Collab.)ep

• Tension	of	 	between	A1 
and	Mainz/CLS	21	

2.7σ

• combine	proton	and	neutron 
charge	radii

<latexit sha1_base64="vr3yVaOlvo/WddDIoqYutV0PxK4="></latexit>

hr2
Eiu�d = hr2

Eip � hr2
Ein

<latexit sha1_base64="2hVZ2n6386X3pgIiKN/A6aTGFCM="></latexit>

hr2
Ei

exp
n = �0.1161(22) fm2

Comparison	with	experiment:
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Isoscalar	form	factors

18

Requires	the	calculation	of	quark-disconnected	diagrams: 
			 			stochastic	sources,	hierarchical	probing,	“one-end	trick”,	frequency	splitting→

Lattice	results	at	physical	 	versus	experimental	data:mπ

Q2
-dependence of the proton form factors at M⇡,phys

3
Bernauer et al. 2014.

Miguel Salg (JGU Mainz) Isoscalar EM form factors of the nucleon LATTICE21, July 27, 2021 13

Q2
-dependence of the proton form factors at M⇡,phys

3
Bernauer et al. 2014.

Miguel Salg (JGU Mainz) Isoscalar EM form factors of the nucleon LATTICE21, July 27, 2021 13

[M.	Salg	@	Lattice	2021]

Q2 values our results are systematically higher compared to
experiment, which is then reflected in the fit bands. Since
for low Q2 there is agreement, the extracted value for the
isoscalar magnetic moment agrees with the experimental
value. On the other hand, the slope of our lattice data is not
as steep as in the experimental results, which leads to a
smaller value for the corresponding radii.
In the top panel of Fig. 25 we show the isoscalar electric

square radius. As can be seen, the z-expansion fit yields

FIG. 23. Isoscalar electric form factor (circles) as a function of
Q2. We combine the connected contribution from the plateau for
ts=a ¼ 20 with the disconnected contribution for ts=a ¼ 14. The
remaining notation is as in Fig. 17.

FIG. 24. Isoscalar magnetic form factor. The notation is as in
Fig. 23.

FIG. 22. Comparison of the connected (open circles) and total
(filled circles) contributions to the isoscalar electric (top) and
magnetic (bottom) form factors. Dipole fits to the connected and
total contributions are shown with the dotted and dashed curves
respectively.

FIG. 25. Results for the isoscalar charge square radius, mag-
netic moment, and magnetic square radius. The notation is as
in Fig. 19.
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014509-17

[Alexandrou	et	al.,	1812.10311]

0, !p, s ts, !p′, s′
t

γµ

∼ 〈N(p′, s′) |Vµ(x)|N(p, s)〉

0, !p, s ts, !p ′, s′
t

Vµ, Aµ

0, !p, s ts, !p ′, s′

t

Vµ, Aµ

2

[Dinter	et	al.,	1202.1480;	Stathopoulos	et	al.,	1302.4018;	Giusti	et	al.,	1903.10447]
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Results	in	the	continuum	limit:
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Figure 18. Results for the form factors obtained from the !2P (blue) and the !z4+3 (green) fits.
The bands show the statistical and systematic errors added in quadrature. The left panel shows
the axial form factor GA(Q2). At Q2 = 0 the black circle indicates the experimental result for
gA [109] (see also refs. [1–4]), while the lines indicate the slope of the corresponding fit. On the
right panel we plot the results for mµ

2mGP̃ (Q
2), which can be compared to the experimental value

for the induced pseudoscalar coupling g?P (cf. eq. (4.31)) from OMC [18, 19] (black circle).

Note, however, that the pion pole dominance assumption for the pseudoscalar form factors

is only a (seemingly very good) estimate and is not expected to be satisfied exactly, even

in the continnum. PCAC, however, has to hold exactly in the continuum. We leverage the

latter information in our form factor analysis: in addition to the usual dipole ansatz and

the z-expansion, we have derived (for both cases) parametrizations that are consistent with

PCAC in the continuum, cf. section 4.2.3. The latter stabilize the continuum extrapolation

considerably, without adding any parametrization bias.

Using a large set of CLS ensembles, we are able to take all the relevant limits (contin-

uum limit, infinite volume limit, and extrapolation to physical quark masses) in a controlled

fashion. To this end, we use generic extrapolation formulas (see section 4.2.4) for the pa-

rameters occurring in the form factor parametrization. The results at the physical point (in

the continuum and for infinite volume) obtained from various form factor parametrizations

are given in tables 4 and 5. Within present errors, our form factor data are well represented

both by the dipole parametrization and by z-expansion fits. The final numbers, including

estimates of systematic uncertainties due to the quark mass and the continuum extrapo-

lation, can be taken from table 6. In figure 18 we show the results for the form factors.

One can see that the deviations between the dipole fit and the z-expansion mainly a↵ect

the small Q2 region, and gradually disappear at increasing momentum transfer Q2. Files

containing the data used to create this figure are included as supplementary material.

In particular the slope of the axial form factor at zero momentum transfer, which is

proportional to the axial radius (i.e., inversely proportional to the so-called axial mass),

exhibits a substantial parametrization dependence, as can be seen in figure 18. To reduce

this ambiguity and to eventually rule out one of the parametrizations one would have

to improve the resolution of the form factor in the region of small momentum transfer.

This can be achieved by increasing the number of data points at very small values of Q2

(one could also compute the derivative of the form factor at Q2 = 0 [158, 159]) or by
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Figure 18. Results for the form factors obtained from the !2P (blue) and the !z4+3 (green) fits.
The bands show the statistical and systematic errors added in quadrature. The left panel shows
the axial form factor GA(Q2). At Q2 = 0 the black circle indicates the experimental result for
gA [109] (see also refs. [1–4]), while the lines indicate the slope of the corresponding fit. On the
right panel we plot the results for mµ

2mGP̃ (Q
2), which can be compared to the experimental value

for the induced pseudoscalar coupling g?P (cf. eq. (4.31)) from OMC [18, 19] (black circle).

Note, however, that the pion pole dominance assumption for the pseudoscalar form factors

is only a (seemingly very good) estimate and is not expected to be satisfied exactly, even

in the continnum. PCAC, however, has to hold exactly in the continuum. We leverage the

latter information in our form factor analysis: in addition to the usual dipole ansatz and

the z-expansion, we have derived (for both cases) parametrizations that are consistent with

PCAC in the continuum, cf. section 4.2.3. The latter stabilize the continuum extrapolation

considerably, without adding any parametrization bias.

Using a large set of CLS ensembles, we are able to take all the relevant limits (contin-

uum limit, infinite volume limit, and extrapolation to physical quark masses) in a controlled

fashion. To this end, we use generic extrapolation formulas (see section 4.2.4) for the pa-

rameters occurring in the form factor parametrization. The results at the physical point (in

the continuum and for infinite volume) obtained from various form factor parametrizations

are given in tables 4 and 5. Within present errors, our form factor data are well represented

both by the dipole parametrization and by z-expansion fits. The final numbers, including

estimates of systematic uncertainties due to the quark mass and the continuum extrapo-

lation, can be taken from table 6. In figure 18 we show the results for the form factors.

One can see that the deviations between the dipole fit and the z-expansion mainly a↵ect

the small Q2 region, and gradually disappear at increasing momentum transfer Q2. Files

containing the data used to create this figure are included as supplementary material.

In particular the slope of the axial form factor at zero momentum transfer, which is

proportional to the axial radius (i.e., inversely proportional to the so-called axial mass),

exhibits a substantial parametrization dependence, as can be seen in figure 18. To reduce

this ambiguity and to eventually rule out one of the parametrizations one would have

to improve the resolution of the form factor in the region of small momentum transfer.

This can be achieved by increasing the number of data points at very small values of Q2

(one could also compute the derivative of the form factor at Q2 = 0 [158, 159]) or by
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[Bali	et	al.	(RQCD),	1911.13150]

Treatment	of	excited 
states	has	significant 

impact	on	⟨r2
A⟩
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FIG. 9: Results for the strange form factor Gs
A(Q

2) (left) and Gs
P (Q

2) (right) as a function of Q2. Following the notation of
Fig. 5, we use open symbols when plotting the form factors as a function of Q2 when only disconnected contributions enter.
We also show the fit using the dipole form taking the upper fit range up to '0.5 GeV2 (green dotted line and band). The rest
of the notation is the same as in Fig. 5.

TABLE IV: Parameters extracted from Gs
A(Q

2) and Gs
P (Q

2) using the dipole Ansatz and the z-expansion. The notation is the
same as that in Table III up to column five. The next columns are Gs

p(0), the value of the induced pseudoscalar form factor

for Q2 = 0, ms
P the dipole mass and

p
h(rsP )2i the r.m.s radius.

Fit Type Q2

max [GeV2] ms
A [GeV]

p
h(rsA)2i [fm] �2/d.o.f Gs

P (0) ms
P [GeV]

p
h(rsP )2i [fm] �2/d.o.f

Dipole
' 0.5 0.874(162) 0.782(145) 1.33 -3.328(1.224) 0.381(59) 1.796(276) 0.91
' 1 0.992(164) 0.689(114) 1.48 -1.325(406) 0.609(89) 1.122(164) 1.16

z-expansion
' 0.5 0.702(179) 0.973(248) 0.99 -2.531(415) 0.502(19) 1.360(52) 0.66
' 1 0.695(169) 0.984(239) 0.81 -1.600(237) 0.543(24) 1.260(56) 1.03

FIG. 10: Results for the charm form factors, Gc
A(Q

2) (left) and Gc
P (Q

2) (right), as a function of Q2. The notation is the same
as that in Fig. 9.

VII. ANALYSIS OF THE FLAVOR SINGLET AND OCTET AXIAL FORM FACTORS AND THE SU(3)
SYMMETRY BREAKING

The determination of isoscalar and strange form factors allows us to construct the corresponding SU(3) flavor octet
and singlet form factors. We would like to highlight that these quantities are computed for the first time directly at
the physical point.

In Fig. 11 we present results for the SU(3) flavor octet axial form factorGu+d�2s
A (Q2) and for the singletGu+d+s

A (Q2).

[Alexandrou	et	al.	(ETMC),	2106.13468]
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Lattice	QCD	exceeds	
experimental	precision
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-0.04 -0.02 0.0

hr2Mis [fm2]

-0.08 -0.04 0.0

µs

Measured	by	SAMPLE,	HAPPEX,	G0,	A4	
experiments,	e.g.

<latexit sha1_base64="8GeksvgLm9YhO6uwHAqxIX3YTy8="></latexit>

Gs
M(Q2 = 0.22 GeV2) = �0.14 ± 0.11 ± 0.11

<latexit sha1_base64="2iiancrj232nDWQ3hUFPDx4PBaY="></latexit>

Gs
E(Q2 = 0.22 GeV2) = 0.050 ± 0.038 ± 0.019

[Baunack	et	al.	(A4	Collab.),	PRL		102	(2009)	151803]
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Summary

Thank	you!


