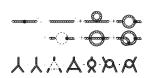
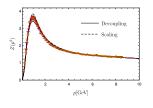
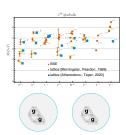
Glueballs from functional equations







Markus Q. Huber Institute of Theoretical Physics Giessen University

MQH, Phys.Rev.D 101, <u>arXiv:2003.13703</u> MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C 80, arXiv:2004.00415

A Virtual Tribute to *Quark Confinement and the Hadron Spectrum* 2021, virtually in Stavanger, Norway, Aug. 6, 2021

Bound states in QCD

Mesons

Baryons

Bound states in QCD

Mesons

Baryons

First observations 2015 (LHCb)

Tetraquarks

Increasing number of confirmed states. Bound state equations perspective: [Eichmann, Fischer, Heupel, Santowsky, Wallbott '201

Hybrids

States of pure 'radiation'

Glueball observations

Experimental candidates, but situation not conclusive.

Scalar glueball: 0⁺⁺, mixing with scalar isoscalar mesons

Candidate reaction: $J/\psi \rightarrow \gamma + 2g$

Glueball observations

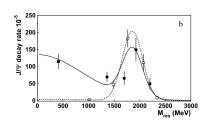
Experimental candidates, but situation not conclusive.

Scalar glueball: 0⁺⁺, mixing with scalar isoscalar mesons

Candidate reaction: $J/\psi \rightarrow \gamma + 2g$

Recent analysis of BESIII data [Sarantsev, Denisenko, Thoma, Klempt '21]:

$$M=1865\pm25^{+10}_{-30}\,{
m MeV}, \ \Gamma=370\pm50^{+30}_{-20}\,{
m MeV}$$



→ Talk Klempt

Yang-Mills theory

- "Isolated" problem: only gluons
- Clean picture: well-established lattice results

Markus Q. Huber Aug. 6, 2021 4/17

Yang-Mills theory

- "Isolated" problem: only gluons
- Clean picture: well-established lattice results

QCD glueballs: mixing with quarks

Markus Q. Huber Aug. 6, 2021 4/17

Yang-Mills theory

- "Isolated" problem: only gluons
- Clean picture: well-established lattice results

QCD glueballs: mixing with quarks

Unquenching on the lattice [Gregory et al. '12]:

- Much higher statistics required (poor signal-to-noise ratio)
- Continuum extrapolation and inclusion of fermionic operators still to be done
- Mixing with qq challenging
- Tiny (e.g., 0⁺⁺, 2⁺⁺) to moderate unquenching effects (e.g., 0⁻⁺) found
- $m_{\pi} = 360 \, \text{MeV}$

Yang-Mills theory

- "Isolated" problem: only gluons
- Clean picture: well-established lattice results
- Functional methods: High quality input available for bound state equations

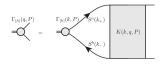
QCD glueballs: mixing with quarks

Unquenching on the lattice [Gregory et al. '12]:

- Much higher statistics required (poor signal-to-noise ratio)
- Continuum extrapolation and inclusion of fermionic operators still to be done
- Mixing with qq challenging
- Tiny (e.g., 0⁺⁺, 2⁺⁺) to moderate unquenching effects (e.g., 0⁻⁺) found
- $m_{\pi} = 360 \, \text{MeV}$

Hadrons from bound state equations

Example: Meson



Integral equation: $\Gamma(q,P) = \int dk \, \Gamma(k,P) \, S(k_+) \, S(k_-) \, K(k,q,P)$

Hadrons from bound state equations

Bethe-Salpeter amplitude

Example: Meson

 $\Gamma_{[h]}(q,P) \qquad \Gamma_{[h]}(k,P) \cdot S^{u}(k_{+})$ $= \qquad \qquad S^{b}(k_{-}) \qquad K(k,q,P)$

Integral equation: $\Gamma(q, P) = \int dk \, \Gamma(k, P) \, S(k_+) \, S(k_-) \, K(k, q, P)$

Ingredients:

Quark propagator S



Nonperturbative diagram: full momentum dependent dressings → numerical solution

- Interaction kernel K
- Constrained by symmetries

Need @ and \cite{M} , solve for \cite{M} . \to Mass

Need @ and $\begin{tabular}{l} \end{tabular}$, solve for $\begin{tabular}{l} \end{tabular}$. \rightarrow Mass Not quite. . .

Gluons couple to ghosts \rightarrow Include 'ghostball'-part.

 $(\text{First step: no quarks} \\ \rightarrow \text{Yang-Mills theory})$

Gluons couple to ghosts \rightarrow Include 'ghostball'-part.

 $(First \ step: \ no \ quarks \\ \rightarrow \ Yang-Mills \ theory)$

Need
$$@$$
, --- and $4\times$, solve for \rightarrow and \rightarrow . \rightarrow Mass

Construction of kernel

Consistency with input: Apply same construction principle.

Gluons couple to ghosts \rightarrow Include 'ghostball'-part.

(First step: no quarks \rightarrow Yang-Mills theory)

Need
$$\mathfrak{QQ}$$
, --- and $4\times$, solve for \rightarrow and \rightarrow . \rightarrow Mass

Construction of kernel

Consistency with input: Apply same construction principle.

Previous BSE calculations for glueballs:

- Meyers, Swanson '13]
- ► [Sanchis-Alepuz, Fischer, Kellermann, von Smekal '15]
- [Souza et al. '20]
- [Kaptari, Kämpfer '20]

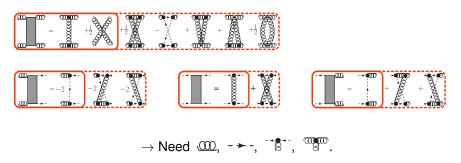
⇒ Input is important for quantitative predictive power!

[MQH, Fischer, Sanchis-Alepuz '20]

Kernel construction

From 3PI effective action truncated to three-loops:

[Fukuda '87; McKay, Munczek '89; Sanchis-Alepuz, Williams '15; MQH, Fischer, Sanchis-Alepuz '20]

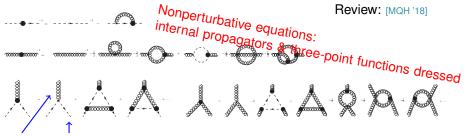


- Some diagrams vanish for certain quantum numbers.
- Full QCD: Same for quarks \rightarrow Mixing with mesons.

Review: [MQH '18]

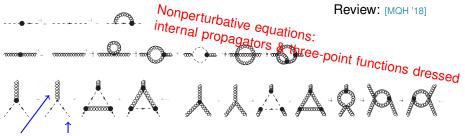
Gluon and ghost fields: Elementary fields of Yang-Mills theory in the Landau gauge

Self-contained system of equations with the scale as the only input.



Gluon and ghost fields: Elementary fields of Yang-Mills theory in the Landau gauge

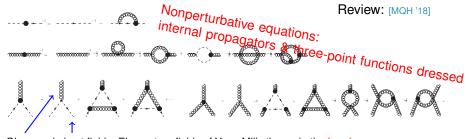
Self-contained system of equations with the scale as the only input.



Gluon and ghost fields: Elementary fields of Yang-Mills theory in the Landau gauge

Self-contained system of equations with the scale as the only input.

Truncation → 3-loop expansion of 3PI effective action [Berges '04]



Gluon and ghost fields: Elementary fields of Yang-Mills theory in the Landau gauge

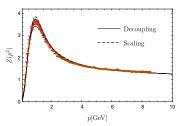
Self-contained system of equations with the scale as the only input.

Truncation→ 3-loop expansion of 3PI effective action [Berges '04]

- 4 coupled integral equations with full kinematic dependence.
- Sufficient numerical accuracy required for renormalization.
- One- and two-loop diagrams [Meyers, Swanson '14; MQH '17; Eichmann, Pawlowski, Silva '21].

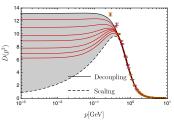
Landau gauge propagators

Gluon dressing function:

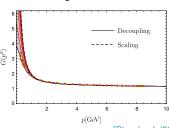


- Family of solutions:
 Nonperturbative completions of Landau gauge [Maas '10]?
- Realized by condition on G(0)
 [Fischer, Maas, Pawlowski '08; Alkofer, MQH,
 Schwenzer '08]
- Results here independent of G(0)

Gluon propagator:



Ghost dressing function:

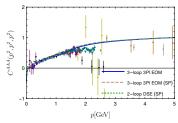


[Sternbeck '06; MQH '20]

Concurrence of functional methods

Exemplified with three-gluon vertex.

3PI vs. 2-loop DSE:

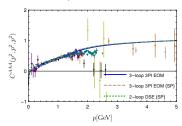


[Cucchieri, Maas, Mendes '08; Sternbeck et al. '17; MQH '20]

Concurrence of functional methods

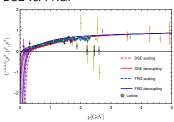
Exemplified with three-gluon vertex.

3PI vs. 2-loop DSE:



[Cucchieri, Maas, Mendes '08; Sternbeck et al. '17; MQH '20]

DSF vs. FRG:

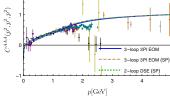


[Cucchieri, Maas, Mendes '08; Sternbeck et al. '17; Cyrol et al. '16; MQH '20]

Concurrence of functional methods

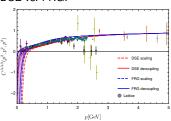
Exemplified with three-gluon vertex.

3PI vs. 2-loop DSE:



[Cucchieri, Maas, Mendes '08; Sternbeck et al. '17; MQH '201

DSF vs. FRG:



[Cucchieri, Maas, Mendes '08; Sternbeck et al. '17; Cyrol et al. '16; MQH '20]

Beyond this truncation

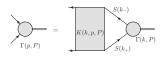
- Further dressings of three-gluon vertex [Eichmann, Williams, Alkofer, Vujinovic '14]
- Effects of four-point functions [MQH '16, MQH '17, Corell et al. '18, MQH '18]

Solving a BSE

$$\Gamma(p,P) = K(k,p,P) \int_{S(k_+)}^{S(k_-)} \Gamma(k,P)$$

Solving a BSE

BSE



Consider the eigenvalue problem (Γ is the BSE amplitude)

$$\mathcal{K} \cdot \Gamma(P) = \lambda(P) \Gamma(P).$$

 $\lambda(P^2) = 1$ is a solution to the BSE \Rightarrow Glueball mass $P^2 = -M^2$

Markus Q. Huber Aug. 6, 2021

Solving a BSE

Consider the eigenvalue problem (Γ is the BSE amplitude)

$$\mathcal{K} \cdot \Gamma(P) = \lambda(P) \Gamma(P).$$

 $\lambda(P^2) = 1$ is a solution to the BSE \Rightarrow Glueball mass $P^2 = -M^2$

Calculation requires quantities for

$$k_{\pm}^2 = P^2 + k^2 \pm 2\sqrt{P^2 \, k^2} \cos \theta = -M^2 + k^2 \pm 2 \, i \, M \, \sqrt{k^2} \, \cos \theta.$$

⇒ Complex momentum arguments.

Direct calculation from functional methods possible, e.g., [Fischer, MQH '20]. → talk by Windisch

Alternative

Extrapolate λ from $P^2 > 0$.

Extrapolation of $\lambda(P^2)$

Method

Extrapolation method

- Extrapolation to time-like P^2 using Schlessinger's continued fraction method (proven superior to default Padé approximants) [Schlessinger '68]
- Average over extrapolations using subsets of points for error estimate

Markus Q. Huber Aug. 6, 2021

Extrapolation of $\lambda(P^2)$

Extrapolation method

- Extrapolation to time-like P^2 using Schlessinger's continued fraction method (proven superior to default Padé approximants) [Schlessinger '68]
- Average over extrapolations using subsets of points for error estimate

$$f(x) = \frac{f(x_1)}{1 + \frac{a_1(x - x_1)}{1 + \frac{a_2(x - x_2)}{a_3(x - x_3)}}}$$

Coefficients ai can determined such that f(x) exact at x_i .

Markus Q. Huber Aug. 6, 2021

Extrapolation of $\lambda(P^2)$

Extrapolation method

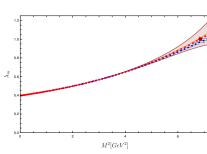
- Extrapolation to time-like P² using Schlessinger's continued fraction method (proven superior to default Padé approximants) [Schlessinger '68]
- Average over extrapolations using subsets of points for error estimate

Test extrapolation for solvable system:

Heavy meson [MQH, Sanchis-Alepuz, Fischer '20]

$$f(x) = \frac{f(x_1)}{1 + \frac{a_1(x - x_1)}{1 + \frac{a_2(x - x_2)}{1 + \frac{a_3(x - x_3)}{1 + \frac{a$$

Coefficients a_i can determined such that f(x) exact at x_i .

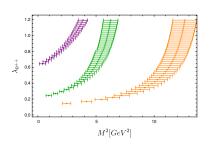


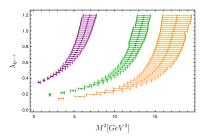
Extrapolation of $\lambda(P^2)$ for glueballs

Higher eigenvalues: Excited states.

Extrapolation of $\lambda(P^2)$ for glueballs

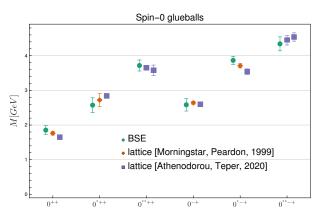
Higher eigenvalues: Excited states.





Physical solutions for $\lambda(P^2) = 1$.

Glueballs masses for 0^{±+}

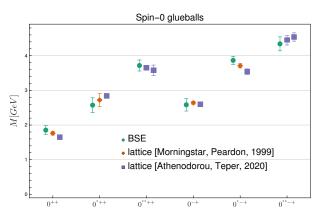


Lattice 0**++: Conjectured based on irred. rep. of octahedral group

All results for $r_0 = 1/418(5)$ MeV.

[MQH, Fischer, Sanchis-Alepuz '20]

Glueballs masses for 0^{±+}



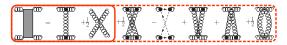
Lattice 0**++: Conjectured based on irred. rep. of octahedral group

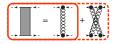
All results for $r_0 = 1/418(5)$ MeV.

[MQH, Fischer, Sanchis-Alepuz '20]

Two-loop diagrams

Results from [MQH, Fischer, Sanchis-Alepuz '20] were from one-loop terms only:



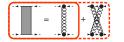


Fully self-consistent DSE/BSE truncation

→ two-loop terms (complete 3-loop truncated 3PI effective action)

Two-loop diagrams

Results from [MQH, Fischer, Sanchis-Alepuz '20] were from one-loop terms only:



Fully self-consistent DSE/BSE truncation

 \rightarrow two-loop terms (complete 3-loop truncated 3PI effective action)

Drastic increase in computational resources, hence lower precision used.

Preliminary result for 0⁺⁺, 0⁻⁺: No effect on mass.

Markus Q. Huber Giessen University Aug. 6, 2021 15/1'

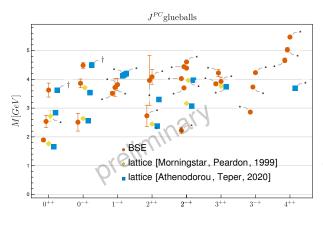
Glueball masses for $J^{\pm +}$

For higher spin, lager tensor bases: more tensors, more indices

Markus Q. Huber Giessen University Aug. 6, 2021 16/17

Glueball masses for $J^{\pm +}$

For higher spin, lager tensor bases: more tensors, more indices



Lattice:

- *: identification with some uncertainty
- †: conjecture based on irred. rep of octahedral group

[MQH, Fischer, Sanchis-Alepuz, in preparation]

Markus Q. Huber Giessen University Aug. 6, 2021 16/1

Parameter-free determination of glueball masses from functional methods.

 Quantitatively reliable correlation functions (Euclidean) from functional equations

- Quantitatively reliable correlation functions (Euclidean) from functional equations
 - Comparison with lattice results

- Quantitatively reliable correlation functions (Euclidean) from functional equations
 - Comparison with lattice results
 - Concurrence of different functional methods

- Quantitatively reliable correlation functions (Euclidean) from functional equations
 - Comparison with lattice results
 - Concurrence of different functional methods
- Connection to observables: Glueballs

- Quantitatively reliable correlation functions (Euclidean) from functional equations
 - Comparison with lattice results
 - Concurrence of different functional methods
- Connection to observables: Glueballs
- Systematic improvements (now) possible

Parameter-free determination of glueball masses from functional methods.

- Quantitatively reliable correlation functions (Euclidean) from functional equations
 - Comparison with lattice results
 - Concurrence of different functional methods
- Connection to observables: Glueballs
- Systematic improvements (now) possible

Thank you for your attention.

Markus Q. Huber Giessen University Aug. 6, 2021 17/17

Glueballs as bound states

Hadron masses from correlation functions of color singlet operators.

Markus Q. Huber Giessen University Aug. 6, 2021 18/17

Glueballs as bound states

Hadron masses from correlation functions of color singlet operators.

Example: For
$$J^{PC}=0^{++}$$
 glueball take $O(x)=F_{\mu\nu}(x)F^{\mu\nu}(x)$:

$$D(x-y)=\langle O(x)O(y)\rangle$$

- → Lattice: Mass from this correlator by exponential Euclidean time decay.
- Complicated object in a diagrammatic language: 2-, 3- and 4-gluon contributions

Markus Q. Huber Giessen University Aug. 6, 2021 18/17

Glueballs as bound states

Hadron masses from correlation functions of color singlet operators.

Example: For $J^{PC}=0^{++}$ glueball take $O(x)=F_{\mu\nu}(x)F^{\mu\nu}(x)$:

$$D(x-y) = \langle O(x)O(y) \rangle$$

- → Lattice: Mass from this correlator by exponential Euclidean time decay.
- Complicated object in a diagrammatic language: 2-, 3- and 4-gluon contributions

Put total momentum on-shell and consider individual 2-, 3- and 4-gluon contributions. \rightarrow Each can have a pole at the glueball mass.

 A^4 -part of D(x - y), total momentum on-shell:

Markus Q. Huber Giessen University Aug. 6, 2021 18/17

Charge parity

Transformation of gluon field under charge conjugation:

$$A_{\mu}^{a}
ightarrow-\eta(a)A_{\mu}^{a}$$

where

$$\eta(a) = \begin{cases}
+1 & a = 1, 3, 4, 6, 8 \\
-1 & a = 2, 5, 7
\end{cases}$$

Color neutral operator with two gluon fields:

$${\it A}_{\mu}^a{\it A}_{
u}^a
ightarrow\eta(a)^2{\it A}_{\mu}^a{\it A}_{
u}^a={\it A}_{\mu}^a{\it A}_{
u}^a.$$

$$\Rightarrow C = +1$$

Negative charge parity, e.g.:

$$d^{abc}A^a_\mu A^b_
u A^c_
ho
ightarrow - d^{abc}\eta(a)\eta(b)\eta(c)A^a_\mu A^b_
u A^c_
ho = \ - d^{abc}A^a_\mu A^b_
u A^c_
ho.$$

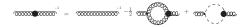
Only nonvanishing elements of the symmetric structure constant d^{abc} : zero or two indices equal to 2, 5 or 7.

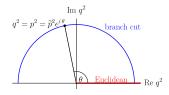
Markus Q. Huber Giessen University Aug. 6, 2021 19/1

Simpler truncation:

Markus Q. Huber Giessen University Aug. 6, 2021 20/17

Simpler truncation:

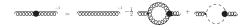


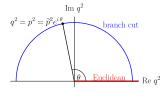


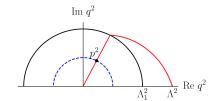
 \rightarrow Opening at $q^2 = p^2$.

Markus Q. Huber Giessen University Aug. 6, 2021 20/17

Simpler truncation:







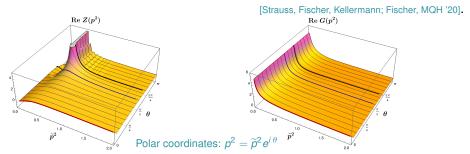
$$\rightarrow$$
 Opening at $q^2 = p^2$.

Appearance of branch cuts for complex momenta forbids integration directly to cutoff.

Deformation of integration contour necessary [Maris '95]. Recent resurgence: [Alkofer et al. '04; Windisch, MQH, Alkofer, '13; Williams '19; Miramontes, Sanchis-Alepuz '19; Eichmann et al. '19,...]

Markus Q. Huber Giessen University Aug. 6, 2021 20/1

Ray technique for self-consistent solution of a DSE:



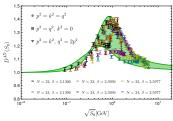
- Current truncation leads to a pole-like structure in the gluon propagator.
- Analyticity up to 'pole' confirmed by various tests (Cauchy-Riemann, Schlessinger, reconstruction)
- No proof of existence of complex conjugate poles due to simple truncation.

[Fischer, MQH '20]

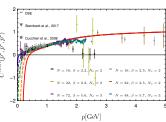
Markus Q. Huber Giessen University Aug. 6, 2021 21/17

Landau gauge vertices

Ghost-gluon vertex:



Three-gluon vertex:

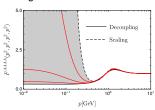


[Maas '19; MQH '20]

[Cucchieri, Maas, Mendes '08; Sternbeck et al. '17; MQH '20]

- Nontrivial kinematic dependence of ghost-gluon vertex
- Simple kinematic dependence of three-gluon vertex
- Four-gluon vertex from solution

Four-gluon vertex:



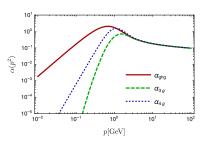
[MQH '20]

Markus Q. Huber Giessen University Aug. 6, 2021 22/

Some properties of the Landau gauge solution

[MQH '20]

 Slavnov-Taylor identities (gauge invariance): Vertex couplings agree down to GeV regime



Markus Q. Huber Giessen University Aug. 6, 2021 23/17

Some properties of the Landau gauge solution

[MQH '20]

 Slavnov-Taylor identities (gauge invariance): Vertex couplings agree down to GeV regime

 Renormalization: First parameter-free subtraction of quadratic divergences
 ⇒ One unique free parameter (family of solutions)

