Flow-based MCMC for Lattice Ensemble Generation
 (and progress towards the inclusion of fermions)

Gurtej Kanwar

Based on ...
... flow-based sampling for lattice QFT:
[Albergo, GK, Shanahan PRD100 (2019) 034515]
[Albergo, Boyda, Hackett, GK, Cranmer, Racanière, Rezende, Shanahan 2101.08176]
[Albergo, GK, Racanière, Rezende, Urban, Boyda, Cranmer, Hackett, Shanahan 2106.05934]
[Hackett, Hsieh, Albergo, Boyda, Chen, Chen, Cranmer, GK, Shanahan 2107.00734]
... flows for compact vars \& lattice gauge theories:
[GK, Albergo, Boyda, Cranmer, Hackett, Racanière, Rezende, Shanahan PRL125 (2020) 121601]
[Rezende, Papamakarios, Racanière, Albergo, GK, Shanahan, Cranmer ICML (2020) 2002.02428]
[Boyda, GK, Racanière, Rezende, Albergo, Cranmer, Hackett, Shanahan PRD103 (2021) 074504]
Quark Confinement and the Hadron Spectrum 2021 | Virtual (Aug 2-6, 2021)

Importance sampling: the workhorse of LQFT

Monte Carlo sampling for efficient estimation of (many) observables

$$
\langle\mathcal{O}\rangle=\frac{1}{Z} \int \mathscr{D} U \mathscr{O}(U) e^{-S(U)}
$$

$$
\langle\mathcal{O}\rangle \approx \frac{1}{n} \sum_{i=1}^{n} \mathcal{O}\left[U_{i}\right]
$$

Positive-definite integrand allows interpreting path integral weights as a probability measure:

$$
U_{i} \sim p(U)=e^{-S(U)} / Z
$$

Euclidean averages \rightarrow equilibrium properties
Markov chain Monte Carlo (MCMC)

- Asymptotically converges to distribution p

Example: MCMC to generate samples of scalar field configurations

- However: States of the chain are "autocorrelated"
- Discard some thermalization steps, save states "thinned" to a subset with minimal correlations

Importance sampling: the workhorse of LQFT

Monte Carlo sampling for efficient estimation of (many) observables

$$
\langle\mathcal{O}\rangle=\frac{1}{Z} \int \mathscr{D} U \mathcal{O}(U) e^{-S(U)}
$$

Positive-definite integrand allows interpreting path integral weights as a probability measure: $U_{i} \sim p(U)=e^{-S(U)} / Z$

Euclidean averages \rightarrow equilibrium properties
Markov chain Monte Carlo (MCMC)

- Asymptotically converges to distribution p

Skipped

- However: States of the chain are "autocorrelated"
- Discard some thermalization steps, save states "thinned" to a subset with minimal correlations

Motivations for applying ML

Critical slowing down and topological freezing obstruct MCMC sampling near the continuum limit.

- Problem: Local/diffusive Markov chain updates
- Generative ML models can directly sample, may be used to propose global updates

[Schaefer et al. / ALPHA collaboration NPB845 (2011) 93]

Generative models provide flexible "variational ansatz" distribution $q(U)$.

$$
q(U)=e^{-S_{\mathrm{eff}}(U)} \approx p(U)=e^{-S(U)-\log Z}
$$

After optimizing the model "ansatz":
\uparrow

ML modeling for LQFT

[See also: N. Gerasimenuik, next talk]
Estimating thermodynamic observables:

- Flow-based models precisely estimate $\log Z$
- Asymptotic exactness $N \rightarrow \infty$

This talk

Flow-based MCMC:

- Flows directly propose new configs
- Metropolis step (satisfying balance) for exactness

Improved HMC updates:

- NNs describing field transformations
- HMC updates using modified action / fields
- Exactness: Metropolis (true action)
[B. Yoon, previous talk]

Improved MC estimators:

- ML regression (efficient approx. estimators)
- Exactness via bias correction term

ML modeling for LQFT

[See also: N. Gerasimenuik, next talk]

This talk
Flow-based MCMC:

- Flows directly propose new configs
- Metropolis step (satisfying balance) for exactness

Improved HMC updates:

- NNs describing field transformations
- HMC updates using modified action / fields
- Exactness: Metropolis (true action)
[B. Yoon, previous talk]

Improved MC estimators:

- ML regression (efficient approx. estimators)
- Exactness via bias correction term

ML modeling for LQFT

[See also: N. Gerasimenuik, next talk]
[A. Tomiya, Fri]

Estimating thermodynamic observables:

This talk
Flow-based MCMC:

- Flows directly propose new configs
- Metropolis step (satisfying balance) for exactness

Improved HMC updates:

[B. Yoon, previous talk]

Improved MC estimators:

- ML regression (efficient approx. estimators)
- Exactness via bias correction term

ML modeling for LQFT

[See also: N. Gerasimenuik, next talk]

This talk
Flow-based MCMC:

- Flows directly propose new configs
- Metropolis step (satisfying balance) for exactness

Improved HMC updates:

[B. Yoon, previous talk]

Improved MC estimators:

ML modeling for LQFT

[See also: N. Gerasimenuik, next talk]
[A. Tomiya, Fri]

This talk

Common theme:

Black-box ML components wrapped inside exact schemes observables:

Improved HMC updates:
Estimating thermodynamic

Flow-bas

[B. Yoon, previous talk]
MC estimators:

- Flows directly propose new configs
- Metropolis step (satisfying balance) for exactness

Flow-based sampling: Overview

Flow-based sampling: Overview

(Convolutional) neural networks: Black-box (local) function approximators

Flow-based sampling: Overview

(Convolutional) neural networks: Black-box (local) function approximators
Coupling layers: Invertible transformations, tractable Jacobian

Flow-based sampling: Overview

(Convolutional) neural networks: Black-box (local) function approximators
Coupling layers: Invertible transformations, tractable Jacobian
Flow-based model: Transform prior density to computable and sample-able output model density

$$
q\left(\phi^{\prime}\right)=r(\phi)\left|\operatorname{det} \frac{\partial[f(\phi)]_{i}}{\partial \phi_{j}}\right|
$$

Flow-based sampling: Overview

(Convolutional) neural networks: Black-box (local) function approximators
Coupling layers: Invertible transformations, tractable Jacobian
Flow-based model: Transform prior density to computable and sample-able output model density

$$
q\left(\phi^{\prime}\right)=r(\phi)\left|\operatorname{det}_{i j} \frac{\partial[f(\phi)]_{i}}{\partial \phi_{j}}\right|
$$

Flow-based sampling: Overview

(Convolutional) neural networks: Black-box (local) function approximators
Coupling layers: Invertible transformations, tractable Jacobian
Flow-based model: Transform prior density to computable and sample-able output model density

Exactness:

- Use $q\left(\phi^{\prime}\right)$ and $p\left(\phi^{\prime}\right)$ to correct approximation

$$
q\left(\phi^{\prime}\right)=r(\phi)\left|\operatorname{det}_{i j} \frac{\partial[f(\phi)]_{i}}{\partial \phi_{j}}\right|
$$

Coupling layers

Idea: Construct each g to act on a subset of components, conditioned only on the complimentary subset. "Masking pattern" m defines subsets.
\rightarrow Jacobian is explicitly upper-triangular (get LDJ from diag elts)
"Updated" $i\left(m_{i}=0\right) \quad$ "Frozen" $i\left(m_{i}=1\right)$

Updated

\rightarrow Invertible if each diag component invertible, $\partial[g(V)]_{i} / \partial V_{i} \neq 0$.

Ex: RNVP for scalar fields

Real scalar field $\phi(x) \in \mathbb{R} \approx$ grayscale image
Real NVP coupling layer: [Dinh, Sohl-Dickstein, Bengio 1605.08803]

Ex: RNVP for scalar fields

Real scalar field $\phi(x) \in \mathbb{R} \approx$ grayscale image
Real NVP coupling layer: [Dinh, Sohl-Dickstein, Bengio 1605.08803]

Ex: RNVP for scalar fields

Real scalar field $\phi(x) \in \mathbb{R} \approx$ grayscale image
Real NVP coupling layer: [Dinh, Sohl-Dickstein, Bengio 1605.08803]

Optimizing the model

Must not require a large number of samples from real distribution to optimize!

Self-training:

- Gradient-based methods applied to loss function to optimize model params ω
- E.g. Adam optimizer [Kingma, Ba 1412.6980]
- Loss function = modified Kullback-Leibler (KL) divergence

Constant shift removes
unknown normalization $\begin{aligned} & D_{\mathrm{KL}}(q| | p):=\int \mathscr{D} U q(U)[\log q(U)-\log p(U)] \geq 0 \\ & D_{\mathrm{KL}}^{\prime}(q \| p):=\int \mathscr{D} U q(U)[\log q(U)+S(U)] \geq-\log Z \quad\left(U \operatorname{sing} p(U)=e^{-S(U)} / Z\right)\end{aligned}$

- To estimate loss for grad descent, draw samples from the model, measure sample mean of $[\log q(U)+S(U)]$

Exactness: Flow-based MCMC

Markov chain constructed using Independence Metropolis accept/reject on model proposals.
"Embarrassingly parallel" step!

- Independent proposals U^{\prime} from model distribution q
- Accept proposal U^{\prime}, making it next elt of Markov chain, with probability

$$
p_{\mathrm{acc}}\left(U \rightarrow U^{\prime}\right)=\min \left(1, \frac{p\left(U^{\prime}\right)}{q\left(U^{\prime}\right)} \frac{q(U)}{p(U)}\right) .
$$

- If rejected, duplicate previous elt of Markov chain
- Only need to compute observables on duplicated elts once!

Symmetries in flows

Invariant prior + equivariant flow = symmetric model

$$
r(t \cdot U)=r(U) \quad f(t \cdot U)=t \cdot f(U)
$$

Exact symmetry
Learned symmetry

Symmetries...

- Reduce data complexity of training
- Reduce model parameter count
- See [D. Müller, Fri] and [M. Favoni, Fri]

Invariant

Gauge symmetries in flows

Choose to act on the un-fixed link representation $U_{\mu}(x)$.
Carefully construct architecture to enforce...

Gauge-invariant prior:

Not very difficult! Uniform distribution works.

With respect to
Haar measure

$$
r(U)=1
$$

Gauge-equivariant flow:

Coupling layers acting on (untraced) Wilson loops.

Loop transformation easier to satisfy.

Gauge symmetries in flows

Choose to act on the un-fixed link representation $U_{\mu}(x)$.

Gauge-equivariant coupling layer

Compute a field of Wilson loops $W_{\ell}(x)$.
Inner coupling layer [function of $W_{\ell}(x)$]

- "Actively" update a subset of loops.*
- Condition on "frozen" closed loops.

Gauge invariant!
Outer coupling layer [function of $U_{\mu}(x)$]

- Solve for link update to satisfy actively updated loops.
- Other loops in $W_{\ell}(x)$ may "passively" update.

$$
W_{t}(x) \xrightarrow{\text { Flow }} W_{t}^{\prime}(x)
$$

Gauge-equivariant coupling layer

Compute a field of Wilson loops $W_{\ell}(x)$.
Inner coupling layer [function of $W_{\ell}(x)$]

- "Actively" update a subset of loops.*
- Condition on "frozen" closed loops.

$$
\begin{aligned}
& \text { * This "kernel" must satisfy: } \\
& h\left(W_{\ell}^{\Omega}(x)\right)=h^{\Omega}\left(W_{\ell}(x)\right)
\end{aligned}
$$

$W_{\ell}(x) \xrightarrow{\text { Flow }} W_{e}^{\prime}(x)$

Outer coupling layer [function of $U_{\mu}(x)$]

- Solve for link update to satisfy actively updated loops.
- Other loops in $W_{\ell}(x)$ may "passively" update.

Active, passive, and frozen loops

Active, passive, and frozen loops

Results for U(1) gauge theory

$$
\begin{aligned}
S(U) & =-\beta \sum_{x} \sum_{\mu<\nu} \operatorname{Re} P_{\mu \nu}(x) \\
P_{\mu \nu}(x) & =U_{\mu}(x) U_{\nu}(x+\hat{\mu}) U_{\mu}^{\dagger}(x+\hat{\nu}) U_{\nu}^{\dagger}(x)
\end{aligned}
$$

There is exact lattice topology in 2D.

$$
Q=\frac{1}{2 \pi} \sum_{x} \arg \left(P_{01}(x)\right)
$$

- Compared flow, analytical, HMC, and heat bath on 16×16 lattices for $\beta=\{1, \ldots, 7\}$
- Topo freezing in HMC and heat bath
- Gauge-equiv flow-based model at each β
- Flow-based MCMC observables agree

Topological susceptibility $\chi_{Q}=\left\langle Q^{2} / V\right\rangle$

Results for SU(2) and SU(3) gauge theory

- Similar study over 2D 16×16 lattices
- Flow-based MCMC observables agree with analytical
- High-quality models: autocorrelation time in flow-based Markov chain $\tau_{\text {int }}=1-4$

Results for SU(2) and SU(3) gauge theory

- Similar study over 2D 16×16 lattices
- Flow-based MCMC observables agree with analytical
- High-quality models: autocorrelation time in flow-based Markov chain $\tau_{\text {int }}=1-4$

Fermions in field theory

Grassmann representation in path integral means...

- ... we cannot sample fermion fields
- ... integrating out fermions results in costly fermion determinants

$$
\int \mathscr{D} \psi \mathscr{D} \bar{\psi} \prod_{f} e^{-\overline{\bar{f}}_{f} D_{f} \psi_{f}}=\prod_{f} \operatorname{det} D_{f}
$$

Pseudofermions used in standard MCMC for theories with dynamical fermions.

$$
\int \mathscr{D} \psi \mathscr{D} \bar{\psi} \prod_{f} e^{-\bar{\psi}_{f} D_{f} \psi_{f}} \propto \mathscr{D} \varphi \mathscr{D} \varphi^{\dagger} \prod_{k} e^{-\varphi_{k}^{\dagger} \mathscr{M}_{k}^{-1} \varphi_{k}}
$$

5 ways to marginalize

Any could in principle be learned by flow-based models.
Below: Bosonic part of action written generically as $S_{B}(\phi)$

Proposed exact sampling schemes

Using a variety of learned densities $q(\ldots)$ - Best choice not yet clear!

(1) ϕ-marginal

(3) Autoregressive

(2) Gibbs

(4) Joint

Key takeaways:

- Exact regardless of quality of modeled densities $q(\ldots)$
- Can define sampler over
... bosonic fields alone (ϕ) or
... bosonic + PF fields (ϕ, φ)
- For Gibbs, even a perfect model may have residual autocorrelations

Results for Yukawa model

Studied 2D ϕ^{4} model coupled via Yukawa interaction to staggered ψ

$$
S(\phi, \psi)=\sum_{x \in \Lambda}\left[-2 \sum_{\mu=1}^{d} \phi(x) \phi(x+\hat{\mu})+\left(m^{2}+2 d\right) \phi(x)^{2}+\lambda \phi(x)^{4}\right]+\sum_{f=1}^{N_{f}} \bar{\psi}_{f} D_{f}[\phi] \stackrel{\psi_{f}}{\underline{\psi_{f}}}
$$

- 16×16 lattices
- Two degenerate fermions ($N_{f}=2$)
- Massless ($M=0$)
- Variety of models, all 4 sampling schemes

Summary and Outlook

Gauge symmetry encoded in flow models using:

- Gauge equivariant coupling layers
- Kernels for $U(1)$ and $S U(N)$

Future directions:

1. Higher spacetime dims
2. Tuning of training hyperparameters
3. Efficient model architectures at scale?

Several building blocks for models targeting theories with dynamical fermions.

Effective models produced for $U(1)$, $S U(2), S U(3)$ lattice gauge theory and a ϕ^{4} Yukawa model in 1+1D.

Summary and Outlook

Gauge symmetry encoded in flow models using:

- Gauge equivariant coupling layers
- Kernels for $U(1)$ and $S U(N)$

Several building blocks for models targeting theories with dynamical fermions.

Effective models produced for $U(1)$, $S U(2), S U(3)$ lattice gauge theory and a ϕ^{4} Yukawa model in 1+1D.

Future directions:

1. Higher spacetime dims
2. Tuning of training hyperparameters
3. Efficient model architectures at scale?

See also:

Approaches to multimodal sampling and mixed HMC + flow-based sampling:
[Hackett, Hsieh, Albergo, Boyda, Chen, Chen,
Cranmer, GK, Shanahan; 2107.00734]
Jupyter notebook tutorial:
[Albergo, Boyda, Hackett, GK, Cranmer,
Racanière, Rezende, Shanahan; 2101.08176]

Backup Slides

$\mathrm{U}(1)$ topological freezing mitigated

U(1) observables

SU(N) observables

Learning SU(2) and SU(3) gauge theory

Normalizing flows trained for 2D lattice gauge theory on 16×16 lattices.

- Approx matched 't Hooft couplings, giving
$\beta=\{1.8,2.2,2.7\}$ for $S U(2)$ and $\beta=\{4.0,5.0,6.0\}$ for $S U(3)$
- 48 PAFF coupling layers, update all links 6 times

- No equivalent topo freezing, studied absolute model quality instead

All flow-based models exactly gauge-equiv by construction

Learned symmetry

U(1) kernels

Conjugation equivariance trivially satisfied: $h\left(\Omega W \Omega^{\dagger}\right)=h(W)=\Omega h(W) \Omega^{\dagger}$.
Invertible maps on $\mathrm{U}(1)$ variables:

- Periodic / compact domain must be addressed.
- For details, see:
[Rezende, Papamakarios, Racanière, Albergo, GK, Shanahan, Cranmer; ICML (2020) 2002.02428]
[Durkan, Bekasov, Murray, Papamakarios 1906.04032]

Non-compact projection:

- $\operatorname{Map} \theta \rightarrow x \in \mathbb{R}$, e.g. $\arctan (\theta / 2)$
- Transform $x \rightarrow x^{\prime}$ as usual
- $\operatorname{Map} x^{\prime} \rightarrow \theta^{\prime} \in[-\pi, \pi]$

Circular invertible splines:

- Spline "knots" trainable fns
- Identify endpoints π and $-\pi$
- Number of knots \leftrightarrow expressivity

SU(N) kernels: strategy

$\mathrm{SU}(\mathrm{N})$ matrix-conj. equivariance is non-trivial.

$$
h\left(\Omega W \Omega^{\dagger}\right)=\Omega h(W) \Omega^{\dagger}
$$

Useful observations:

- Conjugation only rotates eigenvectors.
- Spectrum is invariant.
- Wilson loop spectrum encodes gauge-invariant physics \rightarrow This is what we want to transform.

Strategy: Invertibly transform only the spectrum of W via a "spectral map".

SU(N) kernels: strategy

$\mathrm{SU}(\mathrm{N})$ matrix-conj. equivariance is non-trivial.

$$
h\left(\Omega W \Omega^{\dagger}\right)=\Omega h(W) \Omega^{\dagger}
$$

Useful observations:

- Conjugation only rotates eigenvectors.
- Spectrum is invariant.
- Wilson loop spectrum encodes gauge-invariant physics \rightarrow This is what we want to transform.

Strategy: Invertibly transform only the spectrum of W via a "spectral map".
r, "spectral flow"
$W=P\left(\begin{array}{lll}e^{i \phi_{1}} & & \\ & \ddots & \\ & & e^{i \phi_{N}}\end{array}\right) P^{\dagger}$

SU(N) kernels: See also [J. Thaler, Wed] for perm-inv NNs Permutation equivariance

SU(N) kernels: Transform the canonical cell

Change variables to rectilinear box Ω

Transform by acting on coords of box Ω, either...
Autoregressive ... or ... Independent

Testing SU(N) kernels

Gauge fixing?

Where gauge DoFs are explicitly
factored out, e.g. maximal tree
Explicit gauge fixing is at odds with translational symmetry + locality

Gauge fixing?

Where gauge DoFs are fixed by solving
a constraint, e.g. Landau gauge
Implicit gauge fixing difficult to act on via flow-based models

$$
\left.\begin{array}{ll}
\text { Landau gauge: } & U_{\mu}^{\mathrm{fix}}(x)=\operatorname{argmin}_{U^{\Omega}} \sum_{x} \sum_{\mu=1}^{N_{d}} \operatorname{Re} \operatorname{Tr}\left[U_{\mu}^{\Omega}(x)\right] \\
\text { Coulomb gauge: } & U_{\mu}^{\mathrm{fix}}(x)=\operatorname{argmin}_{U^{\Omega}} \sum_{x} \sum_{\mu=1}^{N_{d}-1} \operatorname{Re} \operatorname{Tr}\left[U_{\mu}^{\Omega}(x)\right]
\end{array}\right\} \quad \begin{gathered}
\text { Unclear how to invertibly } \\
\text { transform } U_{\mu}^{\mathrm{fix}}(x) .
\end{gathered}
$$

Center symmetry

Using only contractible loops in coupling layers enforces center symmetry.

Fundamental fermions:

- Center symmetry explicitly broken
- Must include non-contractible loops (e.g. Polyakov) in the set of frozen and/or transformed loops

$\uparrow^{\nu} \mu$

Exactness: Reweighting

- Also possible to reweight independently drawn samples:

$$
\langle\mathcal{O}\rangle=\frac{\int \mathscr{D} U q(U)\left[\mathscr{O}(U) \frac{p(U)}{q(U)}\right]}{\int \mathscr{D} U q(U)\left[\frac{p(U)}{q(U)}\right]}
$$

- May be preferable when observables $\mathcal{O}(U)$ are efficiently computed, and sampling is expensive.
- Observables $\mathcal{O}(U)$ are expensive in lattice QCD. We prefer resampling or MCMC approaches in these settings.

Translational equivariance

1. Make context functions Convolutional Neural Nets:

- Compute output value for each site from linear transform of nearby DOF only
- Reuse same weights, scanning kernel across the lattice

CNNs are equivariant under translations.
2. Make masking pattern (mostly) translationally invariant.

- E.g. checkerboard is symmetric modulo \mathbb{Z}_{2} even/odd

- Gauge theory: translational equiv modulo $\mathbb{Z}_{4} \times \mathbb{Z}_{4}$

Details of $S U(2)$ models

- Inner flow on open box Ω is a spline flow with 4 knots
- B and $-B$ boundaries align to 0 and 1 edges of the open box
- CNNs to compute the knot locations

[Durkan, Bekasov, Murray, Papamakarios 1906.04032]
- 32 hidden channels
- 2 hidden layers

Details of $S U(3)$ models

- Inner flow on open box Ω is a spline flow with 16 knots
- B and $-B$ boundaries align to 0 and 1 edges of the open box

[Durkan, Bekasov, Murray, Papamakarios 1906.04032]
- CNNs to compute the knot locations
- 32 hidden channels
- 2 hidden layers
- Exact conjugation equivariance also imposed

Gauge theory model training

- Adam optimizer ~ stochastic grad. descent with momentum
- Batches of size 3072 per gradient descent step
- Monitored value of effective sample size (ESS)

$$
\begin{gathered}
\mathrm{ESS}=\frac{\left(\frac{1}{n} \sum_{i} w\left(U_{i}\right)\right)^{2}}{\frac{1}{n} \sum_{i} w\left(U_{i}\right)^{2}}, \quad U_{i} \sim q(U) \\
w(U)=p(U) / q(U) \quad \text { "reweighting factors" }
\end{gathered}
$$

- Transfer learning: model trained first on 8×8 then used to initialize model for training on 16×16

