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Based on …
… flow-based sampling for lattice QFT:

… flows for compact vars & lattice gauge theories:

(and progress towards 
the inclusion of fermions)

[Hackett, Hsieh, Albergo, Boyda, Chen, Chen, Cranmer, GK, Shanahan  2107.00734]
[Albergo, GK, Racanière, Rezende, Urban, Boyda, Cranmer, Hackett, Shanahan  2106.05934]



Importance sampling: the workhorse of LQFT
Monte Carlo sampling for efficient estimation of (many) observables 
 
 
 
 

Markov chain Monte Carlo (MCMC)


- Asymptotically converges to distribution 


- However: States of the chain are “autocorrelated”


- Discard some thermalization steps, save states 
“thinned” to a subset with minimal correlations

p

⟨𝒪⟩ ≈
1
n

n

∑
i=1

𝒪[Ui] Ui ∼ p(U) = e−S(U)/Z

. . .

Example: MCMC to generate samples of scalar field configurations

⟨𝒪⟩ =
1
Z ∫ 𝒟U 𝒪(U) e−S(U)

Positive-definite integrand allows interpreting path 
integral weights as a probability measure:

Euclidean averages  equilibrium properties→
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Motivations for applying ML
Critical slowing down and topological freezing 
obstruct MCMC sampling near the continuum limit.


- Problem: Local/diffusive Markov chain updates


- Generative ML models can directly sample, may be 
used to propose global updates

q(U) = e−Seff(U) ≈ p(U) = e−S(U)−log Z

After optimizing the model “ansatz”:
Seff(U) ≈ S(U) + log Z

↔

Efficiently sampled Desired target
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[Schaefer et al. / ALPHA collaboration NPB845 (2011) 93]

Generative models provide flexible “variational ansatz” distribution .q(U)



ML modeling for LQFT
Estimating thermodynamic 

observables: 
• Flow-based models precisely 

estimate 


• Asymptotic exactness 

log Z

N → ∞

[See also: N. Gerasimenuik, next talk]

Improved HMC updates: 
• NNs describing field transformations


• HMC updates using modified 
action / fields


• Exactness: Metropolis (true action)

[A. Tomiya, Fri]

Flow-based MCMC: 
• Flows directly propose new configs


• Metropolis step (satisfying balance) 
for exactness

This talk

Improved MC estimators: 
• ML regression (efficient approx. 

estimators)


• Exactness via bias correction term

[B. Yoon, previous talk]
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Improved MC estimators: 
• ML regression (efficient approx. 

estimators)


• Exactness via bias correction term
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[1807.05971]
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Common theme: 

Black-box ML components wrapped 
inside exact schemes
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Flow-based sampling: Overview
(Convolutional) neural networks: Black-box (local) function approximators

Coupling layers: Invertible transformations, tractable Jacobian

Flow-based model: Transform prior density to computable and sample-able 
output model density

q(ϕ′�) = r(ϕ) det
ij

∂[ f(ϕ)]i

∂ϕj

−1

Training: 
• Measure KL divergence

• Apply gradient-based opt

Exactness: 
• Use  and to 

correct approximation
q(ϕ′�) p(ϕ′�)



Coupling layers
Idea: Construct each  to act on a subset of components, conditioned only on 
the complimentary subset. “Masking pattern”  defines subsets.


 →  Jacobian is explicitly upper-triangular (get LDJ from diag elts) 
 
 
 
 
 
 
 

 →  Invertible if each diag component invertible, .

g
m

∂[g(V)]i/∂Vi ≠ 0

∂[g(V )]i

∂Vj
=

∂[g(V)]1

∂V1

∂[g(V)]2

∂V2
(nonzero)

⋱
1

0 1
⋱

“Updated”  ( )i mi = 0 “Frozen”  ( )i mi = 1 Updated Frozen

U
pd

at
ed
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oz

en

Schematically

Similar to leapfrog integrator



Ex: RNVP for scalar fields
Real scalar field     grayscale image


Real NVP coupling layer:

ϕ(x) ∈ ℝ ≈
[Dinh, Sohl-Dickstein, Bengio 1605.08803]

Freeze B

Update A

Checkerboard masking pattern m
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Ex: RNVP for scalar fields
Real scalar field     grayscale image


Real NVP coupling layer:

ϕ(x) ∈ ℝ ≈
[Dinh, Sohl-Dickstein, Bengio 1605.08803]

Affine transformation

→ manifestly invertible!

Context functions implemented 
using neural network (NN)

Freeze B

Update A

Checkerboard masking pattern m



Optimizing the model
Must not require a large number of samples from real distribution to optimize!


Self-training: 

• Gradient-based methods applied to loss function to optimize model params 


- E.g. Adam optimizer


• Loss function = modified Kullback-Leibler (KL) divergence 
 
 
 
 

• To estimate loss for grad descent, draw samples from the model, 
measure sample mean of 

ω

[log q(U) + S(U)]

Measures difference between 
probability distributions

DKL(q | |p) := ∫ 𝒟U q(U)[log q(U) − log p(U)] ≥ 0

D′�KL(q | |p) := ∫ 𝒟U q(U)[log q(U) + S(U)] ≥ − log Z

Constant shift removes 
unknown normalization

(Using )p(U) = e−S(U)/Z

[Kingma, Ba  1412.6980]

See also Self-Learning Monte Carlo (SLMC) methods:

[Huang, Wang PRB95 (2017) 035105;


Liu, et al. PRB95 (2017) 041101; 
… and many more …]



Exactness: Flow-based MCMC
Markov chain constructed using Independence Metropolis accept/reject on 
model proposals.


• Independent proposals  from model distribution 


• Accept proposal , making it next elt of Markov chain, with probability 
 
 
 

• If rejected, duplicate previous elt of Markov chain


- Only need to compute observables on duplicated elts once!

U′� q

U′�

pacc(U → U′�) = min (1,
p(U′�)
q(U′�)

q(U)
p(U) ) .

“Embarrassingly parallel” step!



Symmetries in flows
Invariant prior + equivariant flow = symmetric model 
 
 
 

Symmetries…


- Reduce data complexity of training


- Reduce model parameter count


- See [D. Müller, Fri] and [M. Favoni, Fri]

q(�)

Exact symmetry

q(�)

Learned symmetry

Invariant

Pure-symmetry

r(t ⋅ U) = r(U) f(t ⋅ U) = t ⋅ f(U)

[Cohen, Welling 1602.07576]



Gauge symmetries in flows
Choose to act on the un-fixed link representation .


Carefully construct architecture to enforce… 

Uμ(x)

Gauge-invariant prior: 

Not very difficult! 
Uniform distribution works.


 r(U) = 1With respect to 
Haar measure

Gauge-equivariant flow: 

Coupling layers acting on 
(untraced) Wilson loops.


Loop transformation easier 
to satisfy.

x x + µ̂Uµ(x)

a

µ

⌫
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to satisfy.
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µ
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Gauge-equivariant coupling layer
Compute a field of Wilson loops .


Inner coupling layer [function of ]


- “Actively” update a subset of loops.*


- Condition on “frozen” closed loops.


Outer coupling layer [function of ]


- Solve for link update to satisfy actively updated loops.


- Other loops in  may “passively” update.

Wℓ(x)

Wℓ(x)

Uμ(x)

Wℓ(x)
V`(x)

`

Uµ(x)

x

µ

⌫

`

W`(x) ! ⌦(x)W`(x)⌦†(x)

Open loop

`

tr W`(x) ! tr W`(x)

µ

⌫

Closed loop

Gauge invariant!

Wℓ(x) Flow W′�ℓ(x)

U′�μ(x) = W′�ℓ(x) V†
ℓ(x)[GK, Albergo, Boyda, Cranmer, Hackett, Racanière, Rezende, Shanahan  PRL125 (2020) 121601]

[Boyda, GK, Racanière, Rezende, Albergo, Cranmer, Hackett, Shanahan  PRD103 (2021) 074504]
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Wℓ(x)

Uμ(x)

Wℓ(x)
V`(x)

`

Uµ(x)

x

µ

⌫

`

W`(x) ! ⌦(x)W`(x)⌦†(x)
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`
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µ
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Closed loop

Gauge invariant!

Wℓ(x) Flow W′�ℓ(x)

U′�μ(x) = W′�ℓ(x) V†
ℓ(x)

* This “kernel” must satisfy: 
h(WΩ

ℓ (x)) = hΩ(Wℓ(x))

[GK, Albergo, Boyda, Cranmer, Hackett, Racanière, Rezende, Shanahan  PRL125 (2020) 121601]
[Boyda, GK, Racanière, Rezende, Albergo, Cranmer, Hackett, Shanahan  PRD103 (2021) 074504]



Active, passive, and frozen loops

1

0
Active / Passive

Frozen

Links to be updated

Examples of active/passive/frozen loops



Active, passive, and frozen loops

1

0
Active / Passive

Frozen1

0
Active

Passive

Frozen

Links to be updated

Passive-Active-Frozen-Frozen (PAFF) pattern



Results for U(1) gauge theory
There is exact lattice topology in 2D.


- Compared flow, analytical, HMC, and 
heat bath on  lattices for 


- Topo freezing in HMC and heat bath


- Gauge-equiv flow-based model at each 


- Flow-based MCMC observables agree

16 × 16 β = {1,…,7}

β

Q =
1

2π ∑
x

arg(P01(x))

MCMC for β = 7

5 6 7

�

0.6

0.8

1.0

1.2

1.4
�Q/Exact

HMC HB Flow

Topological susceptibility χQ = ⟨Q2/V⟩
[GK, Albergo, Boyda, Cranmer, Hackett, Racanière, Rezende, Shanahan  PRL125 (2020) 121601]

S(U) = − β∑
x

∑
μ<ν

Re Pμν(x)

Pμν(x) = Uμ(x)Uν(x + ̂μ)U†
μ(x + ̂ν)U†

ν (x)



Results for SU(2) and SU(3) gauge theory
• Similar study over 2D  lattices


• Flow-based MCMC observables agree with 
analytical


• High-quality models: autocorrelation time in 
flow-based Markov chain  = 1—4

16 × 16

τint 0 100 200

i

�380

�360

�340

�320

�300

�280 Se↵ (Ti · U)

0 100 200

i

S (Ti · U) + log Z

Rotation and reflection symmetry learned

Exact translational subgroup; residual learned

Measure of “effective” # samples from target dist for 
each sample drawn from model (100% = perfect model)

0 2 4 6

i

�380

�360

�340

�320

�300
Se↵ (Ri · U)

0 2 4 6

i

S (Ri · U) + log Z

[Boyda, GK, Racanière, Rezende, Albergo, Cranmer, Hackett, Shanahan  PRD103 (2021) 074504]
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Promising early results. No theoretical obstacle 
to scaling to 4D  lattice gauge theory.SU(N) 0 2 4 6

i
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�320
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Se↵ (Ri · U)

0 2 4 6

i

S (Ri · U) + log Z

[Boyda, GK, Racanière, Rezende, Albergo, Cranmer, Hackett, Shanahan  PRD103 (2021) 074504]



Fermions in field theory
Grassmann representation in path integral means…


- … we cannot sample fermion fields


- … integrating out fermions results in costly fermion determinants 
 
 

Pseudofermions used in standard MCMC for theories with dynamical fermions.

∫ 𝒟ψ𝒟ψ̄∏
f

e−ψ̄f Df ψf = ∏
f

det Df

∫ 𝒟ψ𝒟ψ̄∏
f

e−ψ̄f Df ψf ∝ ∫ 𝒟φ𝒟φ†∏
k

e−φ†
k ℳ−1

k φk

Starting point for flow-
based sampling



5 ways to marginalize
Any could in principle be learned by flow-based models.


Below: Bosonic part of action written generically as SB(ϕ)

Intractable density 
(even unnormalized)

Expensive to 
evaluate det exactly

Can actually be 
sampled directly 

(e.g. pseudofermion 
refresh in HMC)

[Albergo, GK, Racanière, Rezende, Urban, Boyda, Cranmer, Hackett, Shanahan  2106.05934]



Proposed exact sampling schemes
Using a variety of learned densities  — Best choice not yet clear!q(…)

[Albergo, GK, Racanière, Rezende, Urban, Boyda, Cranmer, Hackett, Shanahan  2106.05934]

(1) -marginalϕ (2) Gibbs

(3) Autoregressive (4) Joint

LEARNED

LEARNED

LEARNED

LEARNED

LEARNED

EXACT

Key takeaways:


• Exact regardless of quality of 
modeled densities 


• Can define sampler over

… bosonic fields alone ( ) or


… bosonic + PF fields ( ) 

• For Gibbs, even a perfect 
model may have residual 
autocorrelations

q(…)

ϕ
ϕ, φ



Results for Yukawa model
Studied 2D  model coupled via Yukawa interaction to staggered  
 
 
 

-  lattices


- Two degenerate fermions ( )


- Massless ( )


- Variety of models, all 4 
sampling schemes

ϕ4 ψ

16 × 16

Nf = 2

M = 0

S(ϕ, ψ) = ∑
x∈Λ

[−2
d

∑
μ=1

ϕ(x)ϕ(x + ̂μ) + (m2 + 2d)ϕ(x)2 + λϕ(x)4] +
Nf

∑
f=1

ψ̄f Df[ϕ]ψf

1e–1

5e–1

C
�
(t

)

1e–1

5e–1

2 4 6 8 10 12 14

t

�5e–1

1

+5e–1
C

�
/C

H
M

C
�

2 4 6 8 10 12 14

t

�5e–1

1

+5e–1

�-marginal Gibbs Autoregressive Fully Joint

Staggered Dirac op with 
Yukawa coupling  

and mass term 
gϕψ̄ψ
Mψ̄ψ

g = 0.1 g = 0.3

Correlation functions 
effectively reproduced



Summary and Outlook
 
Gauge symmetry encoded in flow models 
using:


- Gauge equivariant coupling layers


- Kernels for  and  

Several building blocks for models 
targeting theories with dynamical 
fermions.


Effective models produced for , 
,  lattice gauge theory and a 

 Yukawa model in 1+1D.

U(1) SU(N)

U(1)
SU(2) SU(3)
ϕ4

Future directions: 
1. Higher spacetime dims


2. Tuning of training hyperparameters


3. Efficient model architectures at scale?
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SU(2) SU(3)
ϕ4

Future directions: 
1. Higher spacetime dims


2. Tuning of training hyperparameters


3. Efficient model architectures at scale?

See also: 
Approaches to multimodal sampling and mixed 
HMC + flow-based sampling:


Jupyter notebook tutorial:

[Hackett, Hsieh, Albergo, Boyda, Chen, Chen, 
Cranmer, GK, Shanahan;  2107.00734]

[Albergo, Boyda, Hackett, GK, Cranmer, 
Racanière, Rezende, Shanahan;  2101.08176]



Backup Slides



U(1) topological freezing mitigated
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U(1) observables
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HMC HB Flow



SU(N) observables
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q(U)

Exact symmetry

q(U)

Learned symmetry

Invariant

Pure-symmetry

Learning SU(2) and SU(3) gauge theory
Normalizing flows trained for 2D lattice gauge theory on  lattices.


- Approx matched ’t Hooft couplings, giving 
 for  and 
 for 


- 48 PAFF coupling layers, update all links 6 times 

- No equivalent topo freezing, studied absolute model quality instead

16 × 16

β = {1.8, 2.2, 2.7} SU(2)
β = {4.0, 5.0, 6.0} SU(3)

1

0
Active

Passive

Frozen

All flow-based models exactly 
gauge-equiv by construction



U(1) kernels
Conjugation equivariance trivially satisfied: .


Invertible maps on U(1) variables:


- Periodic / compact domain must be addressed.


- For details, see: 

h(ΩWΩ†) = h(W) = Ωh(W)Ω†

[Rezende, Papamakarios, Racanière, Albergo, GK, Shanahan, Cranmer; 
ICML (2020) 2002.02428]

Non-compact projection: 
• Map , e.g. 


• Transform  as usual


• Map 

θ → x ∈ ℝ arctan(θ/2)

x → x′ �

x′� → θ′� ∈ [−π, π]

Circular invertible splines: 
• Spline “knots” trainable fns


• Identify endpoints  and 


• Number of knots  expressivity

π −π

↔

[Durkan, Bekasov, Murray, Papamakarios 1906.04032]



SU(N) kernels: strategy
SU(N) matrix-conj. equivariance is non-trivial.


Useful observations: 

- Conjugation only rotates eigenvectors.


- Spectrum is invariant.


- Wilson loop spectrum encodes gauge-invariant 
physics  This is what we want to transform. 

Strategy: Invertibly transform only the 
spectrum of  via a “spectral map”.

→

W

h(ΩWΩ†) = Ωh(W)Ω†

Or, “spectral flow”.
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SU(N) kernels: 
Permutation equivariance
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See also [J. Thaler, Wed] 
for perm-inv NNs

Sub-manifold of 
 eigenvaluesdet = 1

“Cell”, related by 
perms of eigenvalues 

to other cells.



SU(N) kernels: 
Transform the canonical cell

Change variables to rectilinear box Ω

Transform by acting on coords of box , either…Ω

… or …



Plaquette distributions 

for 
, SU(9) β = 9 Plaquette distributions 

for 
, SU(3) β = 9

Density has zeros on vertical, horizontal, and 
diagonal lines where the slice crosses walls of cells
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Testing SU(N) kernels



Gauge fixing?

Explicit gauge fixing is at odds with translational symmetry + locality

1

0

Link physically encodes Wilson loop around shaded region

Where gauge DoFs are explicitly 
factored out, e.g. maximal tree

Fixed to 1



Gauge fixing?

Implicit gauge fixing difficult to act on via flow-based models

Where gauge DoFs are fixed by solving 
a constraint, e.g. Landau gauge

Ufix
μ (x) = argminUΩ ∑

x

Nd

∑
μ=1

ReTr[UΩ
μ (x)]Landau gauge:

Ufix
μ (x) = argminUΩ ∑

x

Nd−1

∑
μ=1

ReTr[UΩ
μ (x)]Coulomb gauge:

Unclear how to invertibly 
transform .Ufix

μ (x)



Center symmetry
Using only contractible loops in coupling layers enforces center symmetry. 
 

Fundamental fermions: 

- Center symmetry explicitly broken


- Must include non-contractible loops (e.g. Polyakov) 
in the set of frozen and/or transformed loops

A

WA

A0

WA0

µ

⌫ X⌫



Exactness: Reweighting
• Also possible to reweight independently drawn samples: 
 
 
 
 

• May be preferable when observables  are efficiently computed, and 
sampling is expensive.


• Observables  are expensive in lattice QCD. We prefer resampling or 
MCMC approaches in these settings.

𝒪(U)

𝒪(U)

⟨𝒪⟩ =
∫ 𝒟U q(U)[𝒪(U) p(U)

q(U) ]
∫ 𝒟U q(U)[ p(U)

q(U) ]



Translational equivariance
1. Make context functions Convolutional Neural Nets: 

- Compute output value for each site from linear transform 
of nearby DOF only


- Reuse same weights, scanning kernel across the lattice


CNNs are equivariant under translations. 

2. Make masking pattern (mostly) translationally 
invariant.


- E.g. checkerboard is symmetric modulo  even/odd


- Gauge theory: translational equiv modulo 

ℤ2

ℤ4 × ℤ4

[freecodecamp.org]

Output

Input (w/ periodic BCs)

https://www.freecodecamp.org/news/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050/
https://www.freecodecamp.org/news/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050/


Details of  modelsSU(2)

• Inner flow on open box  is a spline 
flow with 4 knots


-  and  boundaries align to 0 and 1 
edges of the open box 
 

• CNNs to compute the knot locations


- 32 hidden channels


- 2 hidden layers

Ω

B −B

[Durkan, Bekasov, Murray, Papamakarios 1906.04032]



Details of  modelsSU(3)

[Durkan, Bekasov, Murray, Papamakarios 1906.04032]

• Inner flow on open box  is a spline 
flow with 16 knots


-  and  boundaries align to 0 and 1 
edges of the open box 

• CNNs to compute the knot locations


- 32 hidden channels


- 2 hidden layers


• Exact conjugation equivariance also 
imposed

Ω

B −B

I

e2πi/3e−2πi/3
Complex 

Conjugation



Gauge theory model training
• Adam optimizer ~ stochastic grad. descent with 

momentum


- Batches of size 3072 per gradient descent step


- Monitored value of effective sample size (ESS) 
 
 
 
 
 
 
 

• Transfer learning: model trained first on  then 
used to initialize model for training on 

8 × 8
16 × 16

ESS =
( 1

n ∑i w(Ui))
2

1
n ∑i w(Ui)2

, Ui ∼ q(U)

w(U) = p(U)/q(U) “reweighting factors”
0 2000 4000 6000 8000 10000

Training iteration

0.0

0.1

0.2

0.3

0.4

0.5

E
S
S

� = 6 (init. from 8 ⇥ 8) � = 6 (random init.)

Transferred model 
almost fully optimized

Model with random 
init takes many steps 

to optimize


