BBl Massachusetts
I I Institute of

Technology

Flow-based MCMC for Lattice
Ensemble Generation @ 5oores towards

Gurtej Kanwar

Based on ...
... flow-based sampling for lattice QFT:

Albergo, GK, Shanahan PRD100 (2019) 034515]
Albergo, Boyda, Hackett, GK, Cranmer, Racaniere, Rezende, Shanahan 2101.08176]

Albergo, GK, Racaniere, Rezende, Urban, Boyda, Cranmer, Hackett, Shanahan 2106.05934]
Hackett, Hsieh, Albergo, Boyda, Chen, Chen, Cranmer, GK, Shanahan 2107.00734]

... flows for compact vars & lattice gauge theories:

GK, Albergo, Boyda, Cranmer, Hackett, Racaniere, Rezende, Shanahan PRL125 (2020) 121601]
[Rezende, Papamakarios, Racaniere, Albergo, GK, Shanahan, Cranmer ICML (2020) 2002.02428]
Boyda, GK, Racaniere, Rezende, Albergo, Cranmer, Hackett, Shanahan PRD103 (2021) 074504]

Quark Confinement and the Hadron Spectrum 2021 | Virtual (Aug 2-6, 2021)




Importance sampling: the workhorse of LQFT

Monte Carlo sampling for efficient estimation of (many) observables

Positive-definite integrand allows interpreting path

1 znz inte | ility m :
gral weights as a probability measure:
=1
1=

()= |2v0W)e® |

U, ~pU)=e>YV)/Z

Euclidean averages — equilibrium properties

Markov chain Monte Carlo (MCMC)

- Asymptotlcally COnvergeS to diStribUtiOn p Example: MCMC to generate samples of scalar field configurations
- However: States of the chain are “autocorrelated”

- Discard some thermalization steps, save states
“thinned” to a subset with minimal correlations
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- ASymptotlcaIIy COnvergeS to diStribUtiOn p Example: MCMC to generate samples of scalar field configurations
- However: States of the chain are “autocorrelated”

- Discard some thermalization steps, save states
“thinned” to a subset with minimal correlations



Motivations for applying ML e

10000
Critical slowing down and topological freezing . |
obstruct MCMC sampling near the continuum limit. ﬁg
£ ©  100¢
- Problem: Local/diffusive Markov chain updates = e i
< 4 5 fm, 0.5 fm) "N
- Generative ML models can directly sample, may be /@}U b
1 : :
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[Schaefer et al. / ALPHA collaboration NPB845 (2011) 93]

used to propose global updates

Generative models provide flexible “variational ansatz” distribution g(U).

Q(U) — e ofi(U) ~ p(U) — e_S(U)—IOgZ
After optimizing the model “ansatz”: 1
S.e(U) = S(U) + logZ

/ \

Efficiently sampled Desired target



ML modeling for LQFT

[See also: N. Gerasimenuik, next talk] [A. Tomiya, Fri]

Estimating thermodynamic Improved HMC updates:
observables:

NNs describing field transformations

* Flow-based models precisely

estimate log Z HMC updates using modified

action / fields

« Asymptotic exactness N = oo Exactness: Metropolis (true action)

This talk [B. Yoon, previous talk]

Flow-based MCMC:

* Flows directly propose new configs

Improved MC estimators:

ML regression (efficient approx.

estimators)

 Metropolis step (satisfying balance)
for exactness

e Exactness via bias correction term
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[See also: N. Gerasimenuik, next talk] [A. Tomiya, Fri]

Estimating thermodynamic Improved HMC updates:
observables:

NNs describing field transformations
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ML modeling for LQFT

[See also: N. Gerasimenuik, next talk] [A. Tomiya, Fri]

Estimating thermodynamic Improved HMC updates:
observables: |
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Flow-based MCMC:

* Flows directly propose new configs

Improved MC estimators:
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 Metropolis step (satisfying balance)
for exactness




ML modeling for LQFT

[See also: N. Gerasimenuik, next talk] [A. Tomiya, Fri]

Estimating thermodynamic
observables:

Improved HMC updates:

Common theme:

Black-box ML components wrapped
INnside exact schemes

Chiral condensate

[PRL126 (

This talk [B. Yoon, previous talk]

C estimators:

> 100 | C3l,3;?/[‘) —M <C3%Mz ] IVGC"[OI‘
* Flows directly propose new configs el o=l
S 40 i
 Metropolis step (satisfying balance) " 20 | J,M“ |”an |
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Flow-based sampling: Overview

(Convolutional) neural networks: Black-box (local) function approximators

Coupling layers: Invertible transformations, tractable Jacobian

Flow-based model: Transform prior density to computable and sample-able
output model density

' Training:

 Measure KL divergence

j  Apply gradient-based opt -

| Exactness:

* Use g(¢) and p(¢)to
correct approximation

4(¢) = )

det
)]

dLf(P)];

0p;




CO u pl i n Iaye rs Similar to leapfrog integrator
9 s

Idea: Construct each g to act on a subset of Components', conditioned only on
the complimentary subset. “Masking pattern” m defines subsets.

— Jacobian is explicitly upper-triangular (get LDJ from diag elts)

“Updated” i (m; = 0) “Frozen” [ (m;, = 1) Updated Frozen
[ AT 5
| . Vi | §
N Js ™~ nonzero) >
dlg (V)]l _ ” . V2
v, S~ S Schematically _
" - 1 [clj)
0 T | T

— Invertible if each diag component invertible, d[g(V)]./dV; # 0.



Ex: RNVP for scalar fields

Real scalar field @(x) € R =~ grayscale image

Update A < |

Checkerboard masking pattern m

Real NVP Coupling Iayer: [Dinh, Sohl-Dickstein, Bengio 1605.08803]

i

(I —m)¢

Frozen

> m¢’ = mao

me
params

les

(1— m)e’

Updated
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Ex: RNVP for scalar fields

Real scalar field @(x) € R =~ grayscale image

Update A < |

Checkerboard masking pattern m

Real NVP Coupling Iayer: [Dinh, Sohl-Dickstein, Bengio 1605.08803]

Frozen
» M@ = mao
v ‘\\ -
C
/ e NN S350
gusels
params. !’g:::
“ EE?E‘\\\
/
\ ¢ Context functions implemented
0, AU / using neural network (NN)

] (I —m) ¢’

Affine transformation
— manifestly invertible!




See also Self-Learning Monte Carlo (SLMC) methods:
[Huang, Wang PRB95 (2017) 035105;
Liu, et al. PRB95 (2017) 041101;

Optimizing the model et mem e

Must not require a large number of samples from real distribution to optimize!
Self-training:

e Gradient-based methods applied to loss function to optimize model params w

- E.g. Adam optimizer [Kingma, Ba 1412.6980]

* Loss function = modified Kullback-Leibler (KL) divergence
Dy (qllp) = JS%UQ(U) log g(U) —logp(U)| = 0
Dy (qllp) = J@ Uq(U)|logq(U) +S(U)| = —logZ  Using p(U) = e *12)

* Jo estimate loss for grad descent, draw samples from the model,
measure sample mean of llog q(U) + S(U)]



Exactness: Flow-based MCMC

Markov chain constructed using Independence Metropolis accept/reject on
model proposals.

“Embarrassingly parallel” step!

» Independent proposals U’ from model distribution q+/

» Accept proposal U’, making it next elt of Markov chain, with probability

p(U’) q(U)>

Pacc(U = U') = rAN (LQ(U’) p(U)

* |f rejected, duplicate previous elt of Markov chain

- Only need to compute observables on duplicated elts once!



Symmetries in flows

Invariant prior + equivariant flow = symmetric model [Cohen, Welling 1602.07576]

[ \
r(t-U)=rU) f@-U)=t-f(U)

Exact symmetry Learned symmetry

Symmetries...

- Reduce data complexity of training

- Reduce model parameter count

Pure-symmetry

- See [D. Mdller, Fri] and [M. Favoni, Fri}

Invariant



Gauge symmetries in flows

Choose to act on the un-fixed link representation U (x).

Carefully construct architecture to enforce...

Gauge-invariant prior: Gauge-equivariant flow:
Not very difficult! Coupling layers acting on
Uniform distribution works. (untraced) Wilson loops.
/ . .
With respect to r(U) =1 Loop transformation easier

Haar measure

to satisfty.




Gauge symmetries in flows

Choose to act on the un-fixed link representation U (x).

refull n
Carefully cons Open loop

Gaugd . — 4 . iant flow:
No ? — ? — acting on
Uniform| | | | ] [ pnloops.

/

With respect to
Haar measure

to satisfty.




Open loop

Gauge-equivariant coupling layer .

Compute a field of Wilson loops W -(x). ! @ ;
Inner coupling layer [function of W (x)] SN l
- “Actively” update a subset of loops.* We(x) — Wex)

- Condition on “frozen” closed loops.

Gauge invariant!

Outer coupling layer [function of U (x)] l —
- Solve for link update to satisfy actively updated loops. ] @ |
- Other loops in W (x) may “passively” update. | U, (x) |

s w(x).

[GK, Albergo, Boyda, Cranmer, Hackett, Racaniére, Rezende, Shanahan PRL125 (2020) 121601] U, (x) = Wy(x) V;(x)
[Boyda, GK, Racaniere, Rezende, Albergo, Cranmer, Hackett, Shanahan PRD103 (2021) 074504]



Open loop

Gauge-equivariant coupling layer .

Compute a field of Wilson loops W -(x). ! @ ;
Inner coupling layer [function of W (x)] L. T
Flow

- “Actively” update a subset of loops.* * This “kernel” must satisfy: Wo(x) — Wy(x)
(WA (x)) = h*(Wy(x))

- Condition on “frozen” closed loops.

Gauge invariant!

Outer coupling layer [function of U (x)] l —
- Solve for link update to satisfy actively updated loops. I @ I
- Other loops in W,(x) may “passively” update. | U, (x) |

s w(x).

[GK, Albergo, Boyda, Cranmer, Hackett, Racaniére, Rezende, Shanahan PRL125 (2020) 121601] U, (x) = Wy(x) V;(x)
[Boyda, GK, Racaniere, Rezende, Albergo, Cranmer, Hackett, Shanahan PRD103 (2021) 074504]



Active, passive, and frozen loops

Examples of active/passive/frozen loops

B Active / Passive |:
B Frozen '

...............................................................................................................................................

Links to be updated —






SW)=—=p) D ReP,x)

Results for U(1) gauge theory | r.o-vovssnsosoue
There Is exact lattice topology in 2D. 4 s W Mz:lc for f =7
3 il i -
Q= ZL Z arg(Fp;(x)) - -2 e MW - Flow
d A (I) 20(I)OO 4O(I)OO | 60(I)OO 80(I)OO 100|OOO

Markov chain step

- Compared flow, analytical, HMC, and

1.4
heat bath on 16 X 16 lattices for f = {1,...,7} o Xq/Exact
- Topo freezing in HMC and heat bath 1.0 - t; {z: 1%
s - i |
- Gauge-equiv flow-based model at each [ N
06713 umMc | HB % Flow

- Flow-based MCMC observables agree ! : "'7

Topological susceptibility v, = (Q?1V)

[GK, Albergo, Boyda, Cranmer, Hackett, Racaniere, Rezende, Shanahan PRL125 (2020) 121601]



[Boyda, GK, Racaniere, Rezende, Albergo, Cranmer, Hackett, Shanahan PRD103 (2021) 074504]

Results for SU(2) and SU(3) gauge theory

Exact translational subgroup; residual learned

 Similar study over 2D 16 X 16 lattices 260 | [ S (- 0) e 5 (5, 0) 1l 2 =

LS S U S S N UL AUV
AANRAAAA R EAAANAAAAAAR G 4R AVVAAR BOOGNO

* Flow-based MCMC observables agree with
analytical

320 — VW VWY VWY Al s 44

—340

—360 -

* High-quality models: autocorrelation time in e
flow-based Markov chain 7, . = 1—4 o 10 20 0 100 200

1 (

SU(2) SU(3) T
—300 - SGH(RZU) | S(R@U)—FlOgZ
(ESS(%) 91 80 56 88 75 48 ] 320 - +
- — S
; =340 | =
Measure of “effective” # samples from target dist for .
each sample drawn from model (100% = perfect model) 360 { ==ttty
—380 - o R
I I I I I I I I
0 2 4 6 0 2 4 6



[Boyda, GK, Racaniere, Rezende, Albergo, Cranmer, Hackett, Shanahan PRD103 (2021) 074504]

Results for SU(2) and SU(3) gauge theory

Exact translational subgroup; residual learned

 Similar study over 2D 16 X 16 lattices 260 | [ S (- 0) e 5 (5, 0) 1l 2 =

L S S N U S S N U s S N U S W OO

* Flow-based MCMC observables agree with

analytical

—340 —

—360 -

* High-quality models: autocorrelation time in a0

flow-based Markov chain Tint =1—4 0 100 200 0 100 200

1 (

SU(2) SU(3) T
200 || Sett (Bi - U) 1 S(R;-U)+logZ

e e ——— I — _4;/

; —340 | == \fé: < —————

Measure of “effective” # samples from target dist for DS S e D S D S S S S

each sample drawn from model (100% = perfect model) BRI R=— e === = === — ——————
= = = —330 ]
Promising early results. No theoretical obstacle _— .

to scaling to 4D SU(N) lattice gauge theory. ; ;



Fermions in field theory

Grassmann representation in path integral means...
- ... we cannot sample fermion fields
- ... Integrating out fermions results in costly fermion determinants

[91//@1/71_[ e VP = H det D,
/ /

Pseudofermions used in standard MCMC for theories with dynamical fermions.

——— -
e — — =

Starting point for flow-
based sampling



[Albergo, GK, Racaniere, Rezende, Urban, Boyda, Cranmer, Hackett, Shanahan 2106.05934]

5 ways to marginalize

Any could in principle be learned by flow-based models.

Below: Bosonic part of action written generically as Sz(¢)

Name Probability density
Joint® p(d,p) = exp(=Sp(d) — @' [M(9)]" ) |
Expensive to
¢-marginal p(¢) = 2 evaluate det exactly
" A.B _
@-conditional p(p|op) Zn det M(9)
Can actually be p-marginal© p(p) = "dp exp(— ‘
sampled directly A R AT VT P Intractable density
(e.g. pseudofermion $-conditional® p(dlp) = exp(=55(9) — ¢ IM(9)] _¢) (even unnormalized)

refresh in HMC)

J d¢ exp(—S5(¢) — ¢ [M($)]” ¢)




[Albergo, GK, Racaniere, Rezende, Urban, Boyda, Cranmer, Hackett, Shanahan 2106.05934]

Proposed exact sampling schemes

Using a variety of learned densities g(...) — Best choice not yet clear!

Key takeaways:

(1) @-marginal (2) Gibbs
(@) e (@) e |
[AM(¢—>¢’) ] E AG(¢%¢'\9{) ]
[ Q(¢) ]—qb’j [Q(QS‘SO) ]‘Qb,}
LEARNED [ P(el6) ]—go'JA J .
EXACT
(3) Autoregressive (4) Joint
..................... s ;;;;;;;;;}";;j,';;;"’ ................. .................... s .
A ) ,7 ,
Aﬂ, =
J [a(¢,0) }¢', ¢
LEARNED
a(ol¢)) | ¢

LEARNED

Exact regardless of quality of
modeled densities ¢(...)

Can define sampler over
... bosonic fields alone (¢) or

... bosonic + PF fields (¢, @)

For Gibbs, even a perfect
model may have residual
autocorrelations



Staggered Dirac op with
Results for Yukawa model

Yukawa coupling g¢ywy
and mass term My y

Studied 2D gb4 model coupled via Yukawa interaction to staggered yr

d Ny
S(.w) = ) [=2 ) pWPx + @) + (m* + 2d)p(x)* + Ap0)*1 + D WDl

. ¢-marginal } Gibbs Autoregressive { Fully Joint
- 16 X 16 lattices -~
| | oo g=0.1 o || g =03
- Two degenerate fermions (N, =2) | =~ -
E)g le-1
- Massless (M = () . .
sampling schemes % N m,;i;{;{_} IR -;};f;i,,,, ot s
% i)% —5He—1 - { { i } { —5e—1
Correlation functions 9 4 6 s 10 12 14 ) s 6 s 10 12 14
effectively reproduced o o

»
R
'
t
= I I _z.‘- ..' NS Sk ra - NG = S



Summary and Outlook

Gauge symmetry encoded in flow models Future directions:
using:
1. Higher spacetime dims
- Gauge equivariant coupling layers
2. Tuning of training hyperparameters

- Kernels for U(1) and SU(N)

3. Efficient model architectures at scale?

Several building blocks for models
targeting theories with dynamical
fermions.

Effective models produced for U(1),
SU(2), SU(3) lattice gauge theory and a
¢* Yukawa model in 1+1D.



Summary and Outlook

Gauge symmetry encoded in flow models Future directions:
using:
1. Higher spacetime dims
- Gauge equivariant coupling layers
2. Tuning of training hyperparameters

- Kernels for U(1) and SU(N)

3. Efficient model architectures at scale?

Several building blocks for models

targeting theories with dynamical See also:
fermions. Approaches to multimodal sampling and mixed
HMC + flow-based sampling:
Effective models produced for U(l), [Hackett, Hsieh, Albergo, Boyda, Chen, Chen,
, Cranmer, GK, Shanahan; 2107.00734]
SU(2), SU(3) lattice gauge theory and a
¢4 Yukawa model in 1+1D. Jupyter notebook tutorial:

[Albergo, Boyda, Hackett, GK, Cranmer,
Racaniere, Rezende, Shanahan; 2101.08176]
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U(1) topological freezing mitigated
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U(1) observables
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SU(N) observables
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Learning SU(2) and SU(3) gauge theory

Normalizing flows trained for 2D lattice gauge theory on 16 X 16 lattices.

- Approx matched 't Hooft couplings, giving
p=1{138,2.2,2.7} for SU(2) and
B = {4.0,5.0,6.0} for SU(3)

- 48 PAFF coupling layers, update all links 6 times

- No equivalent topo freezing, studied absolute model quality instead

Exact symmetry Learned symmetry

All flow-based models exactly 7 q(U)
gauge-equiv by construction




U(1) kernels

Conjugation equivariance trivially satisfied: 2(QWQ") = (W) = Qr(W)Q".

Invertible maps on U(1) variables:

[Durkan, Bekasov, Murray, Papamakarios 1906.04032]

- Periodic / compact domain must be addressed.

|

- For detalls, see:

[Rezende, Papamakarios, Racaniere, Albergo, GK, Shanahan, Cranmer;
ICML (2020) 2002.02428]

96(T)
—
.

Non-compact projection: Circular invertible splines:

Map 0 — x € R, e.g. arctan(6/2) °

Spline “knots” trainable fns
Transform x — x’ as usual

|dentify endpoints 7 and — 7«

Map x’' — 0" € |—r, 7]

Number of knots <> expressivity



SU(N) kernels: strategy

SU(N) matrix-conj. equivariance is non-trivial.
hW(QWQT) = QrW)Q!

Useful observations:

- Conjugation only rotates eigenvectors.

- Spectrum is invariant.

- Wilson loop spectrum encodes gauge-invariant
physics — This is what we want to transform.

Strategy: Invertibly transform only the
spectrum of W via a “spectral map\”.

Or, “spectral flow”.

[Boyda, GK, Racaniere, Rezende, Albergo, Cranmer, Hackett, Shanahan PRD103 (2021) 074504]



SU(N) kernels: strategy

SU(N) matrix-conj. equivariance is non-trivial.
hW(QWQT) = QrW)Q!

Useful observations:

- Conjugation only rotates eigenvectors.

- Spectrum is invariant.

- Wilson loop spectrum encodes gauge-invariant

physics — This is what we want to transform.

Strategy: Invertibly transform only the
spectrum of W via a “spectral map\”.

Or, “spectral flow”.

[Boyda, GK, Racaniere, Rezende, Albergo, Cranmer, Hackett, Shanahan PRD103 (2021) 074504]

Diagonalize

Undiagonalize




SU(N) kernels:

See also [J. Thaler, Wed]
for perm-inv NNs

Permutation equivariance

Sub-manifold of
det = 1 eigenvalues

“Cell”, related by
perms of eigenvalues
to other cells.

Canonicalize

Uncanonicalize




SU(N) kernels:
Transform the canonical cell

Change variables to rectilinear box £2

NSNS

Transform by acting on coords of box €2, either...

Autoregressive ... Or ... Independent

A [ - fll
fz
(2

M\~ I\~ [2]

Spline

0-'0--0

Spline

<\ = [2]

Map into box

Invertible spline

transformation

Undo map into box




Q.
10~5 104 103 102 101 100 10757 41 }/ \|

Density has zeros on vertical, horizontal, and
diagonal lines where the slice crosses walls of cells




Gauge fixing?

Where gauge DoFs are explicitly
factored out, e.g. maximal tree

| |
Explicit gauge fixing Is at odds with translational symmetry + locality

— Fixed to 1

Link physically encodes Wilson loop around shaded region



Gauge fixing?

Where gauge DoFs are fixed by solving
a constraint, e.g. Landau gauge

| |
Implicit gauge fixing difficult to act on via flow-based models

Nd
Landau gauge: U/?X(x) = argming Z Z ReTr[U/?(x)]
X p=l Unclear how to invertibly

transform U /flx(x).

N~1
Coulomb gauge: U;:‘X(x) = argminUQZ Z ReTr[Uflz(x)]
x u=l



Center symmetry

Using only contractible loops in coupling layers enforces center symmetry.

Fundamental fermions:

- Center symmetry explicitly broken

- Must include non-contractible loops (e.g. Polyakov) !
In the set of frozen and/or transformed loops




Exactness: Reweighting

* Also possible to reweight independently drawn samples:

' pU)
[2UqU)| oW

p(U)
q(U) |

(0) =
|2U q(U)

« May be preferable when observables O(U) are efficiently computed, and
sampling Is expensive.

« Observables O(U) are expensive in lattice QCD. We prefer resampling or
MCMC approaches in these settings.



Translational equivariance

1. Make context functions Convolutional Neural Nets:

- Compute output value for each site from linear transform
of nearby DOF only

- Reuse same weights, scanning kernel across the lattice

CNNs are equivariant under translations.

2. Make masking pattern (mostly) translationally
invariant.

- E.g. checkerboard is symmetric modulo Z, even/odd

- Gauge theory: translational equiv modulo Z, X Z,

2\7\?

\»,‘,v’y Input (w/ periodic BCs)

[freecodecamp.org]


https://www.freecodecamp.org/news/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050/
https://www.freecodecamp.org/news/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050/

Details of SU(2) models

—— RQ Spline

* Inner flow on open box €2 is a spline =
flow with 4 knots . Knots

ge(x)

- B and —B boundaries align to 0 and 1
edges of the open box

9p\T)
—
—
I

_B 0 B _B 0
ZT

 CNNs to compute the knot locations [Durkan, Bekasov, Murray, Papamakarios 1906.04032]

- 32 hidden channels

- 2 hidden layers



Detalls of SU(3) models . — -

° Knots

9p\T)
1

* Inner flow on open box €2 is a spline 0
flow with 16 knots

- B and — B boundaries align to 0 and 1 . , | :

_B 0 B _B 0 B

edges of the open box z z
[Durkan, Bekasov, Murray, Papamakarios 1906.04032]
 CNNs to compute the knot locations 7
- 32 hidden channels

- 2 hidden layers

* EXxact conjugation equivariance also
iImposed g —2mil3

A

Complex
Conjugation

P 2mi/3



Gauge theory model training

 Adam optimizer ~ stochastic grad. descent with
momentum

- Batches of size 3072 per gradient descent step

- Monitored value of effective sample size (ESS)
| 2

(7 2wy
1 2
; Zi W(Ul)

w(U) = p(U)/q(U)

ESS =

’ Ui Y Q(U)

“reweighting factors”

» Transfer learning: model trained first on 8 X 8 then
used to initialize model for training on 16 X 16

— B = 6 (init. from 8 X

8) — [ = 6 (random init.)

Transferred model

almost fully optimized

Model with random
init takes many steps
to optimize

| |
2000 4000

| |
6000 3000 10000

Tralning iteration



