

Flow-based MCMC for Lattice Ensemble Generation (and progress towards the inclusion of fermions)

Gurtej Kanwar

Based on ...

... flow-based sampling for lattice QFT:

[Albergo, GK, Shanahan PRD100 (2019) 034515]

[Albergo, Boyda, Hackett, GK, Cranmer, Racanière, Rezende, Shanahan 2101.08176]

[Albergo, GK, Racanière, Rezende, Urban, Boyda, Cranmer, Hackett, Shanahan 2106.05934]

[Hackett, Hsieh, Albergo, Boyda, Chen, Chen, Cranmer, GK, Shanahan 2107.00734]

... flows for compact vars & lattice gauge theories:

[GK, Albergo, Boyda, Cranmer, Hackett, Racanière, Rezende, Shanahan PRL125 (2020) 121601] [Rezende, Papamakarios, Racanière, Albergo, GK, Shanahan, Cranmer ICML (2020) 2002.02428] [Boyda, GK, Racanière, Rezende, Albergo, Cranmer, Hackett, Shanahan PRD103 (2021) 074504]

Quark Confinement and the Hadron Spectrum 2021 | Virtual (Aug 2-6, 2021)

Importance sampling: the workhorse of LQFT

Monte Carlo sampling for efficient estimation of (many) observables

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}U \mathcal{O}(U) e^{-S(U)}$$

Euclidean averages → equilibrium properties

 $\langle \mathcal{O} \rangle \approx \frac{1}{n} \sum_{i=1}^{n} \mathcal{O}[U_i]$

Positive-definite integrand allows interpreting path integral weights as a probability measure:

$$U_i \sim p(U) = e^{-S(U)}/Z$$

Markov chain Monte Carlo (MCMC)

- Asymptotically converges to distribution p
- However: States of the chain are "autocorrelated"
- Discard some thermalization steps, save states "thinned" to a subset with minimal correlations

Example: MCMC to generate samples of scalar field configurations

Importance sampling: the workhorse of LQFT

Monte Carlo sampling for efficient estimation of (many) observables

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D} U \mathcal{O}(U) e^{-S(U)}$$

Euclidean averages → equilibrium properties

$$\langle \mathcal{O} \rangle \approx \frac{1}{n} \sum_{i=1}^{n} \mathcal{O}[U_i]$$

Positive-definite integrand allows interpreting path integral weights as a probability measure:

$$U_i \sim p(U) = e^{-S(U)}/Z$$

Markov chain Monte Carlo (MCMC)

- Skipped thermalization steps ...
- Asymptotically converges to distribution p
- However: States of the chain are "autocorrelated"
- Discard some thermalization steps, save states "thinned" to a subset with minimal correlations

Example: MCMC to generate samples of scalar field configurations

Motivations for applying ML

Critical slowing down and topological freezing obstruct MCMC sampling near the continuum limit.

- Problem: Local/diffusive Markov chain updates
- Generative ML models can directly sample, may be used to propose global updates

[Schaefer et al. / ALPHA collaboration NPB845 (2011) 93]

Generative models provide flexible "variational ansatz" distribution q(U).

After optimizing the model "ansatz":

$$q(U) = e^{-S_{\rm eff}(U)} \approx p(U) = e^{-S(U) - \log Z}$$

$$\updownarrow$$

$$S_{\rm eff}(U) \approx S(U) + \log Z$$
 Efficiently sampled Desired target

[See also: N. Gerasimenuik, next talk]

Estimating thermodynamic observables:

- Flow-based models precisely estimate $\log Z$
- Asymptotic exactness $N \to \infty$

This talk

Flow-based MCMC:

- Flows directly propose new configs
- Metropolis step (satisfying balance) for exactness

[A. Tomiya, Fri]

Improved HMC updates:

- NNs describing field transformations
- HMC updates using modified action / fields
- Exactness: Metropolis (true action)

[B. Yoon, previous talk]

Improved MC estimators:

- ML regression (efficient approx. estimators)
- Exactness via bias correction term

[See also: N. Gerasimenuik, next talk]

This talk

Flow-based MCMC:

- Flows directly propose new configs
- Metropolis step (satisfying balance) for exactness

[A. Tomiya, Fri]

Improved HMC updates:

- NNs describing field transformations
- HMC updates using modified action / fields
- Exactness: Metropolis (true action)

[B. Yoon, previous talk]

Improved MC estimators:

- ML regression (efficient approx. estimators)
- Exactness via bias correction term

[See also: N. Gerasimenuik, next talk]

This talk

Flow-based MCMC:

- Flows directly propose new configs
- Metropolis step (satisfying balance) for exactness

[A. Tomiya, Fri]

[B. Yoon, previous talk]

Improved MC estimators:

- ML regression (efficient approx. estimators)
- Exactness via bias correction term

[See also: N. Gerasimenuik, next talk]

This talk

Flow-based MCMC:

- Flows directly propose new configs
- Metropolis step (satisfying balance) for exactness

[A. Tomiya, Fri]

[B. Yoon, previous talk]

[See also: N. Gerasimenuik, next talk]

[A. Tomiya, Fri]

Estimating thermodynamic observables:

This talk

Common theme:

Black-box ML components wrapped inside exact schemes

[B. Yoon, previous talk]

Flow-bas

- Flows directly propose new configs
- Metropolis step (satisfying balance) for exactness

MC estimators:

Improved HMC updates:

(Convolutional) neural networks: Black-box (local) function approximators

(Convolutional) neural networks: Black-box (local) function approximators

Coupling layers: Invertible transformations, tractable Jacobian

(Convolutional) neural networks: Black-box (local) function approximators

Coupling layers: Invertible transformations, tractable Jacobian

Flow-based model: Transform prior density to computable and sample-able output model density

$$q(\phi') = r(\phi) \left| \det \frac{\partial [f(\phi)]_i}{\partial \phi_j} \right|^{-1}$$

(Convolutional) neural networks: Black-box (local) function approximators

Coupling layers: Invertible transformations, tractable Jacobian

Flow-based model: Transform prior density to computable and sample-able output model density

Training:

- Measure KL divergence
- Apply gradient-based opt

$$q(\phi') = r(\phi) \left| \det \frac{\partial [f(\phi)]_i}{\partial \phi_j} \right|^{-1}$$

(Convolutional) neural networks: Black-box (local) function approximators

Coupling layers: Invertible transformations, tractable Jacobian

Flow-based model: Transform prior density to computable and sample-able output model density

Training:

- Measure KL divergence
- Apply gradient-based opt

Exactness:

• Use $q(\phi')$ and $p(\phi')$ to correct approximation

$$q(\phi') = r(\phi) \left| \det \frac{\partial [f(\phi)]_i}{\partial \phi_j} \right|^{-1}$$

Coupling layers

Similar to leapfrog integrator

Idea: Construct each g to act on a **subset** of components, conditioned only on the complimentary subset. "Masking pattern" m defines subsets.

→ Jacobian is explicitly upper-triangular (get LDJ from diag elts)

 \rightarrow Invertible if each diag component invertible, $\partial [g(V)]_i/\partial V_i \neq 0$.

Ex: RNVP for scalar fields

Real scalar field $\phi(x) \in \mathbb{R} \approx \text{grayscale image}$

Real NVP coupling layer: [Dinh, Sohl-Dickstein, Bengio 1605.08803]

Checkerboard masking pattern m

Ex: RNVP for scalar fields

Real scalar field $\phi(x) \in \mathbb{R} \approx \text{grayscale image}$

Real NVP coupling layer: [Dinh, Sohl-Dickstein, Bengio 1605.08803]

Checkerboard masking pattern m

Ex: RNVP for scalar fields

Real scalar field $\phi(x) \in \mathbb{R} \approx \text{grayscale image}$

Real NVP coupling layer: [Dinh, Sohl-Dickstein, Bengio 1605.08803]

Checkerboard masking pattern m

Optimizing the model

See also Self-Learning Monte Carlo (SLMC) methods:
[Huang, Wang PRB95 (2017) 035105;
Liu, et al. PRB95 (2017) 041101;
... and many more ...]

Must not require a large number of samples from real distribution to optimize!

Self-training:

- Gradient-based methods applied to loss function to optimize model params ω
 - E.g. Adam optimizer [Kingma, Ba 1412.6980]
- Loss function = modified Kullback-Leibler (KL) divergence

Measures difference between probability distributions

$$\text{Constant shift removes} \\ \text{unknown normalization} \\ D'_{\text{KL}}(q \mid \mid p) := \int \mathscr{D}U \, q(U) \big[\log q(U) - \log p(U) \big] \geq 0 \\ D'_{\text{KL}}(q \mid \mid p) := \int \mathscr{D}U \, q(U) \big[\log q(U) + S(U) \big] \geq -\log Z \qquad \text{(Using } p(U) = e^{-S(U)}/Z \text{)}$$

• To estimate loss for grad descent, draw samples from the model, measure sample mean of $\left[\log q(U) + S(U)\right]$

Exactness: Flow-based MCMC

Markov chain constructed using Independence Metropolis accept/reject on model proposals.

- Independent proposals U^\prime from model distribution q
- Accept proposal U^\prime , making it next elt of Markov chain, with probability

$$p_{\rm acc}(U \to U') = \min \left(1, \frac{p(U')}{q(U')} \frac{q(U)}{p(U)} \right).$$

"Embarrassingly parallel" step!

- If rejected, duplicate previous elt of Markov chain
 - Only need to compute observables on duplicated elts once!

Symmetries in flows

Invariant prior + equivariant flow = symmetric model

[Cohen, Welling 1602.07576]

$$r(t \cdot U) = r(U)$$
 $f(t \cdot U) = t \cdot f(U)$

Symmetries...

- Reduce data complexity of training
- Reduce model parameter count
- See [D. Müller, Fri] and [M. Favoni, Fri]

Gauge symmetries in flows

Choose to act on the un-fixed link representation $U_{\mu}(x)$.

Carefully construct architecture to enforce...

Gauge-invariant prior:

Not very difficult! Uniform distribution works.

With respect to Haar measure

$$r(U) = 1$$

Gauge-equivariant flow:

Coupling layers acting on (untraced) Wilson loops.

Loop transformation easier to satisfy.

Gauge symmetries in flows

Choose to act on the un-fixed link representation $U_{\mu}(x)$.

Gauge-equivariant coupling layer

Compute a field of Wilson loops $W_{\mathcal{C}}(x)$.

Inner coupling layer [function of $W_{\mathcal{C}}(x)$]

- "Actively" update a subset of loops.*
- Condition on "frozen" closed loops.

Gauge invariant!

Outer coupling layer [function of $U_{\mu}(x)$]

- Solve for link update to satisfy actively updated loops.
- Other loops in $W_{\mathcal{L}}(x)$ may "passively" update.

Open loop

$$U'_{\mu}(x) = W'_{\ell}(x) V^{\dagger}_{\ell}(x)$$

Gauge-equivariant coupling layer

Compute a field of Wilson loops $W_{\mathcal{C}}(x)$.

Inner coupling layer [function of $W_{\mathcal{L}}(x)$]

- "Actively" update a subset of loops.*
- Condition on "frozen" closed loops.

Gauge invariant!

* This "kernel" must satisfy: $h(W_{\ell}^{\Omega}(x)) = h^{\Omega}(W_{\ell}(x))$

Open loop

$$W_{\mathscr{C}}(x) \xrightarrow{\mathrm{Flow}} W_{\mathscr{C}}'(x)$$

Outer coupling layer [function of $U_{\mu}(x)$]

- Solve for link update to satisfy actively updated loops.
- Other loops in $W_{\ell}(x)$ may "passively" update.

$$U'_{\mu}(x) = W'_{\ell}(x) V^{\dagger}_{\ell}(x)$$

Active, passive, and frozen loops

Examples of active/passive/frozen loops

Active, passive, and frozen loops

Passive-Active-Frozen-Frozen (PAFF) pattern

Results for U(1) gauge theory

$$S(U) = -\beta \sum_{x} \sum_{\mu < \nu} \operatorname{Re} P_{\mu\nu}(x)$$

$$P_{\mu\nu}(x) = U_{\mu}(x)U_{\nu}(x + \hat{\mu})U_{\mu}^{\dagger}(x + \hat{\nu})U_{\nu}^{\dagger}(x)$$

There is exact lattice topology in 2D.

$$Q = \frac{1}{2\pi} \sum_{x} \arg(P_{01}(x))$$

- Compared flow, analytical, HMC, and heat bath on 16×16 lattices for $\beta = \{1,...,7\}$
- Topo freezing in HMC and heat bath
- Gauge-equiv flow-based model at each β
- Flow-based MCMC observables agree

Topological susceptibility $\chi_Q = \langle Q^2/V \rangle$

Results for SU(2) and SU(3) gauge theory

- Similar study over 2D 16 × 16 lattices
- Flow-based MCMC observables agree with analytical
- High-quality models: autocorrelation time in flow-based Markov chain $\tau_{\rm int} = 1-4$

Exact translational subgroup; residual learned

Rotation and reflection symmetry learned

Results for SU(2) and SU(3) gauge theory

- Similar study over 2D 16 × 16 lattices
- Flow-based MCMC observables agree with analytical
- High-quality models: autocorrelation time in flow-based Markov chain $\tau_{\rm int} = 1-4$

Promising early results. No theoretical obstacle to scaling to 4D SU(N) lattice gauge theory.

Exact translational subgroup; residual learned

Rotation and reflection symmetry learned

Fermions in field theory

Grassmann representation in path integral means...

- ... we cannot sample fermion fields
- ... integrating out fermions results in costly fermion determinants

$$\int \mathcal{D}\psi \mathcal{D}\bar{\psi} \prod_{f} e^{-\bar{\psi}_{f} D_{f} \psi_{f}} = \prod_{f} \det D_{f}$$

Pseudofermions used in standard MCMC for theories with dynamical fermions.

$$\int \! \mathcal{D}\psi \! \mathcal{D}\bar{\psi} \prod_f e^{-\bar{\psi}_f D_f \psi_f} \! \propto \! \int \! \mathcal{D}\varphi \! \mathcal{D}\varphi^\dagger \prod_k e^{-\varphi_k^\dagger \mathcal{M}_k^{-1} \varphi_k} \!$$

5 ways to marginalize

Any could in principle be learned by flow-based models.

Below: Bosonic part of action written generically as $S_B(\phi)$

	Name		Probability density	
	$ m Joint^A$	$p(\phi, arphi) =$	$rac{1}{Z} \exp(-S_B(\phi) - arphi^\dagger \left[\mathcal{M}(\phi) ight]^{-1} arphi)$	Expensive to evaluate det exactly
	$\phi ext{-marginal}$	$p(\phi) =$	$\frac{Z_{\mathcal{N}}}{Z} \exp(-S_B(\phi)) \det \mathcal{M}(\phi)$	
	$arphi$ -conditional $^{\mathrm{A,B}}$	$p(arphi \phi)=$	$rac{1}{Z_{\mathcal{N}}\det\mathcal{M}(\phi)}\exp(-arphi^{\dagger}\left[\mathcal{M}(\phi) ight]^{-1}arphi)$	
Can actually be sampled directly	$arphi$ -marginal $^{ ext{C}}$	p(arphi)=	2.0	Intractable density
(e.g. pseudofermion refresh in HMC)	$\phi ext{-conditional}^{ ext{A}}$	$p(\phi arphi) =$	$\frac{\exp(-S_B(\phi) - \varphi^{\dagger} \left[\mathcal{M}(\phi)\right]^{-1} \varphi)}{\int d\phi \exp(-S_B(\phi) - \varphi^{\dagger} \left[\mathcal{M}(\phi)\right]^{-1} \varphi)}$	(even unnormalized)

Proposed exact sampling schemes

Using a variety of learned densities q(...) — Best choice not yet clear!

Key takeaways:

- Exact regardless of quality of modeled densities q(...)
- Can define sampler over
 - ... bosonic fields alone (ϕ) or
 - ... bosonic + PF fields (ϕ, φ)
- For Gibbs, even a perfect model may have residual autocorrelations

Results for Yukawa model

Staggered Dirac op with Yukawa coupling $g\phi\bar{\psi}\psi$ and mass term $M\bar{\psi}\psi$

Studied 2D ϕ^4 model coupled via Yukawa interaction to staggered ψ

$$S(\phi, \psi) = \sum_{x \in \Lambda} \left[-2 \sum_{\mu=1}^{d} \phi(x) \phi(x + \hat{\mu}) + (m^2 + 2d) \phi(x)^2 + \lambda \phi(x)^4 \right] + \sum_{f=1}^{N_f} \bar{\psi}_f D_f[\phi] \psi_f$$

- 16 × 16 lattices
- Two degenerate fermions ($N_f = 2$)
- Massless (M=0)
- Variety of models, all 4 sampling schemes

g = 0.1 g = 0.1 g = 0.3 f = 1

Correlation functions effectively reproduced

Summary and Outlook

Gauge symmetry encoded in flow models using:

- Gauge equivariant coupling layers
- Kernels for U(1) and SU(N)

Several building blocks for models targeting theories with dynamical fermions.

Effective models produced for U(1), SU(2), SU(3) lattice gauge theory and a ϕ^4 Yukawa model in 1+1D.

Future directions:

- 1. Higher spacetime dims
- 2. Tuning of training hyperparameters
- 3. Efficient model architectures at scale?

Summary and Outlook

Gauge symmetry encoded in flow models using:

- Gauge equivariant coupling layers
- Kernels for U(1) and SU(N)

Several building blocks for models targeting theories with **dynamical fermions**.

Effective models produced for U(1), SU(2), SU(3) lattice gauge theory and a ϕ^4 Yukawa model in 1+1D.

Future directions:

- 1. Higher spacetime dims
- 2. Tuning of training hyperparameters
- 3. Efficient model architectures at scale?

See also:

Approaches to multimodal sampling and mixed HMC + flow-based sampling:

[Hackett, Hsieh, Albergo, Boyda, Chen, Chen, Cranmer, GK, Shanahan; 2107.00734]

Jupyter notebook tutorial:

[Albergo, Boyda, Hackett, GK, Cranmer, Racanière, Rezende, Shanahan; 2101.08176]

U(1) topological freezing mitigated

U(1) observables

SU(N) observables

Learning SU(2) and SU(3) gauge theory

Normalizing flows trained for 2D lattice gauge theory on 16×16 lattices.

- Approx matched 't Hooft couplings, giving $\beta=\{1.8,2.2,2.7\} \text{ for } SU(2) \text{ and } \beta=\{4.0,5.0,6.0\} \text{ for } SU(3)$

- 48 PAFF coupling layers, update all links 6 times
- No equivalent topo freezing, studied absolute model quality instead

All flow-based models exactly gauge-equiv by construction

U(1) kernels

Conjugation equivariance trivially satisfied: $h(\Omega W\Omega^{\dagger}) = h(W) = \Omega h(W)\Omega^{\dagger}$.

Invertible maps on U(1) variables:

- Periodic / compact domain must be addressed.
- For details, see:

[Rezende, Papamakarios, Racanière, Albergo, GK, Shanahan, Cranmer; ICML (2020) 2002.02428]

[Durkan, Bekasov, Murray, Papamakarios 1906.04032]

Non-compact projection:

- Map $\theta \to x \in \mathbb{R}$, e.g. $\arctan(\theta/2)$
- Transform $x \to x'$ as usual
- Map $x' \to \theta' \in [-\pi, \pi]$

Circular invertible splines:

- Spline "knots" trainable fns
- Identify endpoints π and $-\pi$

SU(N) kernels: strategy

SU(N) matrix-conj. equivariance is non-trivial.

$$h(\Omega W \Omega^{\dagger}) = \Omega h(W) \Omega^{\dagger}$$

Useful observations:

- Conjugation only rotates eigenvectors.
- Spectrum is invariant.
- Wilson loop spectrum encodes gauge-invariant physics → This is what we want to transform.

Strategy: Invertibly transform only the spectrum of W via a "spectral map".

Or, "spectral flow".

SU(N) kernels: strategy

SU(N) matrix-conj. equivariance is non-trivial.

$$h(\Omega W \Omega^{\dagger}) = \Omega h(W) \Omega^{\dagger}$$

Useful observations:

- Conjugation only rotates eigenvectors.
- Spectrum is invariant.
- Wilson loop spectrum encodes gauge-invariant physics → This is what we want to transform.

Strategy: Invertibly transform only the spectrum of W via a "spectral map".

Or, "spectral flow"

$$W = P \left(egin{array}{ccc} e^{i\phi_1} & & \ & \ddots & \ & & e^{i\phi_N} \end{array}
ight) \!\! P^\dagger$$

$$\Psi \rightarrow \Omega$$

$$W' \; = \; P \left(egin{array}{ccc} e^{i\phi_1'} & & & \ & \ddots & & \ & & e^{i\phi_N'} \end{array}
ight) \!\! P^\dagger$$

[Boyda, GK, Racanière, Rezende, Albergo, Cranmer, Hackett, Shanahan PRD103 (2021) 074504]

SU(N) kernels: Dormutation ac

See also [J. Thaler, Wed] for perm-inv NNs

Permutation equivariance

$$W = P \left(egin{array}{ccc} e^{i\phi_1} & & & \ & \ddots & & \ & e^{i\phi_N} \end{array}
ight) \!\! P^\dagger$$

$$W' \; = \; P \left(egin{array}{ccc} e^{i\phi_1'} & & & \ & \ddots & & \ & & e^{i\phi_N'} \end{array}
ight) \! P^\dagger$$

SU(N) kernels: Transform the canonical cell

Change variables to rectilinear box Ω

$$\begin{array}{c|c}
 & \zeta^{-1} \\
 & \swarrow \\
 & \zeta
\end{array}
\qquad \begin{array}{c|c}
 & \phi^{-1} \\
 & \phi
\end{array}
\qquad \begin{array}{c|c}
 & \Omega
\end{array}$$

Transform by acting on coords of box Ω , either...

Autoregressive ... or ... Independent

$$f_1 \longrightarrow f_2 \longrightarrow \cdots$$
 Ω

Undiagonalize

Testing SU(N) kernels

Agree!

Density has zeros on vertical, horizontal, and diagonal lines where the slice crosses walls of cells

Gauge fixing?

Where gauge DoFs are explicitly factored out, e.g. maximal tree

Explicit gauge fixing is at odds with translational symmetry + locality

Gauge fixing?

Where gauge DoFs are fixed by solving a constraint, e.g. Landau gauge

Implicit gauge fixing difficult to act on via flow-based models

Landau gauge:
$$U_{\mu}^{\mathrm{fix}}(x) = \mathrm{argmin}_{U^{\Omega}} \sum_{x} \sum_{\mu=1}^{N_d} \mathrm{ReTr}[U_{\mu}^{\Omega}(x)]$$

Coulomb gauge:
$$U_{\mu}^{\text{fix}}(x) = \operatorname{argmin}_{U^{\Omega}} \sum_{x} \sum_{\mu=1}^{N_d-1} \operatorname{ReTr}[U_{\mu}^{\Omega}(x)]$$

Unclear how to invertibly transform $U_{\mu}^{\mathrm{fix}}(x)$.

Center symmetry

Using only contractible loops in coupling layers enforces center symmetry.

Fundamental fermions:

- Center symmetry explicitly broken
- Must include non-contractible loops (e.g. Polyakov) in the set of frozen and/or transformed loops

Exactness: Reweighting

Also possible to reweight independently drawn samples:

$$\langle \mathcal{O} \rangle = \frac{\int \mathcal{D}U q(U) \left[\mathcal{O}(U) \frac{p(U)}{q(U)} \right]}{\int \mathcal{D}U q(U) \left[\frac{p(U)}{q(U)} \right]}$$

- May be preferable when observables $\mathcal{O}(U)$ are efficiently computed, and sampling is expensive.
- Observables $\mathcal{O}(U)$ are expensive in lattice QCD. We prefer resampling or MCMC approaches in these settings.

Translational equivariance

- 1. Make context functions Convolutional Neural Nets:
 - Compute output value for each site from linear transform of nearby DOF only
 - Reuse same weights, scanning kernel across the lattice

CNNs are equivariant under translations.

- 2. Make masking pattern (mostly) translationally invariant.
 - E.g. checkerboard is symmetric modulo \mathbb{Z}_2 even/odd
 - Gauge theory: translational equiv modulo $\mathbb{Z}_4 \times \mathbb{Z}_4$

Details of SU(2) models

- Inner flow on open box Ω is a spline flow with $\bf 4\ knots$
 - B and -B boundaries align to 0 and 1 edges of the open box

- CNNs to compute the knot locations
 - 32 hidden channels
 - 2 hidden layers

[Durkan, Bekasov, Murray, Papamakarios 1906.04032]

Details of SU(3) models

- Inner flow on open box Ω is a spline flow with 16 knots
 - B and -B boundaries align to 0 and 1 edges of the open box
- CNNs to compute the knot locations
 - 32 hidden channels
 - 2 hidden layers
- Exact conjugation equivariance also imposed

[Durkan, Bekasov, Murray, Papamakarios 1906.04032]

Gauge theory model training

- Adam optimizer ~ stochastic grad. descent with momentum
 - Batches of size 3072 per gradient descent step
 - Monitored value of effective sample size (ESS)

ESS =
$$\frac{\left(\frac{1}{n}\sum_{i}w(U_{i})\right)^{2}}{\frac{1}{n}\sum_{i}w(U_{i})^{2}}, \quad U_{i} \sim q(U)$$

$$w(U) = p(U)/q(U)$$
 "reweighting factors"

• Transfer learning: model trained first on 8×8 then used to initialize model for training on 16×16

