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›

Optimization project examples
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Example 1: Detector Design Optimization (SHiP)
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<NB we are interested in <See 
more below>

▶ SHiP searches for Dark Matter, thus 
we want to minimize amount of 
background (muons)

▶ How can we optimize shield design 
(𝜓) with respect to smallest number 
of muons and budget limits?

– Noisy (stochastic) target

– Computationally expensive

– Non-differentiable simulator

𝜓 𝜓



Optimization layout
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Example 2. Simulation fine-tuning
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▶ How can we fine-tune a 
simulator given real-data 
sample P?

▶ Simulated sample Q, 
parametrized by 𝜓, such that 
Q𝜓 → P everywhere

– Noisy (stochastic) target

– Computationally expensive

– Non-differentiable simulator

https://bit.ly/3eLtyxl

https://bit.ly/3eLtyxl


Optimization layout
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›

Common optimization approaches
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▶ Gradient-free

– Random search,

– Simulated annealing,

– Evolution strategies, …

▶ Gradient

– Stochastic GD, ADAM, RMSProp, Langevin SGD, …

▶ Surrogate + gradient

– Bayesian,

– Variational optimization,

– Guided Evolution Strategies,

– “Learning to Simulate”,

– “Backprop through the void”,

– Adversarial Variational Optimization,

– NN-based (L-GSO), 

– Adaptive Divergence, …

Optimization method families
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REINFORCE-style gradient 
estimator [Williams, 1992]
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▶ allows usage of stochastic gradient methods 
for black-box problems:
– VO is much slower in contrast to using analytical 

gradient; 

▶ search distribution is chosen to be simple: –
e.g. normal distribution; 

▶ dimensionality of the problem can be 
retained:
– at least 1 additional parameter to allow the search 

distribution to collapse (σ); 

– O(n2) for a full covariance matrix;

– O(n) parameters for a normal distribution with 
diagonal covariance.

Stochastic GD Variational Optimization
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›

Black-Box Optimization with Local 
Generative Surrogates (L-GSO)
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TL;DR:
Let’s approximate a stochastic black-box
with a local generative surrogate.

This allows computing gradients of the 
objective w.r.t. parameters of the black-
box.
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From intractable gradient 
estimation of the black-
box. 

To gradient estimation 
with learnable generative 
surrogate(GAN, NF, etc).

And successive gradient 
based optimization of the 
parameters. 
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Optimization path

True gradients Surrogate gradients

Area inside which the local 
surrogate was trained

ü gradients of the non-linear surface are 
well estimated inside the local area. 

ü L-GSO outperforms all algorithms in a 
high-dimensional setting when 

parameters 
lie on a lower dimension manifold.

Key point: training local generative surrogate
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Results on high-dimensional problems with low-dimensional manifold 
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▌L-GSO is free from explicit variational distribution model

▌L-GSO outperforms all algorithms in a high-dimensional setting with lower dimension manifold.

Nonlinear Three Hump problem, 
40dim

Neural network weights 
optimization, 91dim

1. Liu, Shuang, and Kamalika Chaudhuri. "The inductive bias of restricted f-gans." arXiv preprint arXiv:1809.04542 (2018).

2. Uppal, Ananya, Shashank Singh, and Barnabás Póczos. "Nonparametric density estimation & convergence rates for gans under besov ipm losses." Advances in Neural Information Processing Systems. 2019.
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Design optimisation in 42 dimensional space of physics simulator

▌L-GSO improves previous results 

obtained with BO with the same 
computational budget. 

▌New design is 25% more efficient.
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Shirobokov S., Belavin V., Kagan M, AU, Baydin A., NeurIPS’20 paper
https://arxiv.org/abs/2002.04632

https://arxiv.org/abs/2002.04632


›

Fine-tuning of computer 
simulations: Adaptive Divergence



▶ Experiment X produces observations P.

▶ Computer simulations (Q):

– computationally demanding;

– non-differentiable;

▶ Fine-tuning: find simulation parameters ψ∗

such that:

Generic Problem statement

04.08.2021Andrey Ustyuzhanin 24

https://bit.ly/3eLtyxl

https://bit.ly/3eLtyxl


▶ Approximate Bayesian Computations

– Relies on definition of a summary statistics;

– Curse of dimensionality;

▶ Adversarial [Goodfellow et al, 2014], [Louppe, Hermans & Cranmer, 2017]

– Relies on the underlying classifier model;

– Requires many samples;

Existing approaches
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▶ If M is high-capacity (large), it gives good approximation of JSD but 
– takes large number of samples for estimation;

▶ If M is low-capacity:
– small number of samples for estimation but

Pseudo-divergence

04.08.2021Andrey Ustyuzhanin 26



▶ Given P and Q:

– Use low-capacity pseudo-divergence first:

– Increase model capacity until it is needed

▶ Adaptive divergence:
If a family of pseudo-divergences D = {Dα | α ∈ [0, 1]} with respect to Jensen-
Shannon divergence, then adaptive divergence ADD produced by D is 
defined as:

Adaptive divergence (AD)
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Boosted AD family
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▶ A boosting-based method is applicable for a discrete approximation:

▶ where:
– B – family of learners (e.g. decision trees);

– L – cross-entropy loss function;

– 𝛒 – learning rate;

– c(x) – capacity function (strictly increasing), maps number of learners to 𝛼 ∊ [0, 1].



Illustration: Pythia fine-tuning
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▶ electron-positron collisions are 
simulated at a center-of-mass energy 
91.2 GeV. 

▶ A collision event is described by the 
properties of the final (stable) products. 
This process is intrinsically stochastic.

https://bit.ly/3eLtyxl

https://bit.ly/3eLtyxl


Illustration: Pythia fine-tuning
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▶ (A) Convergence of Optimization, (B) Distribution of computational costs per step
Borisyak M, Gaintseva T, UA., Adaptive divergence for rapid adversarial optimization, PeerJ
Computer Science 6:e274, 2020, https://doi.org/10.7717/peerj-cs.274



›

Simulation-based inference for 
inverse problems 

04.08.2021 Andrey Ustyuzhanin 31



From observations to the laws of nature

04.08.2021Andrey Ustyuzhanin 32

Input

Parameters

Sampled 
inputs/

parameters

Simulator

Output

Summary 
statistics

Inference

How can we get from objective or output to 
the likelihood of inputs / parameters?

Why?
Simulation defines a computational model of 
reality we want to learn about.

Challenges:
• reverse implicit non-tractable function 

defined by simulator
• Simulated/real data matching
Main venues of research:
• Approximate Bayesian Computations
• Active Learning, surrogates
• Probabilistic inference

https://doi.org/10.1073/pnas.1912789117

P(𝜓, x | y)

https://doi.org/10.1073/pnas.1912789117


▶ Optimization can be seen as a special case of surrogate-based inference 
(SBI):

– (Systematic) uncertainties estimation for surrogate generative models;

– Increased inference accuracy using simulated and real data mixture;

– Interpretation of surrogate models.

▶ Surrogate-based approximation

– Representation learning;

– Dynamics of high-level system.

Fields of future research
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▶ For some fields of research (e.g., molecular dynamics or material design), a 
target system cannot be represented by static vectors, but by functions 
instead: i.e., it can exhibit dependence on time or a controllable parameter 
(temperature, magnetic field, etc.):

– Not known a priori;

– Model-free surrogate that can approximate not a mere proposal distribution 
p(θ | x, y), but a functional dependency between observables and a controllable 
parameters;

– Akin to conditional GAN, but for functional dependency.

System dynamics learning
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▶ [Physical] sciences heavily rely on simulation tools that represent knowledge on 
the target system in computational form (usually black-boxed);

▶ Extraction of the patterns from such tools can mean a lot;

▶ Optimization methods aid such extraction:

– Surrogate-based methods, L-GSO gives gradient estimation without explicit variational 

distribution specification;

– Adaptive exploration helps reducing simulation budget;

▶ Simulation tools of next generation can and should be integrated with Machine 
Learning, thus giving plenty of research challenges:

– Uncertainty, extrapolation, interpretability, functional approximation and so on.

Conclusion
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›

Backup



Boosted AD
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Neural Network Regularized AD
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