Equivariance and generalization in neural networks

Matteo Favoni

Institute for Theoretical Physics, TU Wien Aug 6, 2021

QCHS 2021

Based on: S. Bulusu, M. Favoni, A. Ipp, D. I. Müller, D. Schuh, *Preprint* (2021) [2103.14686]

Code: gitlab.com/openpixi/scalar-ml

Der Wissenschaftsfonds.

Matteo Favoni (TU Wien)

Equivariance and generalization in NNs

QCHS 2021 1 / 24

• Neural networks (NNs) are a widely used tool in many scientific areas

< ∃ ►

- Neural networks (NNs) are a widely used tool in many scientific areas
- Strategy: meet the requirements of the specific problem

< ∃ ►

- Neural networks (NNs) are a widely used tool in many scientific areas
- Strategy: meet the requirements of the specific problem
- In quantum field theories, symmetries play a key role

- Neural networks (NNs) are a widely used tool in many scientific areas
- Strategy: meet the requirements of the specific problem
- In quantum field theories, symmetries play a key role
- A desirable approach is to design NNs so that such symmetries are respected

- Neural networks (NNs) are a widely used tool in many scientific areas
- Strategy: meet the requirements of the specific problem
- In quantum field theories, symmetries play a key role
- A desirable approach is to design NNs so that such symmetries are respected
- $\bullet\,$ Previous talk \to gauge symmetry, this talk \to translational symmetry

- Neural networks (NNs) are a widely used tool in many scientific areas
- Strategy: meet the requirements of the specific problem
- In quantum field theories, symmetries play a key role
- A desirable approach is to design NNs so that such symmetries are respected
- $\bullet\,$ Previous talk \to gauge symmetry, this talk \to translational symmetry
- Convolutional neural networks (CNNs) incorporate translational symmetry under certain circumstances

- Neural networks (NNs) are a widely used tool in many scientific areas
- Strategy: meet the requirements of the specific problem
- In quantum field theories, symmetries play a key role
- A desirable approach is to design NNs so that such symmetries are respected
- $\bullet\,$ Previous talk \to gauge symmetry, this talk \to translational symmetry
- Convolutional neural networks (CNNs) incorporate translational symmetry under certain circumstances
- Investigate generalization capabilities in terms of different lattice sizes and different physical parameters

Image from here

・ロト ・四ト ・ヨト ・ヨト

Image from here

イロト イヨト イヨト イヨト

• Equivariance vs invariance

- Equivariance vs invariance
- Equivariance before a global pooling layer is a sufficient condition for output invariance

(日) (四) (日) (日) (日)

- Equivariance vs invariance
- Equivariance before a global pooling layer is a sufficient condition for output invariance
- Does translational symmetry make a significant difference?

< ロト < 同ト < ヨト < ヨト

Architecture types

Matteo Favoni (TU Wien)

Equivariance and generalization in NNs

QCHS 2021 4 / 24

\bullet Complex scalar field in 1+1D with nonzero chemical potential

$$S = \int dx_0 dx_1 \left(|D_0 \phi|^2 - |\partial_1 \phi|^2 - m^2 |\phi|^2 - \lambda |\phi|^4 \right), \quad D_0 = \partial_0 - i\mu$$
(1)

• • • • • • • • • • • •

$\bullet\,$ Complex scalar field in 1+1D with nonzero chemical potential

$$S = \int dx_0 dx_1 \left(|D_0 \phi|^2 - |\partial_1 \phi|^2 - m^2 |\phi|^2 - \lambda |\phi|^4 \right), \quad D_0 = \partial_0 - i\mu$$
(1)

Discretized action

$$S_{lat} = \sum_{x} \left(\eta |\phi_{x}|^{2} + \lambda |\phi_{x}|^{4} - \sum_{\nu=1}^{2} \left(e^{\mu \, \delta_{\nu,2}} \phi_{x}^{*} \phi_{x+\hat{\nu}} + e^{-\mu \, \delta_{\nu,2}} \phi_{x}^{*} \phi_{x-\hat{\nu}} \right) \right), \quad \eta = 2D + m^{2}$$
(2)

• □ ▶ • 4□ ▶ • Ξ ▶ •

• Complex scalar field in 1+1D with nonzero chemical potential

$$S = \int dx_0 dx_1 \left(|D_0 \phi|^2 - |\partial_1 \phi|^2 - m^2 |\phi|^2 - \lambda |\phi|^4 \right), \quad D_0 = \partial_0 - i\mu$$
(1)

Discretized action

$$S_{lat} = \sum_{x} \left(\eta |\phi_{x}|^{2} + \lambda |\phi_{x}|^{4} - \sum_{\nu=1}^{2} \left(e^{\mu \, \delta_{\nu,2}} \phi_{x}^{*} \phi_{x+\hat{\nu}} + e^{-\mu \, \delta_{\nu,2}} \phi_{x}^{*} \phi_{x-\hat{\nu}} \right) \right), \quad \eta = 2D + m^{2}$$
(2)

• Sign problem solved by a dual formulation: $\phi_x \rightarrow \{k_{x,\nu}, l_{x,\nu}\}$ integer fields, Gattringer, Kloiber, arxiv:1206.2954

• Complex scalar field in 1+1D with nonzero chemical potential

$$S = \int dx_0 dx_1 \left(|D_0 \phi|^2 - |\partial_1 \phi|^2 - m^2 |\phi|^2 - \lambda |\phi|^4 \right), \quad D_0 = \partial_0 - i\mu$$
(1)

Discretized action

$$S_{lat} = \sum_{x} \left(\eta |\phi_{x}|^{2} + \lambda |\phi_{x}|^{4} - \sum_{\nu=1}^{2} \left(e^{\mu \, \delta_{\nu,2}} \phi_{x}^{*} \phi_{x+\hat{\nu}} + e^{-\mu \, \delta_{\nu,2}} \phi_{x}^{*} \phi_{x-\hat{\nu}} \right) \right), \quad \eta = 2D + m^{2}$$
(2)

- Sign problem solved by a dual formulation: $\phi_x \rightarrow \{k_{x,\nu}, l_{x,\nu}\}$ integer fields, Gattringer, Kloiber, arxiv:1206.2954
- Regression task: predicting observables

$$n = \frac{1}{N} \sum_{x} k_{x,2}, \qquad |\phi|^2 = \frac{1}{N} \sum_{x} \frac{W(f_x + 2)}{W(f_x)}$$
(3)

$$f_{x} = \sum_{\nu} [|k_{x,\nu}| + |k_{x-\hat{\nu},\nu}| + 2(l_{x,\nu} + l_{x-\hat{\nu},\nu})], \quad W(f_{x}) = \int_{0}^{\infty} \mathrm{d}x \, x^{f_{x}+1} \mathrm{e}^{-\eta x^{2} - \lambda x^{4}}$$
(4)

Architecture comparison

- Systematic architecture search with optuna, Akiba et al., arxiv:1907.10902
- 10 instances of the winning architectures are retrained from scratch for various training set size
- EQ beats ST and FL for any number of training samples
- EQ improves with more samples, while the other two do not
- Data augmentation does not help the two non-equivariant architectures

Silver blaze phase transition

- (日)

Silver blaze phase transition

Training on both phases is not 0.6necessary as long as the expression of the observables is independent of the $\frac{1}{2}$ 0.4transition (3.6) 0.4

Generalization to other lattice sizes and physical parameters

- FL cannot be tested on different lattice sizes
- Training only on 60×4
- Kink in ST at 100 × 5 due to s = 2 in spatial pooling layer
- EQ clearly outperforms ST
- Problem already tackled in literature with an FL trained on both phases on 200×10 reaching test loss of 10^{-6}

Extrapolation to larger chemical potentials

A (1) > A (2) > A

Why do ST and FL fail?

- Worst performing ST instance predicts correctly when tested on $\mu = 1.05$
- Mispredicts values not present in the training set
- Best ST generalizes well
- No EQ instance features a behavior like worst ST

Detecting flux violations

The field k obeys the conservation law $\sum_{\nu} (k_{x,\nu} - k_{x-\hat{\nu},\nu}) = 0$. We artificially created flux violations to be detected by the models.

(a) Example field configuration

(b) Feature maps of convolutional network in best EQ and ST models

- 2x2 convolutions are necessary for this task
- Similar approach with optuna

Matteo Favoni (TU Wien)

< ∃ ►

Results

Training at $(\eta, \mu) = (4.25, 1)$ and (4.01, 1.5) on 8x8 lattice with $N_{train} = 4000$; testing at $\eta \in \{4.01, 4.04, 4.25\}$, $\mu \in \{1, 1.25, 1.5\}$ on 4 lattice sizes

QCHS 2021 12 / 24

Counting flux violations

• Simplified version of counting problems (e.g.: crowd counting)

Counting flux violations

- Simplified version of counting problems (e.g.: crowd counting)
- Training only at 0 and 5 worms (we train on 4 combinations of parameters out of 396 used for testing) with $N_{train} = 20000$

Counting flux violations

- Simplified version of counting problems (e.g.: crowd counting)
- Training only at 0 and 5 worms (we train on 4 combinations of parameters out of 396 used for testing) with $N_{train} = 20000$

• Performance of three architecture types on three different tasks

- 4 ∃ ▶

- Performance of three architecture types on three different tasks
- $\bullet\,$ Stride s>1 and flattening layer break translational equivariance

- Performance of three architecture types on three different tasks
- Stride s > 1 and flattening layer break translational equivariance
- In all tasks EQ proved to be a highly reliable choice

- Performance of three architecture types on three different tasks
- Stride s > 1 and flattening layer break translational equivariance
- In all tasks EQ proved to be a highly reliable choice
- ${\, \bullet \,}$ Optuna favoured architectures with $< 10^5$ parameters

- Performance of three architecture types on three different tasks
- Stride s > 1 and flattening layer break translational equivariance
- In all tasks EQ proved to be a highly reliable choice
- ${\ensuremath{\, \circ }}$ Optuna favoured architectures with $< 10^5$ parameters
- Remarkable generalization capabilities of EQ

Backup slides

Matteo Favoni (TU Wien)

Equivariance and generalization in NNs

イロト イヨト イヨト イヨ

First task optuna winners

EQ	ST	FL
Conv $(1 \times 1, 4, 64)$	$Conv(1 \times 1, 4, 80)$	$Conv(1 \times 1, 4, 64)$
LeakyReLU	LeakyReLU	LeakyReLU
Conv(1 imes 1, 64, 48)	$Conv(1 \times 1, 80, 80)$	$Conv(2 \times 2, 64, 80)$
LeakyReLU	LeakyReLU	LeakyReLU
$Conv(1 \times 1, 48, 80)$	$Conv(1 \times 1, 80, 48)$	AvgPool($2 \times 2, 2$)
LeakyReLU	LeakyReLU	$Conv(1 \times 1, 80, 48)$
$Conv(2 \times 2, 80, 80)$	AvgPool $(2 \times 2, 2)$	LeakyReLU
LeakyReLU	$Conv(2 \times 2, 48, 80)$	$Conv(2 \times 2, 48, 64)$
GlobalAvgPool	LeakyReLU	LeakyReLU
Linear(80, 2)	GlobalAvgPool	AvgPool($2 \times 2, 2$)
	Linear(80, 2)	$Conv(1 \times 1, 64, 24)$
		Flatten
		Linear(360, 24)
		LeakyReLU
		Linear(24, 2)
33202	26370	47394

QCHS 2021 16 /

• • • • • • • • • • • •

æ

Second task optuna winners

EQ	ST	FL	
$Conv(2 \times 2, 4, 32)$	$Conv^*(2 \times 2, 4, 16)$	Conv* $(3 \times 3, 4, 8)$	
LeakyReLU	LeakyReLU	LeakyReLU	
$Conv(1 \times 1, 32, 32)$	$MaxPool(2 \times 2, 2)$	$MaxPool(2 \times 2, 2)$	
LeakyReLU	$Conv(1 \times 1, 16, 16)$	$Conv(2 \times 2, 8, 32)$	
GlobalMaxPool	LeakyReLU	LeakyReLU	
Linear(32, 32)	$Conv(1 \times 1, 16, 8)$	AvgPool($2 \times 2, 2$)	
LeakyReLU	LeakyReLU	$Conv(2 \times 2, 32, 32)$	
Linear*(32, 1)	GlobalMaxPool	LeakyReLU	
Sigmoid	Linear*(8, 32)	Flatten	
	Linear(32, 1)	Linear*(128, 1)	
	Sigmoid	Sigmoid	
2657	953	5600	

The star (e.g. Conv^{*}) indicates that the bias in that layer is set to 0

-

-

1st EQ	2nd EQ	3rd EQ	
$Conv(1 \times 1, 4, 32)$	$Conv(2 \times 2, 4, 8)$	$Conv(1 \times 1, 4, 4)$	
LeakyReLU	LeakyReLU	LeakyReLU	
$Conv(2 \times 2, 32, 8)$	$Conv(2 \times 2, 8, 8)$	$Conv(2 \times 2, 4, 8)$	
LeakyReLU	LeakyReLU	LeakyReLU	
$Conv(2 \times 2, 8, 16)$	$Conv(1 \times 1, 8, 4)$	$Conv(2 \times 2, 8, 4)$	
LeakyReLU	LeakyReLU	LeakyReLU	
$Conv(1 \times 1, 16, 8)$	$Conv(1 \times 1, 4, 8)$	$Conv(3 \times 3, 4, 1)$	
LeakyReLU	LeakyReLU	LeakyReLU	
GlobalSumPool	GlobalSumPool	GlobalSumPool	
Linear(8, 1)	Linear(8, 1)		
1800	456	308	

QCHS 2021 18

Image: A = 1 = 1

Third task ST optuna winners

1st ST	2nd ST	3rd ST
Conv $(2 \times 2, 4, 16)$	$Conv(2 \times 2, 4, 4)$	$Conv(2 \times 2, 4, 4)$
LeakyReLU	LeakyReLU	LeakyReLU
Conv $(1 \times 1, 16, 32)$	$MaxPool(2 \times 2, 2)$	AvgPool $(2 \times 2, 2)$
LeakyReLU	$Conv(2 \times 2, 4, 4)$	Conv $(3 \times 3, 4, 16)$
$Conv(1 \times 1, 32, 32)$	LeakyReLU	LeakyReLU
LeakyReLU	GlobalSumPool	GlobalSumPool
AvgPool $(2 \times 2, 2)$	Linear(4, 1)	Linear(16, 32)
$Conv(1 \times 1, 32, 8)$		LeakyReLU
LeakyReLU		Linear(32, 1)
GlobalSumPool		
Linear(8, 32)		
LeakyReLU		
Linear(32, 1)		
2336	132	1184

QCHS 2021 19 / 24

э

Third task FL optuna winners

1st FL	2nd FL	3rd FL	
$Conv(2 \times 2, 4, 4)$	$Conv(2 \times 2, 4, 8)$	$Conv(2 \times 2, 4, 32)$	
LeakyReLU	LeakyReLU	LeakyReLU	
AvgPool $(2 \times 2, 2)$	AvgPool $(2 \times 2, 2)$	AvgPool $(2 \times 2, 2)$	
$Conv(3 \times 3, 4, 8)$	$Conv(3 \times 3, 8, 4)$	Conv $(3 \times 3, 32, 4)$	
LeakyReLU	LeakyReLU	LeakyReLU	
AvgPool $(2 \times 2, 2)$	AvgPool $(2 \times 2, 2)$	AvgPool $(2 \times 2, 2)$	
Flattening	Flattening	Flattening	
Linear(8, 4)	Linear(4, 4)	Linear(4, 32)	
LeakyReLU	LeakyReLU	LeakyReLU	
Linear(4, 32)	Linear(4, 32)	Linear(32, 16)	
LeakyReLU	LeakyReLU	LeakyReLU	
Linear(32, 1)	Linear(32, 1)	Linear(16, 1)	
640	640	2704	

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

First task data distribution

Matteo Favoni (TU Wien)

Equivariance and generalization in NNs

QCHS 2021 21 / 24

Third task data distribution

QCHS 2021 22 / 24

< ⊒ >

Third task: test loss vs validation loss

QCHS 2021 23 / 24

	validation loss on 8×8		test loss on 8×8		test loss up to 64×64	
	mean	median	mean	median	mean	median
1st EQ	4.676×10^{-5}	$4.137 imes 10^{-5}$	2.108×10^{-4}	$1.483 imes 10^{-4}$	1.008×10^{-3}	8.308×10^{-4}
2nd EQ	1.042×10^{-4}	2.440×10^{-5}	3.525×10^{-4}	8.783×10^{-5}	1.807×10^{-3}	7.936×10^{-4}
3rd EQ	8.992×10^{-3}	3.072×10^{-4}	2.105×10^{-2}	9.163×10^{-4}	1.925	4.031×10^{-2}
1st ST	2.331×10^{-5}	$2.173 imes 10^{-5}$	$9.438 imes 10^{-3}$	$3.576 imes10^{-3}$	4.446	3.026
2nd ST	8.479×10^{-5}	4.372×10^{-5}	2.545×10^{-4}	9.340×10^{-5}	3.738×10^{-3}	1.171×10^{-3}
3rd ST	2.869×10^{-4}	2.171×10^{-5}	1.676×10^{-2}	1.381×10^{-3}	2.943	9.580×10^{-1}
1st FL	2.602×10^{-5}	1.787×10^{-5}	$7.837 imes 10^{-2}$	$3.817 imes 10^{-2}$	-	-
2nd FL	4.004×10^{-5}	1.117×10^{-5}	5.300×10^{-2}	1.285×10^{-3}	-	-
3rd FL	5.805×10^{-5}	1.031×10^{-5}	6.382×10^{-2}	3.556×10^{-2}	-	-

< 行