Nonequilibrium evolution of quarkonium in medium

Yukinao Akamatsu (Osaka University)

August 3, 2021
A Virtual Tribute to Quark Confinement and the Hadron Spectrum 2021

Collaborators:
Alexander Rothkopf (Stavanger),
Shiori Kajimoto, Takahiro Miura, Yukana Kaida, Masayuki Asakawa (Osaka)
Refs:
Miura et al, PRD101 (2020) 034011 and in prep., \& Akamatsu, 2009.10559

Quarkonia in heavy-ion collisions

What we are getting to know

- Non-equilibrium evolution of quarkonia in static and homogeneous medium

Quarkonia in heavy-ion collisions

What we ignore in this talk

- Interaction between initially uncorrelated pairs (justified for bottoms)
- Effects of non-static and inhomogeneous medium (for simplicity)
- Heavy quark pair creation in medium (suppressed by $e^{-M / T}$)
- Heavy quark pair annihilation in medium (suppressed by $1 / M^{2}$)

Quarkonia in heavy-ion collisions

What we do not know

- Initial condition of quarkonia
- assume singlet/octet wave packets, vacuum states, etc
- How quarkonia hadronize
- assume evolution freezes at $T=T_{f}$

Quarkonia in a static and uniform medium $\left(T>T_{c}\right)$

Key quantities: self-energy of a static quarkonium

- Non-local in NRQCD description:

Complex potential

- Local in pNRQCD description (\rightarrow Antonio's talk): HQ momentum diffusion constant, thermal dipole self-energy coeff.

How do they determine quarkonium evolution?
\leftrightarrow What can we learn from experiment, in principle?
I will explain how one can model the in-medium dynamics of quarkonia with complex potential

Contents

1. Open quantum system: basics and its application to quarkonia in QGP
2. Simulation of Lindblad equation: decoherence, dissipation, and thermalization

Minimum basics of open quantum system

Lindblad equation: evolution of reduced density matrix $\rho_{S}(t) \equiv \operatorname{Tr}_{E} \rho_{\text {tot }}(t)$

$$
\begin{aligned}
\frac{d}{d t} \rho_{S}(t) & =-i\left[H_{S}^{\prime}, \rho_{S}\right]+\underbrace{\sum_{k}\left(L_{k} \rho_{S} L_{k}^{\dagger}-\frac{1}{2} L_{k}^{\dagger} L_{k} \rho_{S}-\frac{1}{2} \rho_{S} L_{k}^{\dagger} L_{k}\right)}_{\text {dissipator } \mathcal{D}\left(\rho_{S}\right)}=\mathcal{L}\left(\rho_{S}\right) \\
& =-i\left(H_{\text {eff }} \rho_{S}-\rho_{S} H_{\text {eff }}^{\dagger}\right)+\underbrace{\sum_{k} L_{k} \rho_{S} L_{k}^{\dagger}}_{\text {transitions/scatterings }}, \quad H_{\text {eff }}=\underbrace{H_{S}^{\prime}-\frac{i}{2} \sum_{k} L_{k}^{\dagger} L_{k}}_{H_{S}+\text { self-energy }}
\end{aligned}
$$

if the evolution is Markovian, preserves probability and (complete) positivity [Gorini-Kossakowski-Sudarshan (76), Lindblad (76)]

Lindblad equation for weak system-environment coupling
Born-Markov approximation for $H_{I}=V_{S} \otimes V_{E}$ (interaction picture)

$$
\frac{d}{d t} \rho_{S}(t)=\int_{0}^{\infty} d s \underbrace{\left\langle V_{E}(s) V_{E}(0)\right\rangle}_{\text {environment correlator }}\left[\begin{array}{l}
V_{S}(t-s) \rho_{S}(t) V_{S}(t) \\
-V_{S}(t) V_{S}(t-s) \rho_{S}(t)
\end{array}\right]+\text { h.c. }+\mathcal{O}\left(V^{3}\right)
$$

Quantum Brownian regime ${ }^{1}$

- Slow system time scale \rightarrow derivative expansion

$$
\left.\begin{array}{l}
V_{S}(t-s) \\
\quad \rightarrow \quad L
\end{array}\right) V_{S}(t)-s \dot{V}_{S}(t)+\cdots=V_{S}(t)-i s\left[H_{S}, V_{S}(t)\right]+\cdots \dot{V}_{S}+\cdots, ~ l
$$

- Condition for derivative expansion ($\tau_{S / E}=$ system/env. timescale)

$$
\tau_{S} \sim \underbrace{4 / M \alpha^{2}}_{\text {Coulombic }} \sim 1 / 0.11 \mathrm{GeV} \gg \tau_{E} \sim 1 / T \sim 1 / 0.3 \mathrm{GeV}
$$

${ }^{1}$ There is another regime "Quantum optical limit," where $H_{I}(t)$ has discrete spectra

Lindblad equation from NRQCD [Akamatsu (15, 20)]

1. NRQCD Lagrangian ($1 / M$-expansion $+v$-counting)

$$
\mathcal{L}_{\mathrm{NRQCD}}=\underbrace{\mathcal{L}_{q+A}}_{\text {light sector }}+\psi^{\dagger}\left[i D_{t}+\frac{\vec{D}^{2}}{2 M}\right] \psi+\chi^{\dagger}\left[i D_{t}-\frac{\vec{D}^{2}}{2 M}\right] \chi+\cdots
$$

2. Quantum mechanics of a heavy quark pair $\left(\vec{\nabla}_{Q} \sim M v \gg g \vec{A} \sim M v^{3}\right)$

$$
H=\underbrace{H_{q+A}}_{\text {environment }}+\underbrace{\frac{p_{Q}^{2}}{2 M}+\frac{p_{Q_{c}}^{2}}{2 M}}_{\text {system }}+\underbrace{g A_{0}^{a}\left(\vec{x}_{Q}\right) t_{Q}^{a}-g A_{0}^{a}\left(\vec{x}_{Q_{c}}\right) t_{Q_{c}}^{a *}}_{\text {interaction } H_{I}}
$$

- System \otimes Environment interaction

$$
H_{I}=\int_{k} \underbrace{\left(e^{i k x_{Q}} t_{Q}^{a}-e^{i k x_{Q_{c}}} t_{Q_{c}}^{a *}\right)}_{=V_{S}(k)} \otimes \underbrace{g \tilde{A}_{0}(k)}_{=V_{E}(k)}
$$

3. Lindblad operators $\left(\sum_{k} \rightarrow \int_{k}\right)$

$$
L_{k}=\underbrace{\sqrt{\tilde{D}(k)}}_{\text {rate }^{1 / 2} \alpha g}[\underbrace{e^{i k x_{Q}} t_{Q}^{a}-e^{i k x_{Q_{c}}} t_{Q_{c}}^{a *}}_{\text {scattering with transfer } k}+\underbrace{\mathcal{O}\left(\dot{x}_{Q}, \dot{x}_{Q_{c}}\right)}_{\text {derivative exp. }}]+\underbrace{\mathcal{O}\left(g^{2}\right)}_{\text {perturbative exp. }}
$$

Diagrammatic representation of Lindblad kernels

Gluon propagators with hard-thermal loop self-energies

Self-energy $=$ complex potential $(r \sim 1 / g T)$

$$
\begin{aligned}
& \Delta H-\frac{i}{2} \int_{k} L_{k}^{\dagger} L_{k}=V(r)\left[t_{Q}^{a} t_{Q_{c}}^{a *}\right]+i\left(D(r)\left[t_{Q}^{a} t_{Q_{c}}^{a *}\right]-C_{F} D(0)\right)+\underbrace{\ldots}_{\text {expansions }} \\
& V(r)=-\frac{\alpha}{r} e^{-m_{D} r}, \quad D(r)=\int_{k} e^{i k \cdot r} \tilde{D}(k), \quad \tilde{D}(k)=g^{2} T \frac{\pi m_{D}^{2}}{k\left(k^{2}+m_{D}^{2}\right)^{2}}
\end{aligned}
$$

Modeling the Lindblad equation

Singlet complex potential in perturbation theory [Laine+(07),Beraudo+(08),Brambilla+(08)]

$$
V_{\text {complex }}^{\text {(singlet) }}(r)=C_{F}[V(r)-i(D(0)-D(r))]
$$

Complex potential from non-perturbative thermal Wilson loop [Rothkopf+ $(12,15)$]

- Plateau $\operatorname{Im} V(r \rightarrow \infty)$ yet to be seen

Numerical methods for solving the Lindblad equation

Stochastic unravelling of ρ_{S} : give a mixed-state wave-function ensemble

$$
\rho_{S}(t)=\underbrace{\overline{|\psi(t)\rangle\langle\psi(t)|}}_{\text {ensemble average }}=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N}\left|\psi_{i}(t)\right\rangle\left\langle\psi_{i}(t)\right|
$$

Method 1: Quantum State Diffusion [Gisin-Percival (92)]

- Nonlinear stochastic equation with complex white noises ($\overline{d \xi_{k}^{*} d \xi_{\ell}}=2 \delta_{k \ell} d t$)

$$
\begin{aligned}
|d \tilde{\psi}\rangle & =|\tilde{\psi}(t+d t)\rangle-|\psi(t)\rangle \\
& =\underbrace{\left[\mathcal{L}(|\psi\rangle\langle\psi|)-\langle\mathcal{L}(|\psi\rangle\langle\psi|)\rangle_{\psi}\right]|\psi(t)\rangle d t}_{\rightarrow \text { closest pure state to Lindblad evolution }}+\underbrace{\frac{1}{\sqrt{2}} \sum_{k} L_{k}|\psi(t)\rangle d \xi_{k}}_{\rightarrow \text { mixed state }} \\
|\psi(t+d t)\rangle & =\text { normalize }|\tilde{\psi}(t+d t)\rangle \rightarrow \text { repeat }
\end{aligned}
$$

Method 2: Quantum Jump [Plenio-Knight (98)] \rightarrow Antonio's talk

Numerical simulations

Most simulations use stochastic unravelling

	NRQCD	pNRQCD
Inter-quark distance r	can be long	short
Coupling g	weak	can be large
Simulation cost	heavier	lighter

NRQCD	Dissipation	Method
1D, U(1)	no	Stochastic Potential [Akamatsu-Rothkopf (12), Kajimoto+ (18)]
3D, U(1)	no	Stochastic Potential [Rothkopf (14)]
1D, SU(3)	no	Stochastic Potential [Sharma-Tiwari (20), Kajimoto+ (in prep.)]
1D, U(1)	yes	Quantum State Diffusion [Akamatsu+ (19), Miura+ (20)]
1D, SU(3)	yes	Quantum State Diffusion [Miura+ (in prep.)]
1D, U(1)	yes	Direct evolution [Alund+ (21)]
pNRQCD	Dissipation	Method
$1+$ D, SU(3)	no	Direct evolution for S and P waves [Brambilla+ (17, 18)]
3D, SU(3)	no	Quantum Jump [Brambilla+ (20, 21)]
1D, SU(3)	yes	Quantum State Diffusion [Miura-Kaida+ (in prog.)]

QSD simulation: solitonic wave functions of an event [Akamatsu+ (18)]
Solitonic wave functions for $\mathrm{U}(1)$ single HQ case (\leftarrow only in this slide)

- Nonlinear terms (localization) v.s. Kinetic term ("diffusion")
- Similar nonlinear equation (w/o noise) is used to find pointer states [Busse-Hornberger (09)]

QSD simulation: density matrix [Miura+ (in prep.)]

Model complex potential: $V_{\text {complex }}^{(\text {singlet })}(r)=C_{F} V(r)-i C_{F}(D(0)-D(r))$

$$
C_{F} V(r)=-\frac{0.3}{r} e^{-2 T r}, \quad C_{F} D(r)=\frac{T}{\pi} e^{-(T r)^{2}}, \quad T=0.1 M
$$

\rightarrow Color resolution scale of QGP $\ell \sim 1 / T=10 / M$

Singlet ground state

QSD simulation: density matrix [Miura+ (in prep.)]

Model complex potential: $V_{\text {complex }}^{(\text {singlet }}(r)=C_{F} V(r)-i C_{F}(D(0)-D(r))$

$$
C_{F} V(r)=-\frac{0.3}{r} e^{-2 T r}, \quad C_{F} D(r)=\frac{T}{\pi} e^{-(T r)^{2}}, \quad T=0.1 M
$$

\rightarrow Color resolution scale of QGP $\ell \sim 1 / T=10 / M$

Dipole excitation to octet

QSD simulation: density matrix [Miura+ (in prep.)]

Model complex potential: $V_{\text {complex }}^{(\text {singlet })}(r)=C_{F} V(r)-i C_{F}(D(0)-D(r))$

$$
C_{F} V(r)=-\frac{0.3}{r} e^{-2 T r}, \quad C_{F} D(r)=\frac{T}{\pi} e^{-(T r)^{2}}, \quad T=0.1 M
$$

\rightarrow Color resolution scale of QGP $\ell \sim 1 / T=10 / M$

Decoherence in octet

QSD simulation: density matrix [Miura+ (in prep.)]

Model complex potential: $V_{\text {complex }}^{(\text {singlet })}(r)=C_{F} V(r)-i C_{F}(D(0)-D(r))$

$$
C_{F} V(r)=-\frac{0.3}{r} e^{-2 T r}, \quad C_{F} D(r)=\frac{T}{\pi} e^{-(T r)^{2}}, \quad T=0.1 M
$$

\rightarrow Color resolution scale of QGP $\ell \sim 1 / T=10 / M$

Decoherence in octet

QSD simulation: density matrix [Miura+ (in prep.)]

Model complex potential: $V_{\text {complex }}^{(\text {singlet })}(r)=C_{F} V(r)-i C_{F}(D(0)-D(r))$

$$
C_{F} V(r)=-\frac{0.3}{r} e^{-2 T r}, \quad C_{F} D(r)=\frac{T}{\pi} e^{-(T r)^{2}}, \quad T=0.1 M
$$

\rightarrow Color resolution scale of QGP $\ell \sim 1 / T=10 / M$

De-excitation to singlet

QSD simulation: density matrix [Miura+ (in prep.)]

Model complex potential: $V_{\text {complex }}^{(\text {singlet })}(r)=C_{F} V(r)-i C_{F}(D(0)-D(r))$

$$
C_{F} V(r)=-\frac{0.3}{r} e^{-2 T r}, \quad C_{F} D(r)=\frac{T}{\pi} e^{-(T r)^{2}}, \quad T=0.1 M
$$

\rightarrow Color resolution scale of QGP $\ell \sim 1 / T=10 / M$

De-excitation to singlet \rightarrow equilibrated?

QSD simulation: equilibration [Miura+ (in prep.)]

Evolution of eigenstate occupation

Steady state is independent of initial conditions

Eigenstate occupation in the steady state

Approach to the Boltzmann distribution with environment temperature

QSD simulation: role of dissipation [Miura+ (in prep.)]

Evolution of eigenstate occupation

Without dissipation, all states get equally occupied Dissipation is non-negligible from early time

Decoherence is not effective for a localized bound state \rightarrow Need to take account of heavy quark's motion during decoherence (=dissipation)

Summary

Quarkonium Lindblad equations carry information of QGP

- NRQCD: complex potential
- pNRQCD: local coefficients κ and γ

Quarkonium Lindblad equation is yet to be complete

- NRQCD: valid in weak-coupling regime and can model for any size
- pNRQCD: valid in non-perturbative regime and in the dipole limit
- For $T \lesssim 200 \mathrm{MeV}$, quantum Brownian regime may cease to hold [Yao+ (19)]

$$
\text { QGP corr. time } \sim \frac{1}{T} \ll \text { quarkonium period } \sim \frac{1}{\Delta E} \sim \frac{1}{110 \mathrm{MeV}}
$$

Simulation of Lindblad equation

- NRQCD: equilibration achieved by balancing decoherence and dissipation
- pNRQCD: phenomenological application has started
- Need to check the validity of dipole approximation for pNRQCD by comparing with NRQCD simulation [Miura-Kaida+ (in prog.)]
- Quantum simulation? [Hu-Zia-Kais (20), de Jong et al (20)]

Appendix

Physical picture: decoherence + dissipation

$t=0$

