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Quarkonia in heavy-ion collisions
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What we are getting to know

▶ Non-equilibrium evolution of quarkonia in static and homogeneous medium
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Quarkonia in heavy-ion collisions
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What we ignore in this talk

▶ Interaction between initially uncorrelated pairs (justified for bottoms)

▶ Effects of non-static and inhomogeneous medium (for simplicity)

▶ Heavy quark pair creation in medium (suppressed by e−M/T )

▶ Heavy quark pair annihilation in medium (suppressed by 1/M2)

2 / 15



Quarkonia in heavy-ion collisions
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hard collision hydro expansion

freezeoutthermalization

What we do not know

▶ Initial condition of quarkonia
▶ assume singlet/octet wave packets, vacuum states, etc

▶ How quarkonia hadronize
▶ assume evolution freezes at T = Tf
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Quarkonia in a static and uniform medium (T > Tc)

Key quantities: self-energy of a static quarkonium

▶ Non-local in NRQCD description:
Complex potential

▶ Local in pNRQCD description (→ Antonio’s talk):
HQ momentum diffusion constant, thermal dipole self-energy coeff.

How do they determine quarkonium evolution?
↔ What can we learn from experiment, in principle?

I will explain how one can model the in-medium dynamics of quarkonia
with complex potential

Contents

1. Open quantum system: basics and its application to quarkonia in QGP
2. Simulation of Lindblad equation: decoherence, dissipation, and thermalization
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Minimum basics of open quantum system

EHI

trace out EHE

S
HS

S
HS Lk

Lindblad equation: evolution of reduced density matrix ρS(t) ≡ TrEρtot(t)

d

dt
ρS(t) = −i [H ′

S , ρS ] +
∑
k

(
LkρSL

†
k −

1

2
L†
kLkρS −

1

2
ρSL

†
kLk

)
︸ ︷︷ ︸

dissipator D(ρS)

= L(ρS)

= −i
(
HeffρS − ρSH†

eff

)
+

∑
k

LkρSL
†
k︸ ︷︷ ︸

transitions/scatterings

, Heff = H ′
S −

i

2

∑
k

L†
kLk︸ ︷︷ ︸

HS + self-energy

if the evolution is Markovian, preserves probability and (complete) positivity
[Gorini-Kossakowski-Sudarshan (76), Lindblad (76)]
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Lindblad equation for weak system-environment coupling

Born-Markov approximation for HI = VS ⊗ VE (interaction picture)

d

dt
ρS(t) =

∫ ∞

0

ds ⟨VE(s)VE(0)⟩︸ ︷︷ ︸
environment correlator

[
VS(t− s)ρS(t)VS(t)
− VS(t)VS(t− s)ρS(t)

]
+ h.c.+O(V 3)

Quantum Brownian regime1

▶ Slow system time scale → derivative expansion

VS(t− s) ≈ VS(t)− sV̇S(t) + · · · = VS(t)− is[HS , VS(t)] + · · ·

→ L ∝ VS +
i

4T
V̇S + · · ·

▶ Condition for derivative expansion (τS/E = system/env. timescale)

τS ∼ 4/Mα2︸ ︷︷ ︸
Coulombic

∼ 1/0.11GeV≫ τE ∼ 1/T ∼ 1/0.3GeV

1There is another regime “Quantum optical limit,” where HI(t) has discrete spectra
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Lindblad equation from NRQCD [Akamatsu (15, 20)]

1. NRQCD Lagrangian (1/M -expansion + v-counting)

LNRQCD = Lq+A︸ ︷︷ ︸
light sector

+ψ†

[
iDt +

D⃗2

2M

]
ψ + χ†

[
iDt −

D⃗2

2M

]
χ+ · · · ,

2. Quantum mechanics of a heavy quark pair (∇⃗Q ∼Mv ≫ gA⃗ ∼Mv3)

H = Hq+A︸ ︷︷ ︸
environment

+
p2Q
2M

+
p2Qc

2M︸ ︷︷ ︸
system

+ gAa0(x⃗Q)t
a
Q − gAa0(x⃗Qc)t

a∗
Qc︸ ︷︷ ︸

interaction HI

▶ System ⊗ Environment interaction

HI =

∫
k

(
eikxQ taQ − eikxQc ta∗Qc

)
︸ ︷︷ ︸

= VS(k)

⊗ gÃ0(k)︸ ︷︷ ︸
= VE(k)

3. Lindblad operators (
∑
k →

∫
k
)

Lk =

√
D̃(k)︸ ︷︷ ︸

rate1/2 ∝ g

[
eikxQtaQ − eikxQc ta∗Qc︸ ︷︷ ︸
scattering with transfer k

+O(ẋQ, ẋQc)︸ ︷︷ ︸
derivative exp.

]
+ O(g2)︸ ︷︷ ︸

perturbative exp.
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Diagrammatic representation of Lindblad kernels

Gluon propagators with hard-thermal loop self-energies

ρS(t)
self-energy

scatterings
t+Δt

Q

Qc

Self-energy = complex potential (r ∼ 1/gT )

∆H − i

2

∫
k

L†
kLk = V (r)[taQt

a∗
Qc

] + i
(
D(r)[taQt

a∗
Qc

]− CFD(0)
)
+ · · ·︸︷︷︸

expansions

V (r) = −α
r
e−mDr, D(r) =

∫
k

eik·rD̃(k), D̃(k) = g2T
πm2

D

k(k2 +m2
D)

2
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Modeling the Lindblad equation

Singlet complex potential in perturbation theory [Laine+(07),Beraudo+(08),Brambilla+(08)]

V
(singlet)
complex (r) = CF

[
V (r)− i(D(0)−D(r))

]
Complex potential from non-perturbative thermal Wilson loop [Rothkopf+ (12,15)]

not change the outcome. A unique global solution is found
based on an LBFGS minimizer with 512 bit precision
arithmetic and a step size stopping criterion of Δ ¼ 10−60.
Several of the reconstructed spectra for Nτ ¼ 24 are shown
in Fig. 1.
In the top panel of Fig. 2 the results for the real part from

the position of the lowest lying spectral peak are given by
colored open symbols. They are contrasted to the color
singlet free energies in Coulomb gauge Fð1ÞðrÞ ¼
−T log½W∥ðr; τ ¼ βÞ%, obtained on the same lattices (filled
gray circles). Since the raw values fall on top of each other
at small distances we have shifted them for better read-
ability. The error bars shown are obtained from the jack-
knife variance resulting from repeating the reconstruction
ten times excluding a different set of 10% of the underlying
measurements each. The error bands (given for T ¼ 210;
360; 629; 839 MeV) on the other hand denote the maxi-
mum variance obtained from changing three different
quantities. One corresponds to a reduction of the number
of data points along τ by 4 and 8, the second to changing
the default model normalization (×10, ×0.1) or functional
form (m ∝ const;ω−2;ω2) and the third to the reduction in
signal-to-noise ratio by excluding 10%, 20%, or 30% of the
available measurements. Note that because the spectral
reconstruction takes into account all data points along τ, our
results for T ≲ Tc are much more robust than the free
energies, which rely on a single data point. On the other
hand the Bayesian reconstruction suffers from a diminish-
ing number of data points at increasing temperature, as seen
in the error bands.
Our main observation is that even though the τ ¼ β data

point is excluded from the reconstruction, the values of
Re½V% obtained at all temperatures lie close to the color
singlet free energies. While the lowest temperature shows
no or very weak deviation from a linearly rising potential,
the values above T > Tc show clear signs of Debye
screening with increasing temperature. At r < 0.15 fm
we find little temperature dependence, as expected.

The extraction of the imaginary part from Bayesian
spectra poses an even more formidable challenge than
Re½V%. Its presence can be qualitatively inferred already
from the Euclidean correlator (see Fig. 1, top panel),
where at intermediate τ values a deviation from the
exponential decay and a finite curvature emerges. For
accurate quantitative results, the reconstruction of the
lowest lying peak needs to capture both the width and
the skewness of the Lorentzian related to nonpotential
effects.
The novel Bayesian approach for the first time allows us

to extract this functional form (see Fig. 1, bottom panel),
where the MEM yielded Gaussian-like features. Previous
tests based on mock data from momentum regularized
HTL perturbation theory show that to obtain values
accurate to ∼25%, data sets with Nτ ∼Oð100Þ data points
are required at a high precision of ΔD=D < 10−4. If fewer
points are available the reconstruction tends to under-
estimate the width, while statistical noise leads to broad-
ening. The former effect dominates at high temperatures

FIG. 1 (color online). Spectral reconstruction: on-axis Wilson
line correlator data (top) at Nτ ¼ 24 and (bottom) the spectral
functions obtained by the new Bayesian reconstruction method.

FIG. 2 (color online). Gluonic medium. Top: the shifted real
part of the static interquark potential (open symbols) compared to
the color singlet free energies (gray circles). Error bars represent
statistical uncertainty; error bands include also systematics (see
main text). Bottom: Im½V% (symbols) shifted and compared to the
HTL predictions (solid lines).
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▶ Plateau ImV (r →∞) yet to be seen
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Numerical methods for solving the Lindblad equation

Stochastic unravelling of ρS : give a mixed-state wave-function ensemble

ρS(t) = |ψ(t)⟩⟨ψ(t)|︸ ︷︷ ︸
ensemble average

= lim
N→∞

1

N

N∑
i=1

|ψi(t)⟩⟨ψi(t)|

Method 1: Quantum State Diffusion [Gisin-Percival (92)]

▶ Nonlinear stochastic equation with complex white noises (dξ∗kdξℓ = 2δkℓdt)

|dψ̃⟩ = |ψ̃(t+ dt)⟩ − |ψ(t)⟩

= [L(|ψ⟩⟨ψ|)− ⟨L(|ψ⟩⟨ψ|)⟩ψ] |ψ(t)⟩dt︸ ︷︷ ︸
→ closest pure state to Lindblad evolution

+
1√
2

∑
k

Lk|ψ(t)⟩dξk︸ ︷︷ ︸
→ mixed state

|ψ(t+ dt)⟩ = normalize |ψ̃(t+ dt)⟩ → repeat

Method 2: Quantum Jump [Plenio-Knight (98)] → Antonio’s talk
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Numerical simulations

Most simulations use stochastic unravelling

NRQCD pNRQCD

Inter-quark distance r can be long short
Coupling g weak can be large

Simulation cost heavier lighter

NRQCD Dissipation Method

1D, U(1) no Stochastic Potential [Akamatsu-Rothkopf (12), Kajimoto+ (18)]

3D, U(1) no Stochastic Potential [Rothkopf (14)]
1D, SU(3) no Stochastic Potential [Sharma-Tiwari (20), Kajimoto+ (in prep.)]

1D, U(1) yes Quantum State Diffusion [Akamatsu+ (19), Miura+ (20)]

1D, SU(3) yes Quantum State Diffusion [Miura+ (in prep.)]

1D, U(1) yes Direct evolution [Alund+ (21)]

pNRQCD Dissipation Method

1+D, SU(3) no Direct evolution for S and P waves [Brambilla+ (17, 18)]

3D, SU(3) no Quantum Jump [Brambilla+ (20, 21)]

1D, SU(3) yes Quantum State Diffusion [Miura-Kaida+ (in prog.)]
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QSD simulation: solitonic wave functions of an event [Akamatsu+ (18)]

Solitonic wave functions for U(1) single HQ case (← only in this slide)

▶ Nonlinear terms (localization) v.s. Kinetic term (“diffusion”)

▶ Similar nonlinear equation (w/o noise) is used to find pointer states
[Busse-Hornberger (09)]
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QSD simulation: density matrix [Miura+ (in prep.)]

Model complex potential: V
(singlet)
complex (r) = CFV (r)− iCF (D(0)−D(r))

CFV (r) = −0.3

r
e−2Tr, CFD(r) =

T

π
e−(Tr)2 , T = 0.1M

→ Color resolution scale of QGP ℓ ∼ 1/T = 10/M

Singlet |ρs(x, y)|2 Octet |ρo(x, y)|2
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QSD simulation: density matrix [Miura+ (in prep.)]

Model complex potential: V
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QSD simulation: density matrix [Miura+ (in prep.)]

Model complex potential: V
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QSD simulation: density matrix [Miura+ (in prep.)]
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QSD simulation: density matrix [Miura+ (in prep.)]

Model complex potential: V
(singlet)
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QSD simulation: density matrix [Miura+ (in prep.)]

Model complex potential: V
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De-excitation to singlet → equilibrated?
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QSD simulation: equilibration [Miura+ (in prep.)]

Evolution of eigenstate occupation
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QSD simulation: role of dissipation [Miura+ (in prep.)]

Evolution of eigenstate occupation
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Without dissipation, all states get equally occupied
Dissipation is non-negligible from early time

Decoherence is not effective for a localized bound state
→ Need to take account of heavy quark’s motion during decoherence

(=dissipation)
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Summary

Quarkonium Lindblad equations carry information of QGP

▶ NRQCD: complex potential

▶ pNRQCD: local coefficients κ and γ

Quarkonium Lindblad equation is yet to be complete

▶ NRQCD: valid in weak-coupling regime and can model for any size

▶ pNRQCD: valid in non-perturbative regime and in the dipole limit

▶ For T ≲ 200MeV, quantum Brownian regime may cease to hold [Yao+ (19)]

QGP corr. time ∼ 1

T
≪ quarkonium period ∼ 1

∆E
∼ 1

110MeV

Simulation of Lindblad equation

▶ NRQCD: equilibration achieved by balancing decoherence and dissipation

▶ pNRQCD: phenomenological application has started

▶ Need to check the validity of dipole approximation for pNRQCD by
comparing with NRQCD simulation [Miura-Kaida+ (in prog.)]

▶ Quantum simulation? [Hu-Zia-Kais (20), de Jong et al (20)]
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Appendix
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Physical picture: decoherence + dissipation
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