

[arXiv:2004.09440]

Direct CP violation and the ∆I=1/2 rule in K→ππ decay from the Standard Model

Christopher Kelly Brookhaven National Laboratory

(RBC & UKQCD collaborations)

Friday August 6th 2021, vConf21, Stavanger, Norway (Online)

The RBC & UKQCD collaborations

UC Berkeley/LBNL

Aaron Meyer

BNL and BNL/RBRC

Yasumichi Aoki (KEK) Peter Boyle (Edinburgh) Taku Izubuchi Yong-Chull Jang Chulwoo Jung Christopher Kelly Meifeng Lin Hiroshi Ohki Shigemi Ohta (KEK) Amarjit Soni

<u>CERN</u>

Andreas Jüttner (Southampton)

Columbia University

Norman Christ Duo Guo Yikai Huo Yong-Chull Jang Joseph Karpie Bob Mawhinney Ahmed Sheta Bigeng Wang Tianle Wang Yidi Zhao

University of Connecticut

Tom Blum Luchang Jin (RBRC) Michael Riberdy Masaaki Tomii

Edinburgh University

Matteo Di Carlo Luigi Del Debbio Felix Erben Vera Gülpers Tim Harris Raoul Hodgson Nelson Lachini Michael Marshall Fionn Ó hÓgáin Antonin Portelli James Richings Azusa Yamaguchi Andrew Z.N. Yong

<u>KEK</u> Julien Frison

<u>University of Liverpool</u> Nicolas Garron

<u>Michigan State University</u> Dan Hoying <u>Milano Bicocca</u> Mattia Bruno

<u>Peking University</u> Xu Feng

University of Regensburg

Davide Giusti Christoph Lehner (BNL)

University of Siegen

Matthew Black Oliver Witzel

University of Southampton

Nils Asmussen Alessandro Barone Jonathan Flynn Ryan Hill Rajnandini Mukherjee Chris Sachrajda

<u>University of Southern Denmark</u> Tobias Tsang

Stony Brook University

Jun-Sik Yoo Sergey Syritsyn (RBRC)

Motivation

- Likely explanation for matter/antimatter asymmetry in Universe, baryogenesis, requires violation of CP.
- Amount of CPV in Standard Model appears too low to describe measured M/AM asymmetry: tantalizing hint of new physics.
- Direct CPV first observed in late 90s at CERN (NA31/NA48) and Fermilab (KTeV) in $K^0 \rightarrow \pi\pi$:

$$\eta_{00} = \frac{A(K_{\rm L} \to \pi^0 \pi^0)}{A(K_{\rm S} \to \pi^0 \pi^0)}, \qquad \eta_{+-} = \frac{A(K_{\rm L} \to \pi^+ \pi^-)}{A(K_{\rm S} \to \pi^+ \pi^-)}.$$

$$\operatorname{Re}(\epsilon'/\epsilon) \approx \frac{1}{6} \left(1 - \left| \frac{\eta_{00}}{\eta_{\pm}} \right|^2 \right) = 16.6(2.3) \times 10^{-4} \quad \text{(experiment)}$$

measure of direct CPV

measure of indirect CPV

- Small size of ε' makes it particularly sensitive to new direct-CPV introduced by many BSM models.
- Looking for deviations from experiment may help shed light on origin of M/AM asymmetry.

• A Standard Model prediction of ϵ ' also provides a new horizontal band constraint on CKM matrix in ρ - η plane:

new constraint from this work!

- While underlying weak process occurs at high energies $\sim M_w$ =80 GeV, K $\rightarrow \pi\pi$ decays receive large corrections from low-energy hadronic physics O($\Lambda_{_{QCD}}$)~250 MeV.
- Lattice QCD is the only known *ab initio*, **systematically improvable** technique for studying non-perturbative QCD.

Hadronic energy scale << M_w – use weak effective theory (3 flavors)

Anatomy of a lattice calculation

- Lattice QCD uses Monte Carlo techniques to sample the discretized (Euclidean) Feynman path integral directly, generating an ensemble of N "gauge configurations".
- Expectation value of some Green's function computed over the ensemble converges to path integral value in large N limit.
- Green's function composed of *operators* created from quark fields that create/destroy states of interest.
- Operators create all states with same quantum numbers, eg $\bar{u}\gamma^5 d$ creates pions and all excited pion-like states.
- Contributions of each state i decay exponentially in time as exp(-E_it) due to Euclidean time.
- Extract contributions of lightest states by fitting large time dependence.
- <u>Challenges:</u>
 - Computationally expensive, requiring months to years of running on the world's fastest supercomputers.
 - Much like experiment, have both statistical and systematic errors.
 - Systematic errors (e.g. from discretization or from fitting) require careful analysis and treatment.

Lattice QCD for $K \rightarrow \pi \pi$

- Extract matrix elements by fitting time dependence in limit of large (t_{snk} -t), (t_{src} -t) at which lower-energy states dominate.
- Series is necessarily truncated for fit: Systematic errors arise if excited state effects not properly taken into account.

I=2 calculation

- A₂ can be measured very precisely using "standard" lattice techniques.
- Most recent result (2015):
 - Computed with large, ~ $(5.5 \text{ fm})^3$ volumes
 - Physical quark masses
 - Two lattice spacings (2.36 GeV and 1.73 GeV) → Continuum limit taken.
- <1% statistical error!
- 10% and 12% total errors on $Re(A_2)$ and $Im(A_2)$ resp.
- Dominant sys. errors due to truncation of PT series in computation of renormalization and Wilson coefficients.

Δ*I*=1/2 rule

• In experiment kaons ~450x (!) more likely to decay into I=0 pi-pi states than I=2.

$$\frac{\text{Re}A_0}{\text{Re}A_2} = 22.45(6)$$
 (the Δ I=1/2 rule)

- Perturbative running to charm scale accounts for about a factor of 2. Where does the remaining 10x come from? New Physics?
- The answer is low-energy QCD!

[arXiv:1212.1474, arXiv:1502.00263]

Strong cancellation between the two dominant contractions not predicted by naive factorization:

I=0 Calculation

- A_0 is more difficult than A_2 , primarily because I=0 $\pi\pi$ state has vacuum quantum numbers.
- "Disconnected diagrams" dominate statistical noise

"type4"

2015 calculation

Single $\pi\pi$ operator:

[Phys.Rev.Lett. 115 (2015) 21, 212001]

- Physical quark masses on single, coarse lattice (a⁻¹= 1.38 GeV) but with large (4.6 fm)³ physical volume to control FV errors.
- G-parity boundary conditions remove dominant unphysical contribution from stationary $\pi\pi$ state.

- 21% and 65% stat errors on $Re(A_0)$ and $Im(A_0)$ due to disconn. diagrams and, for $Im(A_0)$ a strong cancellation between Q_4 and Q_6 .
- Dominant, 15% systematic error due again to PT truncation errors.

2015 calculation: ε'

- $\operatorname{Re}(A_0)$ and $\operatorname{Re}(A_2)$ from expt.
- Lattice values for $Im(A_0)$, $Im(A_2)$ and the phase shifts,

$$\operatorname{Re}\left(\frac{\varepsilon'}{\varepsilon}\right) = \operatorname{Re}\left\{\frac{i\omega e^{i(\delta_{2}-\delta_{0})}}{\sqrt{2}\varepsilon} \begin{bmatrix} \operatorname{Im}A_{2} \\ \operatorname{Re}A_{2} \end{bmatrix} \right\}$$
$$= 1.38(5.15)(4.43) \times 10^{-4}, \quad \text{(our result)}$$
$$16.6(2.3) \times 10^{-4} \quad \text{(experiment)}$$

- Result is 2.1σ below experimental value.
- Total error on $\text{Re}(\epsilon'/\epsilon)$ is ~3x the experimental error
- "This is now a quantity accessible to lattice QCD"!
- Focus since has been to improve statistics and reduce / improve understanding of systematic errors.

The " $\pi\pi$ puzzle"

- Essential to understand $\pi\pi$ system:
 - Energy needed to extract ground-state matrix element
 - Energy also needed to compute phase-shift (Luscher)
 - Derivative of phase-shift w.r.t. energy is required for Lellouch-Luscher finitevolume correction (F)
- 2015 calculation phase shift $\delta_0(E_{\pi\pi} \approx m_K) = 23.8(5.0)^\circ$ substantially smaller than prediction obtained by combining dispersion theory with experimental input, 36° .
- Result was very stable under varying fit range and also with 2state fits.
- Increasing statistics by almost 7x did not resolve ($\delta_0 = 19.1(2.5)^\circ$)
- Nevertheless, most likely explanation is excited-state contamination hidden by rapid reduction in signal/noise.

Resolving the $\pi\pi$ puzzle [arXiv:2103.15131]

• To better resolve the ground-state we have introduced 2 more $\pi\pi$ operators:

• Obtain parameters by simultaneous fitting to matrix of correlation functions, eg for pipi 2pt Green's function:

$$C_{ij}(t) = \langle 0 | O_i^{\dagger}(t) O_j(0) | 0 \rangle = C + \sum_{\alpha} A_{i,\alpha} A_{j,\alpha} e^{-E_{\alpha}t}$$

round-the-world single pion propagation small compared to errors - drop

- A far more powerful technique than just increasing statistics alone.
- 741 configurations measured with 3 operators.

Effect of multiple operators on $\pi\pi$

Result compatible with dispersive value: $\delta_0(479.5 \text{ MeV}) = 32.3(1.0)(1.4)^\circ$

[For more details, cf talk by Tianle Wang, Lattice 2021]

14/24

Effect of multiple operators on K $\rightarrow \pi\pi$

 Convenient to visualize data by taking "optimal" linear combination of the two most important operators that best projects onto ground-state.

$$\mathcal{O}_{\text{opt}} = r_1 \mathcal{O}_{\pi\pi(111)} + r_2 \mathcal{O}_{\sigma}$$

$$r_1 = 5.24(18) \times 10^{-7} \text{ using } \pi\pi$$

$$r_2 = -2.86(17) \times 10^{-4} \text{ fits}$$

strong, clear plateau + improved precision

2

4

6

t'

8

10

8

0

2

4

6

ť

15/24

12

10

[arXiv:2004.09440]

K→ππ fit results

Examine many fit ranges, #states and #operators

Adopt uniform fit t'_{min}=5 which is stable for all Q_i

"bump" appears to be statistical

 Evidence that excited state error was significantly underestimated in 2015 work

Systematic error budget

- Primary systematic errors of 2015 work:
 - Finite lattice spacing: 12%
 - Wilson coefficients: 12%
 - Renormalization (mostly PT matching): 15%
 - Excited-state: \leq 5% but now known to be significantly underestimated
 - Lellouch-Luscher factor (derivative of $\pi\pi$ phase shift wrt. energy): 11%
- In our new work we have used step-scaling to raise the renormalization scale from $1.53 \rightarrow 4.00 \text{ GeV}$: $15\% \rightarrow 5\%$
- 3 operators have dramatically improved understanding of $\pi\pi$ system: Lellouch-Luscher factor $11\% \rightarrow 1.5\%$
- Detailed analysis shows no evidence of remaining excited-state contamination: Excited state error now negligible!
- Still single lattice spacing: Discretization error unchanged.
- Evidence that Wilson coefficient systematics are driven by using PT for 3-4f matching, not improved by higher μ: Wilson coeff error unchanged.

Isospin breaking + EM effects

- Our simulation does not include effects of isospin breaking or EM effects.
- While these effects are typically small O(1%), heavy suppression of A₂ (ΔI=1/2 rule) means relative effect on A₂ and ε' could be O(20%).
- Current best determination of effect uses NLO χ PT and $1/N_c$ expansion predicts 23% correction to our result:

Include as separate systematic error.

JHEP 02 (2020) 032]

Final result for ε'

Combining our new result for Im(A₀) and our 2015 result for Im(A₂), and again using expt. for the real parts, we find

$$\operatorname{Re}\left(\frac{\varepsilon'}{\varepsilon}\right) = \operatorname{Re}\left\{\frac{i\omega e^{i(\delta_2 - \delta_0)}}{\sqrt{2}\varepsilon} \left[\frac{\operatorname{Im}A_2}{\operatorname{Re}A_2} - \frac{\operatorname{Im}A_0}{\operatorname{Re}A_0}\right]\right\}$$
$$= 0.00217(26)(62)(50)$$
$$\overset{\bullet}{\underset{\text{stat}}} \overset{\bullet}{\underset{\text{sys}}} \overset{\bullet}{\underset{\text{IB} + \text{EM}}}$$

Consistent with experimental result:

$$\operatorname{Re}(\epsilon'/\epsilon)_{\mathrm{expt}} = 0.00166(23)$$

The road ahead

- Primary pure-lattice systematic is discretization error (12%). Currently estimated using scaling of I=2 operators but there may be significant "error on the error".
- Near-term availability of next-gen supercomputers (Perlmutter, Aurora) opens up opportunity to perform a full continuum extrapolation.
- Current plan is two additional ensembles with following properties:
 - Physical pion and kaon masses.
 - Same gauge action allowing continuum extrapolation with 3 points.
 - Same physical volume such that $\pi\pi$ energy remains the same and the interaction remains physical.
- 40³x64, a⁻¹=1.7 GeV and 48³x64, a⁻¹=2.1 GeV are computationally feasible while providing a good lever arm (a² scaling).
- Already started generating 16³ test ensembles for tuning.
- Measurement code has been ported to NVidia and Intel GPUs, utilizing Grid's portable GPU kernel API.

The road ahead pt.2

- Independent calculation of ϵ ' using multiple operators to extract on-shell matrix elements as excited-state contributions in a periodic lattice is well under way. [cf. talk by M.Tomii, Lattice 2021]
 - > Avoid complications of using G-parity BCs
 - > Uses existing MDWF+I ensembles with physical pion masses
 - > 2 lattice spacings allowing continuum limit
- We are developing techniques to perform 3-4f matching in the Wilson coefficients non-perturbatively in order to avoid relying on PT at the charm scale.
 [Pos LATTICE2018 (2019) 216]
- Also working on laying the groundwork for the lattice calculation of EM contributions.
 [cf. talk by J.Karpie, Lattice 2021]

Conclusions

- Completed update on our 2015 lattice determination of A_0 and ϵ '
 - 3.2x increase in statistics.
 - Improved systematic errors, notably use of multi-operator techniques essentially removes excited-state systematic.
- Reproduce experimental value for $\Delta I = 1/2$ rule, demonstrating that QCD sufficient to solve this decades-old puzzle.
- Result for ε ' consistent with experimental value.
- Total error is \sim 3.6x that of experiment.
- ε' remains a promising avenue to search for new physics, but greater precision is required.
- The work goes on....

23 / 24

Excited state contamination

- Primary concern is residual excited-state contamination
- See excellent consistency and strong plateaus among fits for 2+ operators with $t'_{\mbox{\scriptsize min}}{\geq}4$
- Also examine 2 and 3-state fits with 3 ops:

