Direct CP violation and the $\Delta I=1/2$ rule in $K\to\pi\pi$ decay from the Standard Model

Christopher Kelly
Brookhaven National Laboratory

(RBC & UKQCD collaborations)

Friday August 6th 2021,
vConf21, Stavanger, Norway
(Online)
The RBC & UKQCD collaborations

UC Berkeley/LBNL
Aaron Meyer

BNL and BNL/RBRC
Yasumichi Aoki (KEK)
Peter Boyle (Edinburgh)
Taku Izubuchi
Yong-Chull Jang
Chulwoo Jung
Christopher Kelly
Meifeng Lin
Hiroshi Ohki
Shigemi Ohta (KEK)
Amarjit Soni

CERN
Andreas Jüttner (Southampton)

Columbia University
Norman Christ
Duo Guo
Yikai Huo
Yong-Chull Jang
Joseph Karpie
Bob Mawhinney
Ahmed Sheta
Bigeng Wang
Tianle Wang
Yidi Zhao

University of Connecticut
Tom Blum
Luchang Jin (RBRC)
Michael Riberdy
Masaaki Tomii

Edinburgh University
Matteo Di Carlo
Luigi Del Debbio
Felix Erben
Vera Gülpers
Tim Harris
Raoul Hodgson
Nelson Lachini
Michael Marshall
Fionn Ó hÓgáin
Antonín Portelli
James Richings
Azusa Yamaguchi
Andrew Z.N. Yong

KEK
Julien Frison

University of Liverpool
Nicolas Garron

Michigan State University
Dan Hoying

Milano Bicocca
Mattia Bruno

Peking University
Xu Feng

University of Regensburg
Davide Giusti
Christoph Lehner (BNL)

University of Siegen
Matthew Black
Oliver Witzel

University of Southampton
Nils Asmussen
Alessandro Barone
Jonathan Flynn
Ryan Hill
Rajnandini Mukherjee
Chris Sachrajda

University of Southern Denmark
Tobias Tsang

Stony Brook University
Jun-Sik Yoo
Sergey Syritsyn (RBRC)
Motivation

- Likely explanation for matter/antimatter asymmetry in Universe, baryogenesis, requires violation of CP.
- Amount of CPV in Standard Model appears too low to describe measured M/AM asymmetry: tantalizing hint of new physics.
- Direct CPV first observed in late 90s at CERN (NA31/NA48) and Fermilab (KTeV) in \(K^0 \rightarrow \pi\pi \):

\[
\eta_{00} = \frac{A(K_L \rightarrow \pi^0\pi^0)}{A(K_S \rightarrow \pi^0\pi^0)}, \quad \eta_{+-} = \frac{A(K_L \rightarrow \pi^+\pi^-)}{A(K_S \rightarrow \pi^+\pi^-)}.
\]

\[
\text{Re}(\epsilon'/\epsilon) \approx \frac{1}{6} \left(1 - \left| \frac{\eta_{00}}{\eta_{\pm}} \right|^2 \right) = 16.6(2.3) \times 10^{-4} \quad \text{(experiment)}
\]

- Small size of \(\epsilon' \) makes it particularly sensitive to new direct-CPV introduced by many BSM models.
- Looking for deviations from experiment may help shed light on origin of M/AM asymmetry.
• A Standard Model prediction of ε' also provides a new horizontal band constraint on CKM matrix in ρ-η plane:

new constraint from this work!

• While underlying weak process occurs at high energies $\sim M_w=80$ GeV, $K \to \pi\pi$ decays receive large corrections from low-energy hadronic physics $O(\Lambda_{QCD})\sim 250$ MeV.

• Lattice QCD is the only known ab initio, systematically improvable technique for studying non-perturbative QCD.
Overview of calculation

Hadronic energy scale $<< M_w$ – use weak effective theory (3 flavors)

\[A(K^0 \to \pi^+\pi^-) = \sqrt{\frac{2}{3}} A_0 e^{i\delta_0} + \sqrt{\frac{1}{3}} A_2 e^{i\delta_2}, \]
\[A(K^0 \to \pi^0\pi^0) = \sqrt{\frac{2}{3}} A_0 e^{i\delta_0} - 2\sqrt{\frac{1}{3}} A_2 e^{i\delta_2}. \]

\[\epsilon' = \frac{i\omega e^{i(\delta_2-\delta_0)}}{\sqrt{2}} \left(\frac{\text{Im}A_2}{\text{Re}A_2} - \frac{\text{Im}A_0}{\text{Re}A_0} \right) \]

\[\omega = \frac{\text{Re}A_2}{\text{Re}A_0} \]

\[I=2 \text{ decay} \]
\[I=0 \text{ decay} \]

Hadronic energy scale $<< M_w$ – use weak effective theory (3 flavors)

\[A^I = F \frac{G_F}{\sqrt{2}} V_{ud}^* V_{us} \sum_{i=1}^{10} \sum_{j=1}^{7} \left[(z_i(\mu) + \tau y_i(\mu)) Z_{i,j}^{\text{lat}} \overrightarrow{\text{MS}} M^I_j, \text{lat} \right] \]

\[\tau = -\frac{V_{ts}^* V_{td}}{V_{us}^* V_{ud}} = 0.0014606 + 0.00060408i \]

Imaginary part solely responsible for CPV
(everything else is pure-real)

LL finite-volume correction

renormalization matrix (mixing)
Use RI-SMOM
convert to MSbar
perturbatively

\[M_{j,\text{lat}}^I = \langle (\pi \pi)_I | Q_j | K \rangle \] (lattice)

10 effective four-quark operators
Anatomy of a lattice calculation

- Lattice QCD uses Monte Carlo techniques to sample the discretized (Euclidean) Feynman path integral directly, generating an ensemble of N “gauge configurations”.

- Expectation value of some Green’s function computed over the ensemble converges to path integral value in large N limit.

- Green’s function composed of operators created from quark fields that create/destroy states of interest.

- Operators create all states with same quantum numbers, eg $\bar{u} \gamma^5 d$ creates pions and all excited pion-like states.

- Contributions of each state i decay exponentially in time as $\exp(-E_i t)$ due to Euclidean time.

- Extract contributions of lightest states by fitting large time dependence.

- Challenges:
 - Computationally expensive, requiring months to years of running on the world’s fastest supercomputers.
 - Much like experiment, have both statistical and systematic errors.
 - Systematic errors (e.g. from discretization or from fitting) require careful analysis and treatment.
Lattice QCD for $K \to \pi \pi$

operator with $\pi \pi$ q. numbers.

$\langle 0 | O_{snk}(t_{snk}) H_W(t) O_{src}(t_{src}) | 0 \rangle$

operator with kaon q. numbers.

state contributions exponentially falling according to their energy (Euclidean time!)

$= \sum_{n,m} \langle 0 | O_{snk}(t_{snk}) | n \rangle \langle n | H_W(t) | m \rangle \langle m | O_{src}(t_{src}) | 0 \rangle \times e^{-E_n(t_{snk} - t)} e^{-E_m(t - t_{src})}$

- Extract matrix elements by fitting time dependence in limit of large $(t_{snk} - t)$, $(t_{src} - t)$ at which lower-energy states dominate.

- Series is necessarily truncated for fit: Systematic errors arise if excited state effects not properly taken into account.
$I=2$ calculation

- A_2 can be measured very precisely using “standard” lattice techniques.

- Most recent result (2015):
 - Computed with large, $\sim (5.5 \text{ fm})^3$ volumes
 - Physical quark masses
 - Two lattice spacings (2.36 GeV and 1.73 GeV) \rightarrow Continuum limit taken.

- $<1\%$ statistical error!

- 10\% and 12\% total errors on Re(A_2) and Im(A_2) resp.

- Dominant sys. errors due to truncation of PT series in computation of renormalization and Wilson coefficients.

\(\Delta I = 1/2 \) rule

- In experiment kaons \(\sim 450 \times (!) \) more likely to decay into \(I=0 \) pi-pi states than \(I=2 \).

\[
\frac{\text{Re}A_0}{\text{Re}A_2} = 22.45(6) \quad (\text{the } \Delta I = 1/2 \text{ rule})
\]

- Perturbative running to charm scale accounts for about a factor of 2. Where does the remaining 10x come from? New Physics?

Strong cancellation between the two dominant contractions not predicted by naive factorization:

\[
\text{Re}(A_2) \sim 1 + 2
\]

find \(2 \approx -0.7 \) \(1 \) heavily suppressing \(\text{Re}(A_2) \).

Pure-lattice calculation

\[
\frac{\text{Re}(A_0)}{\text{Re}(A_2)} = 19.9(5.0)
\]

[Re(A_0) agrees with expt.]
I=0 Calculation

- A_0 is more difficult than A_2, primarily because $I=0$ $\pi\pi$ state has *vacuum quantum numbers*.
- “Disconnected diagrams” dominate statistical noise.

![Disconnected Diagrams](image)

2015 calculation

- Physical quark masses on single, coarse lattice ($a^{-1}=1.38$ GeV) but with large (4.6 fm)3 physical volume to control FV errors.
- G-parity boundary conditions remove dominant unphysical contribution from stationary $\pi\pi$ state.
- Single $\pi\pi$ operator:

 - 21% and 65% stat errors on $\text{Re}(A_0)$ and $\text{Im}(A_0)$ due to disconn. diagrams and, for $\text{Im}(A_0)$ a strong cancellation between Q_4 and Q_6.
 - Dominant, 15% systematic error due again to PT truncation errors.

2015 calculation: ε'

- $\text{Re}(A_0)$ and $\text{Re}(A_2)$ from expt.
- Lattice values for $\text{Im}(A_0)$, $\text{Im}(A_2)$ and the phase shifts,

\[
\text{Re} \left(\frac{\varepsilon'}{\varepsilon} \right) = \text{Re} \left\{ \frac{i \omega e^{i(\delta_2 - \delta_0)}}{\sqrt{2\varepsilon}} \left[\frac{\text{Im} A_2}{\text{Re} A_2} - \frac{\text{Im} A_0}{\text{Re} A_0} \right] \right\} \\
= 1.38(5.15)(4.43) \times 10^{-4}, \quad \text{(our result)} \\
16.6(2.3) \times 10^{-4}, \quad \text{(experiment)}
\]

- Result is 2.1σ below experimental value.
- Total error on $\text{Re}(\varepsilon'/\varepsilon)$ is $\sim 3x$ the experimental error.
- “This is now a quantity accessible to lattice QCD”!
- Focus since has been to improve statistics and reduce / improve understanding of systematic errors.
The “$\pi\pi$ puzzle”

- Essential to understand $\pi\pi$ system:
 - Energy needed to extract ground-state matrix element
 - Energy also needed to compute phase-shift (Luscher)
 - Derivative of phase-shift w.r.t. energy is required for Lellouch-Luscher finite-volume correction (F)

- 2015 calculation phase shift $\delta_0 (E_{\pi\pi} \approx m_K) = 23.8(5.0)^\circ$ substantially smaller than prediction obtained by combining dispersion theory with experimental input, 36°.

- Result was very stable under varying fit range and also with 2-state fits.
- Increasing statistics by almost $7x$ did not resolve ($\delta_0 = 19.1(2.5)^\circ$)
- Nevertheless, most likely explanation is excited-state contamination hidden by rapid reduction in signal/noise.
Resolving the $\pi\pi$ puzzle

- To better resolve the ground-state we have introduced 2 more $\pi\pi$ operators:

 \[
 \pi(311): \quad \rho(3, 1, 1)/L
 \]

- Obtain parameters by simultaneous fitting to matrix of correlation functions, eg for $\pi\pi$ 2pt Green’s function:

 \[
 \Sigma = \frac{1}{\sqrt{2}} (\bar{u}u + \bar{d}d)
 \]

\[
C_{ij}(t) = \langle 0 | O_i^\dagger(t) O_j(0) | 0 \rangle = C + \sum_\alpha A_{i,\alpha} A_{j,\alpha} e^{-E_\alpha t}
\]

- A far more powerful technique than just increasing statistics alone.
- 741 configurations measured with 3 operators.
Effect of multiple operators on $\pi\pi$

Result compatible with dispersive value: $\delta_0(479.5\text{ MeV}) = 32.3(1.0)(1.4)^\circ$

[For more details, cf talk by Tianle Wang, Lattice 2021]
Effect of multiple operators on $K \to \pi\pi$

- Convenient to visualize data by taking “optimal” linear combination of the two most important operators that best projects onto ground-state.

$$O_{\text{opt}} = r_1 O_{\pi\pi(111)} + r_2 O_{\sigma}$$

$$r_1 = 5.24(18) \times 10^{-7} \quad \text{using } \pi\pi \text{ fits}$$

$$r_2 = -2.86(17) \times 10^{-4}$$

Strong, clear plateau + improved precision
$K\rightarrow\pi\pi$ fit results

- Examine many fit ranges, #states and #operators

 - little indication of exc. stat. cont. for Q_2

 - final fit

- Adopt uniform fit t'_{min} = 5 which is stable for all Q_i

- Evidence that excited state error was significantly underestimated in 2015 work
Systematic error budget

- Primary systematic errors of 2015 work:
 - Finite lattice spacing: 12%
 - Wilson coefficients: 12%
 - Renormalization (mostly PT matching): 15%
 - Excited-state: ≤ 5% but now known to be significantly underestimated
 - Lellouch-Luscher factor (derivative of ππ phase shift wrt. energy): 11%

- In our new work we have used step-scaling to raise the renormalization scale from 1.53 \(\rightarrow\) 4.00 GeV: 15% \(\rightarrow\) 5%

- 3 operators have dramatically improved understanding of ππ system: Lellouch-Luscher factor 11% \(\rightarrow\) 1.5%

- Detailed analysis shows no evidence of remaining excited-state contamination: Excited state error now negligible!

- Still single lattice spacing: Discretization error unchanged.

- Evidence that Wilson coefficient systematics are driven by using PT for 3-4f matching, not improved by higher \(\mu\): Wilson coeff error unchanged.
Isospin breaking + EM effects

- Our simulation does not include effects of isospin breaking or EM effects.
- While these effects are typically small $O(1\%)$, heavy suppression of A_2 ($\Delta I=1/2$ rule) means relative effect on A_2 and ϵ' could be $O(20\%)$.
- Current best determination of effect uses NLO χPT and $1/N_c$ expansion predicts 23% correction to our result: Include as separate systematic error.

[Cirigliano et al., JHEP 02 (2020) 032]
Final result for ε'

Combining our new result for $\text{Im}(A_0)$ and our 2015 result for $\text{Im}(A_2)$, and again using expt. for the real parts, we find

$$
\text{Re} \left(\frac{\varepsilon'}{\varepsilon} \right) = \text{Re} \left\{ \frac{i \omega e^{i(\delta_2-\delta_0)}}{\sqrt{2\varepsilon}} \left[\frac{\text{Im} A_2}{\text{Re} A_2} - \frac{\text{Im} A_0}{\text{Re} A_0} \right] \right\}
$$

$$
= 0.00217(26)(62)(50)
$$

Consistent with experimental result:

$$
\text{Re}(\varepsilon'/\varepsilon)_{\text{expt}} = 0.00166(23)
$$
The road ahead

- Primary pure-lattice systematic is discretization error (12%). Currently estimated using scaling of $l=2$ operators but there may be significant “error on the error”.

- Near-term availability of next-gen supercomputers (Perlmutter, Aurora) opens up opportunity to perform a full continuum extrapolation.

- Current plan is two additional ensembles with following properties:
 - Physical pion and kaon masses.
 - Same gauge action allowing continuum extrapolation with 3 points.
 - Same physical volume such that $\pi\pi$ energy remains the same and the interaction remains physical.

- $40^3\times64, a^{-1}=1.7$ GeV and $48^3\times64, a^{-1}=2.1$ GeV are computationally feasible while providing a good lever arm (a^2 scaling).

- Already started generating 16^3 test ensembles for tuning.

- Measurement code has been ported to NVidia and Intel GPUs, utilizing Grid’s portable GPU kernel API.
The road ahead pt.2

- Independent calculation of ϵ' using multiple operators to extract on-shell matrix elements as excited-state contributions in a periodic lattice is well under way. [cf. talk by M.Tomii, Lattice 2021]
 - Avoid complications of using G-parity BCs
 - Uses existing MDWF+I ensembles with physical pion masses
 - 2 lattice spacings allowing continuum limit
- We are developing techniques to perform 3-4f matching in the Wilson coefficients non-perturbatively in order to avoid relying on PT at the charm scale. [PoS LATTICE2018 (2019) 216]
- Also working on laying the groundwork for the lattice calculation of EM contributions. [cf. talk by J.Karpie, Lattice 2021]
Conclusions

- Completed update on our 2015 lattice determination of A_0 and ε'
 - 3.2x increase in statistics.
 - Improved systematic errors, notably use of multi-operator techniques essentially removes excited-state systematic.
- Reproduce experimental value for $\Delta I=1/2$ rule, demonstrating that QCD sufficient to solve this decades-old puzzle.
- Result for ε' consistent with experimental value.
- Total error is \sim3.6x that of experiment.
- ε' remains a promising avenue to search for new physics, but greater precision is required.
- The work goes on....
Excited state contamination

- Primary concern is residual excited-state contamination
- See excellent consistency and strong plateaus among fits for 2+ operators with $t_{\text{min}} \geq 4$
- Also examine 2 and 3-state fits with 3 ops:
 - 3-state fit with lower $t_{\text{min}} = 4$ describes data well outside fit range.
 - Complete consistency in gnd-state matrix elem of best fit