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HEAVY QUARKONIUM PRODUCTION IN POTENTIAL NRQCD

NRQCD FACTORIZATION
▸ NRQCD provides a factorization formalism for inclusive 

production cross sections. 
 
 

▸ In general it is not known how to compute matrix elements 
from first principles, so they are usually determined from 
cross section measurements. So far this approach has not 
lead to a comprehensive description of measurements. 

▸ We aim to compute the matrix elements in potential NRQCD, 
which is obtained by integrating out scales above mv2.
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HEAVY QUARKONIUM PRODUCTION IN POTENTIAL NRQCD

QUARKONIUM IN PNRQCD
▸ We work in the strong coupling regime where mv2 ≪ 𝚲QCD , 

which is valid for non-Coulombic quarkonia, such as P-
wave quarkonia. The degree of freedom is the singlet field                   
S(x1,x2), which describe QQ̅ in a color-singlet state. 
 

▸ Matching to NRQCD is done nonperturbatively. 

▸ pNRQCD provides expressions for decay matrix elements 
in terms of wavefunctions and universal gluonic correlators. 

▸ We extend the formalism for production matrix elements.
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HEAVY QUARKONIUM PRODUCTION IN POTENTIAL NRQCD

MATCHING IN PNRQCD
▸ Matching to NRQCD in strongly coupled pNRQCD is done 

as an expansion in powers of 1/m : 
 
 

▸                    is the ground state, x1, x2 are positions of Q, Q̅. 

▸ A quarkonium state in vacuum is described by  
 
                                    is the quarkonium wavefunction.
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HEAVY QUARKONIUM PRODUCTION IN POTENTIAL NRQCD

PRODUCTION MATRIX ELEMENTS
▸ Production matrix elements for production of quarkonium  

▸                                                                    
: projection onto quarkonium + anything
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color/spin matrices and 
covariant derivatives, 

gauge-completion  
Wilson lines (color octet)

QQ̅ is produced 
locally in either 
color singlet or 

color octet

low-energy radiation of  
light particles

QQ̅ evolve into 
quarkonium state

cut

▸ A schematic view of production matrix 
element
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HEAVY QUARKONIUM PRODUCTION IN POTENTIAL NRQCD

PRODUCTION MATRIX ELEMENTS
▸ We want to compute 

▸ To compute production matrix elements we need to 

1. Express                         in terms of                      states. 

2. Describe a quarkonium in background of light particles 
in terms of wavefunctions. While quarkonium is always 
color singlet, background can be color octet. 

▸ We need to do this nonperturbatively, but we still expand in 
powers of 1/m.
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HEAVY QUARKONIUM PRODUCTION IN POTENTIAL NRQCD

QUARKONIUM PROJECTION OPERATOR
▸                          is essentially a number operator :  

        and                    are simultaneously diagonalizable.  
Simultaneous eigenstates are given by  

▸ We obtain the expression 

▸ For n=0,               is just the quarkonium in vacuum and  
𝜙 is the usual quarkonium wavefunction.  

▸ For n>0,                describe quarkonium + light particles. 
The “wavefunctions” 𝜙 are in general unknown for n>0. 
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HEAVY QUARKONIUM PRODUCTION IN POTENTIAL NRQCD

QUARKONIUM WAVEFUNCTIONS
▸ We need to identify “wavefunctions” of quarkonium in the 

background of gluons and light particles.  

▸ Potential for quarkonium in vacuum is given in terms of the 
vacuum expectation value (VEV) of a Wilson loop:  
 

▸ For the potential for the n>0 states, the light excitations in 
the                     states should be included. 
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HEAVY QUARKONIUM PRODUCTION IN POTENTIAL NRQCD

QUARKONIUM WAVEFUNCTIONS
▸ In general, VEVs of products of color-singlet operators 

factorize into products of VEVs of individual operators.  

▸ So the n>0 potentials reduce to
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HEAVY QUARKONIUM PRODUCTION IN POTENTIAL NRQCD

QUARKONIUM WAVEFUNCTIONS
▸ Hence, the n>0 potentials are just the n=0 potential, plus  

constants that have no effect to the wavefunctions. 

▸ Therefore, the wavefunctions 𝜙 are independent of n, and 
the projection operator is just 

▸ These are valid up to corrections of relative order 1/Nc2. 
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HEAVY QUARKONIUM PRODUCTION IN POTENTIAL NRQCD

PRODUCTION MATRIX ELEMENTS IN PNRQCD
▸ Now we can compute the production matrix elements 

▸ Contact terms can be computed in terms of universal 
gluonic correlators and differential operators that act on 
wavefunctions. 

▸ This allows calculation of production matrix elements in 
strongly coupled pNRQCD.
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Contact term, 
computed order by order in 1/m
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HEAVY QUARKONIUM PRODUCTION IN POTENTIAL NRQCD

PRODUCTION OF P-WAVE QUARKONIA
▸ We apply this formalism for 𝜒QJ (Q=c or b, J=1, 2) 

▸ At leading order in v, the cross section is given by 

▸ We compute both color singlet and color octet matrix 
elements in strongly coupled pNRQCD.
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We compute the color singlet and color octet NRQCD long-distance matrix elements for inclusive
production of P -wave quarkonia in the framework of pNRQCD. In this way, the color octet NRQCD
long-distance matrix element can be determined without relying on measured cross section data,
which has not been possible so far. We obtain inclusive cross sections of �cJ and �bJ at the LHC,
which are in good agreement with data. In principle, the formalism developed in this work can be
applied to all inclusive production processes of heavy quarkonia.

The mechanism underlying heavy quarkonium produc-
tion is a key to understanding the dynamics of strongly
coupled systems [1–5]. Quarkonium production is ex-
tensively studied in experiments at particle colliders like
LHC, SuperKEKB, BEPC II, and RHIC, and will con-
tinue to be an important subject in future colliders such
as the planned Electron-Ion Collider. Quarkonium pro-
duction has a large impact on studies of the QCD phase
diagrams and early universe, as the production in proton-
proton collisions is the bottom line to which quarkonium
suppression in heavy ion collisions is compared [6]. More-
over, from the theoretical point of view, quarkonium pro-
duction processes have exquisite theoretical issues pin-
ning down on factorization in strongly coupled theories,
definition and calculation of nonperturbative matrix ele-
ments, and resummation of logarithms of large ratios of
scales [7–11].

The typical hierarchy of energy scales that character-
izes heavy quarkonium is m � mv � mv2, where m is
the heavy quark mass and v ⌧ 1 the relative velocity of
the quark in the bound state. This hierarchy of energy
scales may be exploited to construct a hierarchy of e↵ec-
tive field theories. Nonrelativistic QCD (NRQCD) [7, 12]
follows from QCD by integrating out modes associated
with the energy scale m from Green’s functions describ-
ing a heavy quark and a heavy antiquark near thresh-
old. The matching to NRQCD can be done perturba-
tively, since m is larger than the typical hadronic scale
⇤QCD. Potential NRQCD (pNRQCD) [13–15] follows
from NRQCD by integrating out gluons of energy or mo-
mentum of order mv. The matching to pNRQCD may
need to rely on nonperturbative methods if the momen-
tum scale, mv, is comparable to ⇤QCD.

While NRQCD had great success in heavy quarko-
nium phenomenology, a satisfactory description of inclu-
sive production processes from first principles is still be-
yond reach. Much of the di�culty stems from our limited
knowledge of the NRQCD long-distance matrix elements
(LDMEs), which describe the nonperturbative evolution
of the heavy quarkQ and antiquark Q̄ into a quarkonium.
First-principles determinations have not been possible,

even approximately, for a class of important LDMEs that
are associated with the QQ̄ in a color octet state. On the
other hand, phenomenological determinations of the un-
known LDMEs based on di↵erent choices of observables
have led to inconsistent sets of LDMEs, which have re-
sulted in contradicting predictions, in particular, leaving
open the long-standing problem of the polarization of
quarkonium produced in hadron colliders [16]. It would
be of enormous impact to be able to compute the un-
known LDMEs from first principles.
Potential NRQCD has been successfully applied to an-

nihilation and exclusive electromagnetic production pro-
cesses of heavy quarkonia [17–19]. It has been anticipated
that pNRQCD could also be used to describe inclusive
production processes. In this Letter, we apply for the
first time pNRQCD to this kind of processes by comput-
ing the NRQCD LDMEs that appear in the inclusive pro-
duction cross section of P -wave quarkonia. Specifically,
we consider production cross sections of �QJ (Q = c or
b, J = 0, 1, and 2) at leading order in v.
The cross section is given in the NRQCD factorization

formalism at leading order in v by [7]

��QJ+X = (2J + 1)�
QQ̄(3P [1]

J )
hO

�Q0(3P [1]
0 )i

+ (2J + 1)�
QQ̄(3S[8]

1 )
hO

�Q0(3S[8]
1 )i. (1)

Here, we use spectroscopic notation for the angular mo-
mentum state of the QQ̄, while the superscripts 1 and 8
denote the color state of the QQ̄: color singlet (CS) and
color octet (CO), respectively. The quantities �

QQ̄(3P [1]
J )

and �
QQ̄(3S[8]

1 )
are the perturbatively calculable short-

distance coe�cients (SDCs). We have used the heavy-
quark spin symmetry to reduce the �QJ LDMEs into
LDMEs of �Q0, which are defined by

hO
�Q0(3P [1]

0 )i =
1

3
h⌦|�†(� i

2

 !
D · �) P�Q0(P=0)

⇥  †(� i
2

 !
D · �)�|⌦i, (2a)

hO
�Q0(3S[8]

1 )i = h⌦|�†�iT a �†ab
` P�Q0(P=0)

⇥ �bc
`  

†�iT c�|⌦i, (2b)
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HEAVY QUARKONIUM PRODUCTION IN POTENTIAL NRQCD

P-WAVE PRODUCTION MATRIX ELEMENTS
▸ Color-singlet matrix element:  

we reproduce the known result in vacuum-saturation 
approximation. R(r) : radial wavefunction 

▸ Color-octet matrix element: result is given in terms of a 
universal gluonic correlator.  

▸     is a universal quantity that does not depend on quark 
flavor or radial excitation. Determination of     directly 
leads to determination of all 𝜒cJ and 𝜒bJ(nP) cross sections, 
as well as hc and hb production rates.
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3

make explicit the heavy quark and antiquark field con-
tent of the states |n;x1,x2i

(0) and eliminate the fields by
using Wick’s theorem; one makes use at this point of the
fact that the states in PQ(P=0) belong to the set S, which
constrains their color structure; (iv) rewrite the sum of
the matrix elements of the gluon fields on the states |⌦i
and |n;x1,x2i

(0) (evaluated at x1 � x2 = 0) in terms
of gluon field correlators; (v) identify �Q(n,P )(x1,x2) or
derivatives of them (evaluated at x1 � x2 = 0) with the
wavefunctions of the pNRQCD Hamiltonian. The lead-
ing order wavefunctions can be computed by solving the
corresponding Schrödinger equations, once the static po-
tentials have been determined from the static energies

E(0)
n typically obtained by lattice QCD methods.

The wavefunctions �(0)
Q(n)(x1,x2) depend on n and

may di↵er from the usual quarkonium wavefunctions

�(0)
Q (x1,x2) that correspond to the n = 0 case. For

n = 0, the static potential in h0 can be extracted from
the vacuum expectation value (VEV) of a static Wilson
loop [14, 20]. Similarly, for n 6= 0 and n 2 S, the static
potential in hn can be extracted from the VEV of a static
Wilson loop in the presence of some additional, discon-
nected gluon fields. To our knowledge, there are no lat-
tice data available for the n 6= 0 static potentials. How-
ever, we expect that the disconnected gluon fields mostly
provide a constant shift to the potentials, for instance in
the form of a glueball mass, but do not significantly a↵ect
their slopes. This is also supported by large Nc consider-
ations. In the large Nc limit, the VEV of a Wilson loop
with additional disconnected gluon fields factorizes into
the VEV of the Wilson loop times the VEV of the addi-
tional gluon fields up to corrections of order 1/N2

c [23, 24].
If the slopes of the static potentials are the same for all
n in the large Nc limit, then in that limit the wavefunc-

tions �(0)
Q(n)(x1,x2) are independent of n. Hence, we will

approximate the wavefunctions �(0)
Q(n)(x1,x2) with the

quarkonium wavefunction �(0)
Q (x1,x2) making an error

of at most O(1/N2
c ).

Following the outlined procedure, we can compute the

production LDMEs hO
�Q0(3P [1]

0 )i and hO
�Q0(3S[8]

1 )i in
strongly coupled pNRQCD. Furthermore, in the case

of the CO LDME, we approximate �(0)
�Q0(n)

(x1,x2) ⇡

�(0)
�Q0(x1,x2) as discussed above.

For the CS LDME hO
�Q0(3P [1]

0 )i, we obtain at leading
order in QMPT

hO
�Q0(3P [1]

0 )i =
3Nc

2⇡
|R(0)0

�Q0
(0)|2, (9)

where R(0)
�Q0(r) is the radial wavefunction of �Q0 at lead-

ing order in the velocity expansion (R(0)0

�Q0(r) stands for
its derivative). This reproduces the result obtained in
the vacuum-saturation approximation in Ref. [7].

The CO LDME hO
�Q0(3S[8]

1 )i vanishes at leading order

in QMPT. Nonvanishing contributions come from next-
to-leading order in QMPT:

hO
�b0(3S[8]

1 )i =
3Nc

2⇡
|R(0)0

�Q0
(0)|2

E

9Ncm2
, (10)

where

E =
3

Nc

Z 1

0
dt t

Z 1

0
dt0 t0

⇥ h⌦|�†ab
` �ad

0 (0, t)gEd,i(t)gEe,i(t0)�ec
0 (0, t0)�bc

` |⌦i,
(11)

Ea,i(t) being a chromoelectric field component computed
at the time t and at the space location 0, and �0(t, t0) =

P exp[�ig
R t0

t d⌧ Aadj
0 (⌧,0)] a Schwinger line. Note that

E is a purely gluonic quantity that does not depend on
the heavy quark flavor.
The expression for the CO LDME given in Eq. (10)

is very similar to the pNRQCD expression for the CO
LDME appearing at leading order in v in the decay of
�QJ into light hadrons [17, 19]. The only di↵erence is
that there the correlator E is replaced by the correlator

E3 =
1

2Nc

Z 1

0
dt t3 h⌦|gEa,i(t)�ab

0 (t, 0)gEb,i(0)|⌦i.

(12)
The two correlators would be the same if we could neglect
the contributions from the strings. At one loop, they have
the same logarithmic dependence on the renormalization
scale ⇤ and satisfy the same evolution equation. From
this [17], it follows that the one-loop evolution equation

for hO�Q0(3S[8]
1 )i is

d

d log⇤
hO

�Q0(3S[8]
1 )i =

4CF↵s

3Nc⇡m2
hO

�Q0(3P [1]
0 )i, (13)

where CF = (N2
c � 1)/(2Nc). Equation (13) agrees with

the evolution equation derived from a perturbative cal-
culation in NRQCD [7]. The agreement is a one-loop
consistency check of Eq. (10). At two loops however the
identification of E with E3 may not hold [8–11].
Equation (10) is our result for the CO LDME. The

result allows a first-principles determination of the CO
LDME, once E is known. The correlator E may be com-
puted in lattice QCD or it can be obtained from processes
involving heavy quarkonia.
We now compute the inclusive production cross sec-

tions of �cJ and �bJ(nP ) from proton-proton collisions
at the LHC based on our results for the LDMEs in
Eqs. (9) and (10). We use the value |R(0)0

�c0 (0)|
2 =

0.057 GeV5, which we obtain by comparing the mea-
sured two-photon decay rates of �c0 and �c2 in Ref. [25]
with the pNRQCD expressions at leading order in v
and at next-to-leading order (NLO) in ↵s [19]. Be-
cause two-photon decay rates of �bJ have not been

measured yet, we take for |R(0)0

�b0(nP )(0)|
2 the averages

3

quarkonia in pNRQCD in Refs. [17–19] and consists of
the following steps: (i) replace in the LDMEs the projec-
tor PQ(P=0) with the expressions (6) and (5); (ii) using
QMPT, and in particular Eqs. (3) and (4), express the

LDMEs in terms of |n;x1,x2i
(0) and E(0)

n (x1,x2); (iii)
make explicit the heavy quark and antiquark field con-
tent of the states |n;x1,x2i

(0) and eliminate the fields by
using Wick’s theorem; one makes use at this point of the
fact that the states in PQ(P=0) belong to the set S, which
constrains their color structure; (iv) rewrite the sum of
the matrix elements of the gluon fields on the states |⌦i
and |n;x1,x2i

(0) (evaluated at x1 � x2 = 0) in terms
of gluon field correlators; (v) identify �Q(n,P )(x1,x2) or
derivatives of them (evaluated at x1 � x2 = 0) with the
wavefunctions of the pNRQCD Hamiltonian. The lead-
ing order wavefunctions can be computed by solving the
corresponding Schrödinger equations, once the static po-
tentials have been determined from the static energies

E(0)
n typically obtained by lattice QCD methods.

The wavefunctions �(0)
Q(n)(x1,x2) depend on n and

may di↵er from the usual quarkonium wavefunctions

�(0)
Q (x1,x2) that correspond to the n = 0 case. For

n = 0, the static potential in h0 can be extracted from
the vacuum expectation value (VEV) of a static Wilson
loop [14, 20]. Similarly, for n 6= 0 and n 2 S, the static
potential in hn can be extracted from the VEV of a static
Wilson loop in the presence of some additional, discon-
nected gluon fields. To our knowledge, there are no lat-
tice data available for the n 6= 0 static potentials. How-
ever, we expect that the disconnected gluon fields mostly
provide a constant shift to the potentials, for instance in
the form of a glueball mass, but do not significantly a↵ect
their slopes. This is also supported by large Nc consider-
ations. In the large Nc limit, the VEV of a Wilson loop
with additional disconnected gluon fields factorizes into
the VEV of the Wilson loop times the VEV of the addi-
tional gluon fields up to corrections of order 1/N2

c [23, 24].
If the slopes of the static potentials are the same for all
n in the large Nc limit, then in that limit the wavefunc-

tions �(0)
Q(n)(x1,x2) are independent of n. Hence, we will

approximate the wavefunctions �(0)
Q(n)(x1,x2) with the

quarkonium wavefunction �(0)
Q (x1,x2) making an error

of at most O(1/N2
c ).

Following the outlined procedure, we can compute the

production LDMEs hO
�Q0(3P [1]

0 )i and hO
�Q0(3S[8]

1 )i in
strongly coupled pNRQCD. Furthermore, in the case

of the CO LDME, we approximate �(0)
�Q0(n)

(x1,x2) ⇡

�(0)
�Q0(x1,x2) as discussed above.

For the CS LDME hO
�Q0(3P [1]

0 )i, we obtain at leading
order in QMPT

hO
�Q0(3P [1]

0 )i =
3Nc

2⇡
|R(0)0

�Q0
(0)|2, (9)

where R(0)
�Q0(r) is the radial wavefunction of �Q0 at lead-

ing order in the velocity expansion (R(0)0

�Q0(r) stands for
its derivative). This reproduces the result obtained in
the vacuum-saturation approximation in Ref. [7].

The CO LDME hO
�Q0(3S[8]

1 )i vanishes at leading order
in QMPT. Nonvanishing contributions come from next-
to-leading order in QMPT:

hO
�Q0(3S[8]

1 )i =
3Nc

2⇡
|R(0)0

�Q0
(0)|2

E

9Ncm2
, (10)

where

E =
3

Nc

Z 1

0
dt t

Z 1

0
dt0 t0

⇥ h⌦|�†ab
` �†da

0 (0, t)gEd,i(t)gEe,i(t0)�ec
0 (0, t0)�bc

` |⌦i,
(11)

Ea,i(t) being a chromoelectric field component computed
at the time t and at the space location 0, and �0(t, t0) =

P exp[�ig
R t0

t d⌧ Aadj
0 (⌧,0)] a Schwinger line. Note that

E is a purely gluonic quantity that does not depend on
the heavy quark flavor.
The expression for the CO LDME given in Eq. (10)

is very similar to the pNRQCD expression for the CO
LDME appearing at leading order in v in the decay of
�QJ into light hadrons [17, 19]. The only di↵erence is
that there the correlator E is replaced by the correlator

E3 =
1

2Nc

Z 1

0
dt t3 h⌦|gEa,i(t)�ab

0 (t, 0)gEb,i(0)|⌦i.

(12)
The two correlators would be the same if we could neglect
the contributions from the strings. At one loop, they have
the same logarithmic dependence on the renormalization
scale ⇤ and satisfy the same evolution equation. From
this [17], it follows that the one-loop evolution equation

for hO�Q0(3S[8]
1 )i is

d

d log⇤
hO

�Q0(3S[8]
1 )i =

4CF↵s

3Nc⇡m2
hO

�Q0(3P [1]
0 )i, (13)

where CF = (N2
c � 1)/(2Nc). Equation (13) agrees with

the evolution equation derived from a perturbative cal-
culation in NRQCD [7]. The agreement is a one-loop
consistency check of Eq. (10). At two loops however the
identification of E with E3 may not hold [8–11].
Equation (10) is our result for the CO LDME. The

result allows a first-principles determination of the CO
LDME, once E is known. The correlator E may be com-
puted in lattice QCD or it can be obtained from processes
involving heavy quarkonia.
We now compute the inclusive production cross sec-

tions of �cJ and �bJ(nP ) from proton-proton collisions
at the LHC based on our results for the LDMEs in
Eqs. (9) and (10). We use the value |R(0)0

�c0 (0)|
2 =

0.057 GeV5, which we obtain by comparing the mea-
sured two-photon decay rates of �c0 and �c2 in Ref. [25]
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HEAVY QUARKONIUM PRODUCTION IN POTENTIAL NRQCD

P-WAVE PRODUCTION MATRIX ELEMENTS
▸ The correlator     is defined in terms of chromoelectric 

fields gE at time t and t′, with Wilson lines extending to 
infinity in the 𝓁 direction. 

▸     has a one-loop scale dependence that is consistent with 
the evolution equation for NRQCD matrix elements 

▸ In principle,     can be determined from lattice QCD.  
Since lattice calculation is unavailable, we determine      
from measured 𝜒cJ cross section ratios to obtain 

14

r2, r0
1, and r0

2 act on the wavefunctions in eq. (2.18). The gluonic matrix elements can406

be computed as407

X

p 6=n

h0|T a
1�

†ab
` (0,x)|pi(0)

(0)
hp|gE1|ni(0)

(E(0)
n � E(0)

p )2
= �

X

p 6=n

Z
1

0
dt t(0)h0|T a

1�
†ab
` |pi(0)(0)hp|gE1(t)|ni

(0)
408

= �
1

2Nc

Z
1

0
dt t(0)h0|�†ab

` gEa
1 (t)|ni

(0), (3.14)409
410

where in the last line, we computed the color matrices tr(T a
1 T

c
1 ) = �ac/(2Nc)tr( c) by using411

the fact that both the states |0i and |ni have color indices that are proportional to c.412

Since the matrix element (0)
h0|�†ab

` gEa
1 (t)|ni

(0) does not contain any color matrices, the413

last line of eq. (3.14) vanishes unless n 2 S. This gives414

� V
O(1S

[8]
0 )

���
P -wave

= �Ncri
r�

(3)(r)rj
r0

E
ij

N2
cm

2
, (3.15)415

416

where the tensor E
ij is defined by417

E
ij =

X

n

Z
1

0
t dt

Z
1

0
t0 dt0(0)h0|�†ab

` gEa,i
1 (t)|ni(0)(0)hn|gEc,j

1 (t0)�†bc
` |0i(0)418

=

Z
1

0
t dt

Z
1

0
t0 dt0h⌦|�†ab

` �†da
0 (0, t)gEd,i(t)gEe,j(t0)�ec

0 (t0, 0)�bc
` |⌦i. (3.16)419

420

In the last line, we used tr( c)/Nc = 1, and we introduced the Schwinger lines �0(t, t0) =421

P exp[�ig
R t0

t d⌧Aadj
0 (⌧,0)] to restore the gauge invariance. The configurations of the adjoint422

Wilson lines in eq. (3.16) are given in the following way. The chromoelectric field at time t0423

is connected to the origin 0 via the Schwinger line �ec
0 (t0, 0), which then continues to infinity424

in the ` direction. Analogously, the chromoelectric field at time t is connected to the origin425

0 via the Schwinger line �†da
0 (0, t), which then continues to infinity in the ` direction. The426

orderings of gEe,j(t0)�ec
0 (t0, 0)�bc

` and �†ab
` �†da

0 (0, t)gEd,i(t) are opposite; for a suitable427

choice of the sign of `0, gEe,j(t0)�ec
0 (t0, 0)�bc

` is time ordered, and �†ab
` �†da

0 (0, t)gEd,i(t) is428

anti time ordered. Hence, eq. (3.16) can be interpreted as a cut diagram, which can be429

useful for perturbative QCD. We show this configuration of the Wilson lines graphically in430

figure 1.431

Now we can compute the color-octet matrix element h⌦|OhQ(1S[8]
0 )|⌦i. Since the prod-432

uct �(0)
1P1

(r)�(0)
1P1

⇤(r) is isotropic after summing over the polarizations of the 1P1 state, the433

differential operators ri
rr

j
r0 in eq. (3.15) can be replaced by 1

3�
ijrr ·rr0 . Then, we obtain434

h⌦|OhQ(1S[8]
0 )|⌦i = 3⇥

3Nc

2⇡
|R(0)0(0)|2

1

9Ncm2
E , (3.17)435

where E is a dimensionless gluonic correlator defined by436

E =
3

Nc

Z
1

0
t dt

Z
1

0
t0 dt0h⌦|�†ab

` �†da
0 (0, t)gEd,i(t)gEe,i(t0)�ec

0 (t0, 0)�bc
` |⌦i. (3.18)437

The correlator E corresponds to the isotropic part of E ij , which is given by Nc
9 �ijE . The438

factor 3/Nc in the definition of E has been chosen so that eq. (3.17) resembles the pNRQCD439
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where ⇤ is the scale at which E is renormalized. This, in turn, implies the following evolution533

equation for the NRQCD matrix elements534

d

d log⇤
hO

�QJ (3S[8]
1 )i =

4CF↵s

3Nc⇡m2
hO

�QJ (3P [1]
J )i. (3.33)535

The same evolution equation holds for hO
hQ(1S[8]

0 )i and hO
hQ(1P [1]

1 )i. Equation (3.33)536

agrees with the evolution equation derived from a perturbative calculation in NRQCD [6],537

and therefore the UV divergence in the one-loop correction to the color-octet matrix ele-538

ment is consistent with the pNRQCD expressions at one-loop level. Since loop corrections539

to NRQCD matrix elements are scaleless, UV poles cancel IR poles in the form of eq. (3.31),540

and hence, the one-loop infrared divergence in the color-octet matrix element is also con-541

sistent with our pNRQCD results.542

At two loops, explicit checks of the consistency of our pNRQCD results with NRQCD543

factorization can be inferred from the two-loop calculations in Refs. [16] and [17]. In544

Ref. [16], two-loop corrections to the infrared factor I2(p, q) that are associated with the545

gauge-completion Wilson lines were computed, which contribute to the infrard divergence of546

the matrix element hOQ(1S[8]
0 )i at order ↵2

s. This result was reproduced in Ref. [17] through547

explicit calculations of the matrix element hOQ(1S[8]
0 )i. Since the calculation of the infrared548

factor in Ref. [16] is equivalent to the calculation of infrared divergences in the contact terms549

V
O(1S

[8]
0 )

and V
O(3S

[8]
1 )

, our pNRQCD expressions for the color-octet matrix elements also550

have the same infrared divergences that are associated with the gauge-completion Wilson551

lines that are found in the calculations of Ref. [17].552

It is interesting to see that eq. (3.31) is the same as the order-↵s calculation of the553

correlator E3 defined in eq. (3.20), which appears in decay matrix elements. Indeed, the554

one-loop evolution equation in eq. (3.33) is the same as the one-loop evolution equation for555

the decay matrix elements that appear in inclusive decays of P -wave quarkonia [6]. This556

equality ceases to hold at two loops, because at this order, E receives contributions from557

the gauge-completion Wilson lines, which are absent in E3.558

An important issue in NRQCD factorization is whether the color-octet NRQCD matrix559

elements are independent on the direction of the gauge-completion Wilson lines, which is560

necessary in establishing the universality of the NRQCD matrix elements. While a general561

argument for the universality has been given in Ref. [21], an explicit verification has only562

been done at two-loop accuracy [16, 17]. In our results for the color-octet matrix elements,563

the dependence on the direction of the gauge-completion Wilson lines can come from the564

tensor E
ij in the contact terms. For the case of polarization-summed cross sections, where565

the polarization of the quarkonium in the final state is summed over, only the isotropic566

part of E ij , given by Nc
9 �ijE , contributes to the color-octet matrix elements, and therefore,567

the dependence on the direction of the gauge-completion Wilson lines disappear due to568

rotational symmetry. Hence, the pNRQCD expressions of the color-octet matrix elements569

support the universality of the NRQCD matrix elements for polarization-summed cross570

sections of P -wave quarkonia. On the other hand, for the case of polarized cross sections,571

the non-isotropic part of E ij can in principle contribute to the color-octet matrix element,572

and if such contributions are nonvanishing, the matrix elements can acquire dependence573
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where the sum over N contains all possible intermediate states, T and T̄ represent time493

ordering and anti time ordering, respectively, p is half the center-of-mass momentum of the494

QQ̄, and495

�p(�) = P exp


�ig

Z �

0
d�0 p ·Aadj(�0p)

�
, (3.29)496

497

is an adjoint Wilson line along p. In eq. (3.28) we make explicit the time ordering and498

anti time ordering, which was implicit in Ref. [16]. In eq. (3.28), a factor of q comes from499

each side of the cut in the squared amplitude, so that the infrared factor applies to the500

production of a color-singlet P -wave state. This result is obtained from standard methods501

in perturbative factorization, where eikonal approximations are employed that simplify the502

loop corrections gluons while preserving the infrared divergences. This factor includes the503

infrared divergences that come from the soft gluons of scale mv, but does not include the504

contributions from the scale mv2. Since this process corresponds to the production of a QQ̄505

in the color-octet 3S1 state, this divergence must match the infrared divergence in the color-506

octet matrix element h⌦|OQ(3S[8]
1 )|⌦i, when Q is replaced by a color-singlet QQ̄ state. This507

agreement has been confirmed explicitly through one-loop and partial two-loop calculations508

of the color-octet NRQCD matrix element in Ref. [17]; the two-loop calculations have only509

been done for the diagrams that involve the gauge-completion Wilson lines. Since the510

matrix element h⌦|OQ(3S[8]
1 )|⌦i appears in the NRQCD factorization formula at leading511

order in v, the same infrared divergence occurs in the operator h⌦|OQ(1S[8]
0 )|⌦i through512

heavy quark spin symmetry.513

It can be seen that at the rest frame of the QQ̄, where p = 0 and q0 = 0, �p(�p) is just514

the Schwinger line �0(0, t) = P exp[�ig
R t
0 d⌧A

adj
0 (⌧,0)] where t =

p
p2�, and pµq⌫Ga

⌫µ(�p)515

is given by the chromoelectric field as
p
p2qiEa i(t). Therefore, the infrared factor I2(p, q)516

in eq. (3.28) is given by517

E
ijqiqj , (3.30)518

519

multiplied by color and kinematical factors that are infrared finite. Here, the tensor E
ij is520

defined in eq. (3.16). We note that eq. (3.30) is equivalent to the contact terms V
O(1S

[8]
0 )

and521

V
O(3S

[8]
1 )

in Eqs. (3.15) and (3.21), respectively, when applied to a color-singlet QQ̄ state522

with relative momentum q. Hence, we expect our pNRQCD expressions for the color-octet523

matrix elements in Eqs. (3.17) and (3.25b) to have the same infrared divergences that are524

expected in NRQCD factorization. This is straightforward to check explicitly at one-loop525

accuracy. By computing the correlator E at order-↵s accuracy in dimensional regularization526

at d = 4� 2✏ spacetime dimensions, we obtain527

E = 6CF
↵s

⇡

✓
1

✏UV
�

1

✏IR

◆
+O(↵2

s), (3.31)528

529

where the subscripts UV and IR indicate the origin of the 1/✏ poles. The UV divergence is530

removed through renormalization, which gives the following evolution equation531

d

d log⇤
E(⇤) = 12CF

↵s

⇡
+O(↵2

s), (3.32)532
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HEAVY QUARKONIUM PRODUCTION IN POTENTIAL NRQCD

P-WAVE CHARMONIUM PRODUCTION
▸ Cross section ratio                              at the LHC compared to 

ATLAS and CMS data. 
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CMS, EPJC72, 2251 (2012) 
ATLAS, JHEP07, 154 (2014)

Perturbative QQ̅ cross sections  
computed at NLO in 𝜶s +  
resummed logarithms from  
Bodwin, Chao, HSC, Kim, Lee, Ma,  
PRD93, 034041 (2016)
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HEAVY QUARKONIUM PRODUCTION IN POTENTIAL NRQCD

P-WAVE CHARMONIUM 
PRODUCTION
▸ 𝜒c2 and 𝜒c1 cross sections at 

the LHC, compared to 
ATLAS data. 

▸ Wavefunctions at the origin 
obtained from two-photon 
decay rates of 𝜒c2 and 𝜒c0.
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ATLAS, JHEP07, 154 (2014)

Perturbative QQ̅ cross sections  
computed at NLO in 𝜶s +  
resummed logarithms from  
Bodwin, Chao, HSC, Kim, Lee, Ma,  
PRD93, 034041 (2016)

vConf21                                                                                  August 6, 2021                                                                Hee Sok Chung        

0.001

0.010

0.100

1

15 20 25 30

0.001

0.010

0.100

1

Preliminary



HEAVY QUARKONIUM PRODUCTION IN POTENTIAL NRQCD

P-WAVE CHARMONIUM POLARIZATION
▸ 𝜒c2 and 𝜒c1 polarization at the LHC compared to 

experimental constraints from CMS.

17

CMS, PRL124, 162002 (2020)

Perturbative QQ̅ cross sections  
computed at NLO in 𝜶s +  
resummed logarithms from  
Bodwin, Chao, HSC, Kim, Lee, Ma,  
PRD93, 034041 (2016)
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HEAVY QUARKONIUM PRODUCTION IN POTENTIAL NRQCD

P-WAVE BOTTOMONIUM PRODUCTION
18

LHCb, JHEP10, 088 (2014) 
CMS, PLB743, 383 (2015)

Perturbative QQ̅ cross sections  
computed at NLO in 𝜶s using 
FDCHQHP Package from 
Wan and Wang, Comput. 
Phys. Commun. 185, 2939 (2014)
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▸ Cross section ratio                              for 1P states at the LHC 
compared to LHCb and CMS measurements.

Preliminary



HEAVY QUARKONIUM PRODUCTION IN POTENTIAL NRQCD

P-WAVE BOTTOMONIUM PRODUCTION
▸ 𝜒bJ(nP) production rates 

relative to 𝛶(n′S) cross sections 
at the LHC compared to LHCb 
measurement of feeddown 
fractions.

19

LHCb, EPJC74, 3092 (2014)

Perturbative QQ̅ cross sections computed 
at NLO in 𝜶s using FDCHQHP Package 
from Wan and Wang, Comput. Phys. 
Commun. 185, 2939 (2014)

𝛶(nS) matrix elements taken from fits to data in 
Han, Ma, Meng, Shao, Zhang, Chao, PRD94, 014028 (2016)

𝜒bJ wavefunctions computed from potential models
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HEAVY QUARKONIUM PRODUCTION IN POTENTIAL NRQCD

SUMMARY
▸ We developed a formalism for inclusive production of 

heavy quarkonium in strongly coupled potential NRQCD.  

▸ For the first time, this allows first-principles determination 
of color-octet production matrix elements.  
A single gluonic correlator leads to determination of all  
P-wave charmonium and bottomonium cross sections.  

▸ We computed production rates of 𝜒cJ and 𝜒bJ at the LHC, 
which are in agreements with measurements. 

▸ Lattice determination of the gluonic correlator is desirable. 

▸ We are working on S-wave quarkonia (J/𝜓, 𝜂c, 𝛶, 𝜂b)

20
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