Heavy quark momentum diffusion from the lattice
using gradient flow

L. Altenkort, O. Kaczmarek, L. Mazur, H.-T. Shu
A. M. Eller, G. D. Moore

10.1103/PhysRevD.103.014511 (2021)
How fast do heavy quarks thermalize in a hot medium?

- Hydrodynamics \Rightarrow kinetic equilibration time $\tau_{\text{kin}}^{\text{heavy}} \approx \frac{M}{T} \tau_{\text{kin}}^{\text{light}}$

- But: significant collective motion (v_2)!

Can we calculate τ_{kin} from first principles?

- Consider non-relativistic limit ($M \gg \pi T$):

 $$\tau_{\text{kin}} = \eta_D^{-1}$$

 $$\eta_D = \frac{\kappa}{2M_{\text{kin}}T} \left(1 + O\left(\frac{\alpha_s^{3/2} T}{M_{\text{kin}}}\right)\right)$$

 $$D = \frac{2T^2}{\kappa}$$

- Problem: perturbative series for D or κ ill-behaved!

 \Rightarrow need for non-perturbative ab-initio calculation

 \Rightarrow lattice QCD

Figure: Steffen Bass, mod. by O. Kaczmarek
How to calculate diffusion coefficients from the lattice?

- Linear response theory \Rightarrow diffusion physics \Leftrightarrow in-equilibrium spectral functions (SPF)

\Rightarrow SPF of HQ vector current

$$\rho^{ii}(\omega) = \int_{-\infty}^{\infty} dt \ e^{i\omega t} \int d^3x \left\langle \frac{1}{2} \left[\hat{J}^i(x, t), \hat{J}^i(0, 0) \right] \right\rangle$$

- Lattice: reconstruct SPF from Euclidean correlation functions

A. Spatial diffusion, hadronic correlators

- reconstruct $\rho^{ii}(\omega)$ from hadron corr.

\Rightarrow $\rho^{ii}(\omega)$ encodes spatial diffusion coeff. D through Kubo-formula:

$$D = \frac{1}{3\chi^{00}} \lim_{\omega \to 0} \sum_{i=1}^{3} \frac{\rho^{ii}(\omega)}{\omega}$$

- difficult to resolve transport peak at $\omega \to 0$

\Rightarrow see recent talk by H.-T. Shu at SQM ’21

B. Momentum diffusion, gluonic correlators

- start from $\rho^{ii}(\omega)$ but utilize HQET (nonrelativistic limit $M \gg \pi T$)

\Rightarrow construct “color-electric correlator” whose SPF encodes momentum diff. coeff. κ:

$$\kappa = \lim_{\omega \to 0} 2T \frac{\rho(\omega)}{\omega}$$

- smooth $\omega \to 0$ limit expected: no transport peak!

\Rightarrow this talk
From HQET to EE correlator to κ

- HQET: do Foldy-Wouthuysen trans. of $S_{\text{QCD}} \Rightarrow$ decouple quarks and anti-quarks (up to $O(1/M^2)$)
- insert leading-order $(1/M)$ currents in SPF, ..., translate to Euclidean
 - find gluonic "EE correlator" ρ Caron-Huot et al. 2009

$$G(\tau) \equiv -\frac{1}{3} \sum_{i=1}^{3} \frac{\langle \text{Re} \left[\text{tr} \left[U(\beta,\tau) gE_i(0,\tau) U(\tau,0) gE_i(0,0) \right] \right] \rangle}{\langle \text{Re} \left[\text{tr} \left[U(\beta,0) \right] \right] \rangle}$$

$$= \int_{0}^{\infty} d\omega \frac{\cosh(\omega(\tau - \beta/2))}{\sinh(\omega\beta/2)} \rho(\omega)$$

- encodes transport physics of static heavy quark in thermalized medium

$$\Rightarrow \kappa = \lim_{\omega \to 0} 2T \frac{\rho(\omega)}{\omega}$$
 - no transport peak, smooth limit expected

Lattice discretization

- Problem: IR part of $\rho(\omega)$ encoded in large-τ part of $G(\tau)$
 - underlying signal overshadowed by UV fluctuations
 - large statistical errors!
 - need noise reduction (= gauge smoothing) method
Solution to noise problem: gradient flow

- applicable to dynamical QCD (nonlocal action)
- introduces flow time \(\tau_F \equiv t a^2 \) with dimensionless parameter \(t \)
 \[
 \frac{dA_\mu(x, \tau_F)}{d\tau_F} \sim -\frac{\delta S_G[A_\mu(x, \tau_F)]}{\delta A_\mu(x, \tau_F)} , \quad A_\mu(x, \tau_F=0) = A_\mu(x)
 \]
- evolves gauge fields \(A_\mu(x) \) towards minimum of the action \(S_G \)
- smears them over Gaussian envelope (LO); width: flow radius \(\simeq \sqrt{8\tau_F} \)
 \[
 A_{\mu,LO}(x, \tau_F) = \int dy \left(\sqrt{\frac{2}{\pi}} \sqrt{\frac{8\tau_F}{2}} \right)^{-4} \exp \left(-\frac{(x - y)^2}{\sqrt{8\tau_F^2}/2} \right) A_\mu(y)
 \]

- improves signal & produces renormalized fields...
 ...but contaminates \(EE \) correlator \(G(\tau) \) for \(\sqrt{8\tau_F} \gtrsim \tau/3 \) according to LO pert. theory

 \[
 \Rightarrow \text{flow up to flow limit } \sqrt{8\tau_F} \approx \tau/3, \text{ extrapolate back to } \tau_F = 0
 \]
Leading-order perturbative EE correlator under Wilson flow

- **flow limit:**
 - cont. correlator deviates $< 1\%$ for $\tau T \gtrsim 3\sqrt{8\tau_F T}$ ⇒ vertical lines

Use to enhance nonpert. lattice results:
- filter out τ^{-4} behavior via $G_{\text{nonpert}} / G_{\text{norm}}$
 - increases visibility of details
- comparison of LO cont. and LO latt. correlators
 - approx. remove tree-level discretization errors

continuum corr. from Eller, Moore 2018, lattice corr. from Eller, Moore, LA et al. 2021
Nonpert. *EE* correlator (quenched approximation, Wilson action, $T \approx 1.5 T_c$)

- Data normalized to pert. lattice correlator
 - Dominant τ^{-4} behavior filtered out, tree-level improvement
- Dashed line: flow limit as lower bound for separation $\tau T \gtrsim 3\sqrt{8\tau_F T}$
 - More flow = higher precision, but smaller window of noncontaminated data
- Interpolation through cubic splines (no smoothing)

<table>
<thead>
<tr>
<th>$N^3 \times N_T$</th>
<th>a [fm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$80^3 \times 20$</td>
<td>0.0213</td>
</tr>
<tr>
<td>$96^3 \times 24$</td>
<td>0.0176</td>
</tr>
<tr>
<td>$120^3 \times 30$</td>
<td>0.0139</td>
</tr>
<tr>
<td>$144^3 \times 36$</td>
<td>0.0116</td>
</tr>
</tbody>
</table>
EE correlator as a function of flow time

- flow limit \(\sqrt{8\tau_F T} \lesssim \tau T / 3 \) ⇒ markers
- for large \(\tau T \): modest flow dependence
 ⇒ extrapolation to \(\tau_F = 0 \)
- need some flow to get signal, but too much contaminates the physics
- initial rising behavior (visible for \(\tau T = 0.056 \)): discretization-induced tadpole renormalization effect also found in pert. NLO lattice QED

\[\tau T = \begin{array}{cccc}
0.500 & 0.250 \\
0.472 & 0.222 \\
0.444 & 0.194 \\
0.417 & 0.167 \\
0.389 & 0.139 \\
0.361 & 0.111 \\
0.333 & 0.083 \\
0.306 & 0.056 \\
0.278 & 0.028 \\
\end{array} \]
1. Continuum extrapolation (linear in N^{-2}_τ)

- ansatz motivated by gauge action discretization
- taken separately for each flow time
- removes a^2/τ^2-type discretization errors
- a^2/τ_F-type errors only vanish if **continuum limit** is taken first!

2. Flow-time-to-zero extrapolation (linear in τ_F)

- ansatz motivated by NLO pert. theory Eller 2021
- removes τ_F/τ^2-type effects
- flow time window depends on:
 - signal-to-noise ratio
 - $\sqrt{8\tau_F} \gtrsim a$ (renormalization, suppression of latt. artifacts)
 - $\sqrt{8\tau_F} \lesssim \tau/3$ (flow limit)
Renormalized continuum EE correlator

Gradient flow method
Multi-level method

- Nonpert.-renormalized continuum EE correlator after $a \to 0$ and $\tau_F \to 0$ extrapolations
 - Shape consistent with previous (only pert. renorm.) results
 - Francis et al. 2015, Christensen, Laine 2016

- Overall shift due to
 - nonperturbative renormalization
 - difference in statistical power of gauge conf.
 - systematic uncertainty introduced by flow extr.

- Only large-τ of correlator can be obtained
 - not a problem for diffusion physics!
Spectral reconstruction through pert. model fits

- for details see LA et al. 2021

- Reminder:
 \[G(\tau) = \int_0^\infty d\omega \frac{\cosh(\omega(\tau - \beta/2))}{\sinh(\omega\beta/2)} \rho(\omega), \]
 \[\kappa = \lim_{\omega \to 0} 2T \frac{\rho(\omega)}{\omega} \]

 \(\Rightarrow \) integral inversion problem; valid only at \(\tau_F = 0 \) Eller 2021

- Strategy: constrain allowed form of \(\rho(\omega) \) to
 \[\rho^{(\mu,i)}_{\text{model}}(\omega) = \left[1 + \sum_{n=1}^{n_{\text{max}}} c_n e_n^{(\mu)}(y) \right] \sqrt{[\phi_{\text{IR}}(\omega)]^2 + [\phi_{\text{UV}}^{(a)}(\omega)]^2} \]

 using IR and UV asymptotics:
 \[\phi_{\text{IR}}(\omega) = \frac{\kappa \omega}{2T}, \quad \phi_{\text{UV}}^{(a)}(\omega) = \frac{g^2(\bar{\mu}_\omega) C_F \omega^3}{6\pi}, \ldots \]

 \(\Rightarrow \) well-defined fit with parameters \(\kappa/T^3 \) and \(c_n \) via
 \[\chi^2 \equiv \sum_\tau \left[\frac{G^{\text{cont}}(\tau) - G^{\text{model}}(\tau)}{\delta G^{\text{cont}}(\tau)} \right]^2 \]
HQ momentum diffusion coefficient κ at $T = 1.5 \, T_c$

We find

$$\frac{\kappa}{T^3} = 2.31 \ldots 3.70$$

and (for $M \gg \pi T$ using $D = 2T^2/\kappa$):

$$2\pi TD = 3.40 \ldots 5.44$$

kinetic equilibration time:

$$\tau_{\text{kin}} = \eta_D^{-1} = (1.63 \ldots 2.61) \left(\frac{T_c}{T} \right)^2 \left(\frac{M}{1.5 \text{ GeV}} \right) \text{fm/c}$$

k/T^3-value similar / slightly larger compared to previous study \cite{Francis2015} (using quenched-only multi-level method + pert. renorm.)
Recap

What do we want?
- a first-principles nonpert. estimate from dynamical QCD for the HQ momentum diffusion coefficient κ (or in turn D, τ_{kin})

Why?
- phenomenology: explain experimental data for HQ
- crucial input for transport simulations

What did we achieve so far?
- proof-of-concept for gradient flow method in quenched QCD
 - no restrictions for application to dynamical QCD!
 - high-prec. data for IR part of EE correlator (nonpert. renorm.)
 - consistent results for κ from reconstructed spectral function (pert. model fits)

What to do next?
- measure dynamical QCD lattices (HISQ) [in progress]
- determine finite mass correction (color-magnetic correlator) [Bouttefeux, Laine 2021] [in progress]