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Static energy Ey(r)

e Perturbatively known to N3LL 1

Crog

Eo(r)=As — (14 #as + #a2 + #a + #allnas +...)

e From lattice can be measured from Wilson loop

E(r) = — lim WW WrxT:P{exp <i%XszugAu>}

T—oo

e Useful: Scale setting, strong coupling extraction

e Arbitrary shift needed to get rid of constant contributions:
e Continuum : renormalon
e Lattice : linear UV divergence

e Interesting physics encoded in the shape — Static force

F(r) = 0,Eo(r)

! For review of perturbative results, see: X. Tormo Mod. Phys. Lett. A28 (2013) 1 / 10



Static force F(r)

e On lattice requires noisy numerical derivative by default

e Alternatively define directly!:

F(r)=— lim_ m<Tr(P{ exp (i%Xszu gAH)? - gE(r, t*)) }>

as chromoelectric field E inserted to Wilson (or Polyakov) loop

e On lattice E has finite size and Different discretizations

e The self energy contributions of E converge slowly to continuum?

— need renormalization Zg

1 A. Vairo Mod. Phys. Lett. A 31 (2016) & EPJ Web Conf. 126 (2016), Brambilla et.al.PRD63 (2001)
2 See e.g. Lepage et.al.PRD48 (1993), G. Bali Phys. Rept. 343 (2001), and many others . .. 2 / 10



Measured operators

Wilson loop with Clover
Ei = 5= (Mo — Ny

+ 1 N = %(P/"V+PV77/J'+P7:U‘77V+P7VHUI>

Y

Used with multilevel and flow

S

Polyakov loop with Butterfly
Ei = %(Fol' + F—iO)

Fuw = ﬁ(va - PATW)
Puw(x) = Uu() Un(x + 1) UL (x + ) UJ(x)

A Only used with multilevel

For discretizations, see e.g. Bali et.al.PRD56 (1997) or Koma & Koma Nucl. Phys. B769 (2007) 3 / 10



Algorithm 1: Multilevel algorithm

i e Algorithm for quenched simulations
eriodic
- - Cannot be generalized to un-quenched

e Improves signal of noisy observables

Idea: Divide the lattice to temporal slices of size
Ntsl

Update each sub-lattice independently keeping

boundaries fixed

Average over different boundary configurations

+ Allows reaching better statistics with less

ol Ll configurations
periodic

e Spatial Wilson lines located at the boundaries

Liischer and Weisz JHEP09 (2001) 4/ 10



Algorithm 2: Gradient flow

0Sym
0B
Gt,uy = 8/LBt,V - 8VBt,p. + [Bt,ua Bt,y] . \/

Bo,, = A, < the original gauge field

8tBtnU' = = Dtuu' Gtu“‘”’

o)

e Evolve gauge along fictitious time t

e Drives B, towards minima of Syy

e Diffuses the initial gauge field with radius /8t

e We use Liischer-Weisz action for Syy

+ Automatically renormalizes gauge invariant observables
+ Can be used un-quenched (This work: quenched)

e Generally needs zero flowtime limit

Liischer JHEP 1008, 071 (2010) 5/10



Simulation details

e Use Wilson gauge action, pure gauge

Heath bath with overrelaxation

3 Ensembles A: a=0.06fm, B: a=0.05fm, C: a=0.04fm

Scale setting with!:

In(a/ro) = —1.6804—1.7331(3—6)+0.7849 (8—6)>—0.4428 (3—6)°

Tree-level improve the forcel:

_ 2a _ 1 dk3  cos(rks/a)
T \/47r [G(r+a)— G(r—a)] ¢l = a /_,r (2m)3 437, sin(k;/2)

e Multilevel & Wilson loops: APE-smearing for spatial links
aapg = 0.5, Napg = 50

1S. Necco & R. Sommer. Nucl. Phys. B622 (2002) 6 / 10



Renormalization constant Zp
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Ensemble ain fm  Zg from Wilson loops  Zg from Polyakov loops

A 0.060 1.4068(63) 1.4001(20)
B 0.048 1.3853(30) 1.3776(10)
C 0.040 1.348(11) 1.3628(13)

e Force from numerical derivative of Eq differs from force from Fg
e Nonperturbative Zg. Very little r-dependence
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Multilevel result
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/7o
e Remove Zg by dividing with measurement at r* = 0.48ry
e Proof of concept:
e Both derivative of potential and direct force agree

e Both Wilson loop and Polyakov loops agree
8/10



Gradient flow results

L=30, a=0.04fm, y8tr/a = 1.50
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— No need for Zg
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Gradient flow automatically renormalizes the force at finite flowtime

Divide with the leading flow time dependence for potential
Early GF results indicate a good agreement to multilevel results
The continuum and zero flowtime limits still need to be done

9/10




Conclusions

e Proof of concept: Static force can be measured directly from lattice
by inserting chromoelectric field to a Wilson loop.

e Issue with self energy of chromoelectric field can be solved by:
e Dividing the force with force at fixed separation r*
e Using gradient flow

e This work can be expanded in future to many operators appearing
in NREFTs

10/10



Conclusions

e Proof of concept: Static force can be measured directly from lattice
by inserting chromoelectric field to a Wilson loop.

e Issue with self energy of chromoelectric field can be solved by:
e Dividing the force with force at fixed separation r*
e Using gradient flow

e This work can be expanded in future to many operators appearing
in NREFTs

Thank you!
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