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Static energy E0(r)

• Perturbatively known to N3LL 1:

E0(r) = Λs −
CFαs

r

(
1 + #αs + #α2s + #α3s + #α3s lnαs + . . .

)
• From lattice can be measured from Wilson loop

E (r) = − lim
T→∞

ln〈Tr(Wr×T )〉
T

, Wr×T = P

{
exp

(
i

∮
r×T

dzµ gAµ

)}
• Useful: Scale setting, strong coupling extraction
• Arbitrary shift needed to get rid of constant contributions:

• Continuum : renormalon
• Lattice : linear UV divergence

• Interesting physics encoded in the shape → Static force

F (r) = ∂rE0(r)

1 / 101 For review of perturbative results, see: X. Tormo Mod. Phys. Lett. A28 (2013)



Static force F (r)

• On lattice requires noisy numerical derivative by default

• Alternatively define directly1:

F (r) = − lim
T→∞

i

〈Tr(Wr×T )〉

〈
Tr
(
P

{
exp

(
i

∮
r×T

dzµ gAµ

)
r̂ · gE(r, t∗)

)}〉

as chromoelectric field E inserted to Wilson (or Polyakov) loop

• On lattice E has finite size and Different discretizations

• The self energy contributions of E converge slowly to continuum2

→ need renormalization ZE
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1 A. Vairo Mod. Phys. Lett. A 31 (2016) & EPJ Web Conf. 126 (2016), Brambilla et.al.PRD63 (2001)
2 See e.g. Lepage et.al.PRD48 (1993), G. Bali Phys. Rept. 343 (2001), and many others . . .



Measured operators

Wilson loop with Clover

Ei = 1
2iga2

(
Πi0 − Π†i0

)
Πµν = 1

4

(
Pµ,ν+Pν,−µ+P−µ,−ν+P−ν,µ

)
Used with multilevel and flow

Polyakov loop with Butterfly

Ei = 1
2

(
F0i + F−i0

)
Fµν = 1

2iga2

(
Pµ,ν − P†µ,ν

)
Pµ,ν(x) = Uµ(x)Uν(x + µ̂)U†

µ(x + ν̂)U†
ν(x)

Only used with multilevel

3 / 10For discretizations, see e.g. Bali et.al.PRD56 (1997) or Koma & Koma Nucl. Phys. B769 (2007)



Algorithm 1: Multilevel algorithm

periodic

periodic

Nt

Ntsl

• Algorithm for quenched simulations
- Cannot be generalized to un-quenched

• Improves signal of noisy observables

• Idea: Divide the lattice to temporal slices of size
Ntsl

• Update each sub-lattice independently keeping
boundaries fixed

• Average over different boundary configurations
+ Allows reaching better statistics with less

configurations

• Spatial Wilson lines located at the boundaries

4 / 10Lüscher and Weisz JHEP09 (2001)



Algorithm 2: Gradient flow

∂tBt,µ = −δSYM
δB

= Dt,µGt,µν ,

Gt,µν = ∂µBt,ν − ∂νBt,µ + [Bt,µ,Bt,ν ] .

B0,µ = Aµ ← the original gauge field

√
8t

• Evolve gauge along fictitious time t

• Drives Bµ towards minima of SYM
• Diffuses the initial gauge field with radius

√
8t

• We use Lüscher-Weisz action for SYM
+ Automatically renormalizes gauge invariant observables
+ Can be used un-quenched (This work: quenched)
• Generally needs zero flowtime limit

5 / 10Lüscher JHEP 1008, 071 (2010)



Simulation details

• Use Wilson gauge action, pure gauge

• Heath bath with overrelaxation

• 3 Ensembles A: a=0.06fm, B: a=0.05fm, C: a=0.04fm

• Scale setting with1:

ln(a/r0) = −1.6804−1.7331 (β−6)+0.7849 (β−6)2−0.4428 (β−6)3

• Tree-level improve the force1:

rI =

√
2a

4π [G(r + a)− G(r − a)]
G(r) =

1
a

∫ π

−π

dk3

(2π)3
cos(rk3/a)

4
∑

j sin(kj/2)

• Multilevel & Wilson loops: APE-smearing for spatial links
αAPE = 0.5,NAPE = 50

6 / 101S. Necco & R. Sommer. Nucl. Phys. B622 (2002)



Renormalization constant ZE = ∂rE (r)/FE (r)
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Ensemble a in fm ZE from Wilson loops ZE from Polyakov loops

A 0.060 1.4068(63) 1.4001(20)

B 0.048 1.3853(30) 1.3776(10)

C 0.040 1.348(11) 1.3628(13)

• Force from numerical derivative of E0 differs from force from FE

• Nonperturbative ZE . Very little r -dependence
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Multilevel result
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• Remove ZE by dividing with measurement at r∗ = 0.48r0
• Proof of concept:

• Both derivative of potential and direct force agree
• Both Wilson loop and Polyakov loops agree
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Gradient flow results
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• Gradient flow automatically renormalizes the force at finite flowtime
→ No need for ZE

• Divide with the leading flow time dependence for potential
• Early GF results indicate a good agreement to multilevel results
• The continuum and zero flowtime limits still need to be done
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Conclusions

• Proof of concept: Static force can be measured directly from lattice
by inserting chromoelectric field to a Wilson loop.

• Issue with self energy of chromoelectric field can be solved by:
• Dividing the force with force at fixed separation r∗

• Using gradient flow

• This work can be expanded in future to many operators appearing
in NREFTs
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Conclusions

• Proof of concept: Static force can be measured directly from lattice
by inserting chromoelectric field to a Wilson loop.

• Issue with self energy of chromoelectric field can be solved by:
• Dividing the force with force at fixed separation r∗

• Using gradient flow

• This work can be expanded in future to many operators appearing
in NREFTs

Thank you!
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