NRQCD vs LHC quarkonium production:
signs of a deeper J/Y polarization puzzle?
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Vector particles are always polarized (1)

Sometimes the full polarization is immediately recognizable...
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For dominant 2-to-1 processes, of order O(a.?),
maximum transverse polarization is seen in the Collins-Soper frame



Vector particles are always polarized (2)

But sometimes the superposition of different natural polarization axes
(preventing an “optimal” frame choice) smears the magnitude of Ay, away from p; = 0.
As a recognizable consequence, the polarization becomes strongly p; dependent.

Ao=+1 <> J, =+1 \'éi
Assuming J, = *¥1 along 051
the HX and GJ axes,
as foreseen for 2-to-2
processes of O(a?),
in suitable mixtures,
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Is “unpolarized” even possible?

Vector states are intrinsically polarized for any given elementary process

Theorem P.F. et al., PRL 105, 061601 Intuitively consistent with
For any subprocess producing a J = 1 state classical expectation:
|V;),),)=a_,|1,-1)+a,|1,0)+a,,|1,+1), a vector of modulus 1 has
there exists a quantization axis always projection +1 along
along which the J, = 0 component a, vanishes some axis

...which implies that A3 = +1 along that axis



Vector quarkonia: a paradigmatic exception

Mid-rapidity LHC data show unpolarized production of vector quarkonia
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* None of the parameters Ay, A, A5, Ais significantly different from 0
* There is no visible dependence on p; : seemingly not a transition domain

* No visible difference between states despite different x feed-downs

What is the role of the x feed-down decays ?



X VS. X, polarizations: direct experimental constraints

CMS, PRL 124 (2020) 162002
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CMS measured the ratio between the
(J/Y from) x_, and x_, cos? distributions.

This provides a constraint on the
difference between the two polarizations
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X VS. X, polarizations: indirect experimental constraints
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ATLAS and CMS measurements of J/Y, Y(2S), x., and x,, cross sections,
together with the J/¢ and ¢(2S) polarizations,
constrain the sum of the y_, and ., polarizations

Only assumption: directly produced J/¢ and /(2S) have the same polarization vs p; /M
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p; /M scaling

No hint of mass-dependence in mid-rapidity p; distributions (nor for Ay)
from J/¢ to Y(3S) after dimensional scaling, p; — p; /M, at least for p; /M > 2
— no reason to question similarity of direct J/¢ and ¢)(2S) production dynamics
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The x. states are strongly polarized !

The combination of these two “orthogonal” experimental constraints

determine the two individual ., and x, polarizations = ol o
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J/Y from x_, and x, are, respectively, S P T

transversely and longitudinally polarized pM
— they tend to cancel out in their contribution to J/¢



...and the J/¢ polarization is even more “zero” !

The global data fit also allows us to extract a measurement of
the polarization of the directly produced )/

[en]

s — Direct Jip (same as y(2S))

Strong evidence of
unpolarized production

(AS"(J/)) = 0.04 +0.06
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A challenge to production models:
only a “fortunate”

mixture of subprocesses

or randomization effects

can lead to zero polarization
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— a clear sign of the unique nature and production mechanism of heavy quarkonia
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Evidence of a “cascade” mechanism?

Without invoking any theory framework, the most natural way to explain a zero polarization
observation is a two-step mechanism with an unobserved intermediate J = 0 state

E.g.: pp — ccl/=0] —» J/Yg

In the transition from the J = 0 “pre-resonance” to the vector bound state,
the polarization is fully randomized because we lose connection to its natural reference

-+ In the ccC rest frame |-—mmmmees
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Curves from H.-S. Shao et al.,
PRL 108, 242004; PRL 112, 182003; CPC 198, 238

Direct J/¢ in NRQCD: the “bricks” of the p; distribution

A hierarchy in the expansion over the “small” Q-Qbar relative velocity (“v-scaling”)
foresees the dominance of a few of the 25*1L ; “cascade” channels:

¢;1O4— NRQCD @ NLO .
R 'S, octet
ro) 103 :_ 3
Sk S, octet
8 2: 3
o 10E Poj1j2 OCtets
: e
1ol S, singlet
= S~ Pp-wave term actually negative:
- proper cancellation needed
10"l to recover the physical cross section

2 4 6 8 10 12 14
pT/M

Mixture of different pre-resonance contributions,
with characteristic p; spectra (and polarizations: see next slide)

— by fitting the experimental p; distributions it is possible to determine the
coefficients of all terms (LDMEs) and consequently predict the polarizations

11



Curves from H.-S. Shao et al.,
PRL 108, 242004; PRL 112, 182003; CPC 198, 238
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The polarization terms: pieces of a puzzle?

Of the four contributing terms, only the 1S, leads “naturally” to zero polarization

o::) L
(< =
C P-wave term actually unphysical (> +1)
15 n proper cancellation needed
C «—— torecover the physical polarization
1
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To reproduce the data, the remaining terms must Zero J/y polarization
* either be individually suppressed is a conceptual
— violation of NRQCD’s v hierarchy ! puzzle for NRQCD !

eorsumto ~zero — redundant expansion basis !
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Is NRQCD too complex?

Vector quarkonium production at mid rapidity

LHC data NRQCD

Surprisingly uniform and simple
patterns:
 zero and flat polarization

* “universal” scaling of all cross
sections with p;/M

One basic mechanism would
seem sufficient...

Combination of
three octet terms 1S, = 3S, = 3P,
and one singlet term 35,

all differing for p; distributions
and polarizations (SDCs),

with state-dependent
coefficients (LDMEs)



A closer look (1)

1) Actually the 3 cross section shapes (SDCs) of NRQCD are linearly dependent !

NLO SDCs
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P.F.and C.L., EPJC 79, 457 (2019)
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A closer look (1)

1) Actually the 3 cross section shapes (SDCs) of NRQCD are linearly dependent !

2) And the cross section data universally agree with the degenerate scenario
where the three different shapes become “one” !
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A closer look (2)

3) The same degenerate scenario minimizes, at the same time,
the difference between the 1S, and 3S, + k 3P, polarizations

is closest to
zero and flat
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A closer look (2)

3) The same degenerate scenario minimizes, at the same time, the difference
between the 1S, and 3S, + k 3P, polarizations

4) ... and agrees with the polarization data towards high p;
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Summary:
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a new, conceptual, NRQCD puzzle ?

With current SDC calculations, NRQCD
does reproduce well the polarization
data, just like the p; spectrum

But this requires full 'S, dominance
(3S; + k 3P, term strongly suppressed)
— violation of NRQCD
v2-scaling hierarchies

Will improved computations of the
(perturbatively unstable) 3P, term
lead to ,
so that this term can contribute?
— FULL degeneracy of the
NRQCD expansion

In either case, zero and constant polarization is the biggest challenge to NRQCD

More precise measurements are needed to reach a decisive conclusion
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Backup



What about the x_, and x_,?

In NRQCD, ., , production has two terms: S, octet and *P, , singlet.
One parameter r determines

1) the x, / X., yield ratio r = m? <0X60(3S£8])>/ <0Xco(3p(£1])>
2) Al? cl)
3) As(xo) =0.217 £0.003 from the CMS + ATLAS
Xe / X Yield ratio (averaged)
A strongly J_L

constrained and

: - P.F. et al. EPJC 78 (2018) 268
unambiguous -

prediction, not -
requiring any . ~—_NRQcCD

“fine-tuning”... 3 global data fit

:-<‘ <: XC]_ cee and
perfectly

agreeing
<= X with data

An out-of-the-box
success of NRQCD !
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