NRQCD vs LHC quarkonium production: signs of a deeper J/ψ polarization puzzle?

Pietro Faccioli, LIP, Lisbon

In collaboration with Carlos Lourenço, CERN

Quark Confinement and the Hadron Spectrum 2021, 6/8/2021

Vector particles are always polarized (1)

Sometimes the full polarization is immediately recognizable...

For dominant **2-to-1 processes**, of order $\mathcal{O}(\alpha_s^{0})$, maximum transverse polarization is seen in the Collins-Soper frame

Vector particles are always polarized (2)

But sometimes the superposition of different natural polarization axes (preventing an "optimal" frame choice) smears the magnitude of λ_{ϑ} away from $p_{T} = 0$. As a recognizable consequence, the polarization becomes **strongly** p_{T} **dependent**.

Is "unpolarized" even possible?

Vector states are intrinsically polarized for any given elementary process

TheoremP.F. et al., PRL 105, 061601For any subprocess producing a J = 1 state $|V; J, J_z\rangle = a_{-1} | 1, -1 \rangle + a_0 | 1, 0 \rangle + a_{+1} | 1, +1 \rangle$,there exists a quantization axisalong which the $J_z = 0$ component a_0 vanishes

Intuitively consistent with classical expectation: a vector of modulus 1 has always projection ±1 along some axis

...which implies that λ_{ϑ} = +1 along that axis

Vector quarkonia: a paradigmatic exception

Mid-rapidity LHC data show unpolarized production of vector quarkonia

- None of the parameters $\lambda_{artheta},\lambda_{arphi},\lambda_{arphi arphi},\widetilde{\lambda}$ is significantly different from 0
- There is no visible dependence on p_T: seemingly not a transition domain
- No visible difference between states despite different $\boldsymbol{\chi}$ feed-downs

What is the role of the χ feed-down decays ?

χ_{c2} vs. χ_{c1} polarizations: direct experimental constraints

CMS measured the ratio between the $(J/\psi \text{ from}) \chi_{c2}$ and $\chi_{c1} \cos \vartheta$ distributions. This provides a constraint on the *difference* between the two polarizations

χ_{c2} vs. χ_{c1} polarizations: indirect experimental constraints

ATLAS and CMS measurements of J/ ψ , ψ (2S), χ_{c1} and χ_{c2} cross sections, together with the J/ ψ and ψ (2S) polarizations, constrain the sum of the χ_{c1} and χ_{c2} polarizations

Only assumption: *directly* produced J/ ψ and ψ (2S) have the same polarization vs p_T/M

A "universal" p_T/M scaling

No hint of mass-dependence in mid-rapidity p_T distributions (nor for λ_{ϑ}) from J/ ψ to Υ (3S) after dimensional scaling, $p_T \rightarrow p_T/M$, at least for $p_T/M > 2$ \rightarrow no reason to question similarity of direct J/ ψ and ψ (2S) production dynamics

The χ_c states are strongly polarized !

The combination of these two "orthogonal" experimental constraints determine the two individual χ_{c1} and χ_{c2} polarizations

CMS

...and the J/ ψ polarization is even more "zero" !

The global data fit also allows us to extract a measurement of the polarization of the directly produced J/ψ

 \rightarrow a clear sign of the **unique nature and production mechanism** of heavy quarkonia

Without invoking any theory framework, the most *natural* way to explain a zero polarization observation is a two-step mechanism with an **unobserved intermediate** *J* = 0 state

E.g.: pp $\rightarrow c\bar{c}[J=0] \rightarrow J/\psi g g g$

Without invoking any theory framework, the most *natural* way to explain a zero polarization observation is a two-step mechanism with an **unobserved intermediate** *J* = 0 state

E.g.: pp $\rightarrow c\bar{c}[J=0] \rightarrow J/\psi g g g$

Without invoking any theory framework, the most *natural* way to explain a zero polarization observation is a two-step mechanism with an **unobserved intermediate** *J* = 0 state

E.g.: pp $\rightarrow c\bar{c}[J=0] \rightarrow J/\psi g g g$

Without invoking any theory framework, the most *natural* way to explain a zero polarization observation is a two-step mechanism with an **unobserved intermediate** *J* = 0 state

E.g.: pp $\rightarrow c\bar{c}[J=0] \rightarrow J/\psi g g g$

Without invoking any theory framework, the most *natural* way to explain a zero polarization observation is a two-step mechanism with an **unobserved intermediate** *J* = 0 state

E.g.: pp $\rightarrow c\bar{c}[J=0] \rightarrow J/\psi g g g$

Direct J/ ψ in NRQCD: the "bricks" of the p_T distribution

A hierarchy in the expansion over the "small" Q-Qbar relative velocity ("**v-scaling**") foresees the dominance of a few of the ${}^{2S+1}L_{J}$ "cascade" channels:

Mixture of different pre-resonance contributions, with characteristic p_{T} spectra (and polarizations: see next slide)

 \rightarrow by *fitting* the experimental p_{T} distributions it is possible to determine the coefficients of all terms (LDMEs) and consequently *predict* the polarizations

The polarization terms: pieces of a puzzle?

Of the four contributing terms, only the ¹S₀ leads "naturally" to zero polarization

To reproduce the data, the remaining terms must • either be *individually suppressed*

Curves from H.-S. Shao et al.,

 \rightarrow violation of NRQCD's v² hierarchy !

• or sum to $\sim zero \rightarrow$ redundant expansion basis !

Zero J/ ψ polarization is a *conceptual* puzzle for NRQCD !

Is NRQCD too complex?

Vector quarkonium production at mid rapidity

LHC data

Surprisingly **uniform and simple** patterns:

- zero and flat polarization
- "universal" scaling of all cross sections with p_T/M

One basic mechanism would seem sufficient...

NRQCD

Combination of three octet terms ${}^{1}S_{0} \cong {}^{3}S_{1} \cong {}^{3}P_{J}$ and one singlet term ${}^{3}S_{1}$, all **differing** for p_{T} distributions and polarizations (SDCs), with **state-dependent** coefficients (LDMEs)

A closer look (1)

1) Actually the 3 cross section shapes (SDCs) of NRQCD are linearly dependent !

P.F. and C.L., EPJC 79, 457 (2019)

A closer look (1)

- 1) Actually the 3 cross section shapes (SDCs) of NRQCD are linearly dependent !
- 2) And the cross section data universally *agree* with the degenerate scenario where the three different shapes become "one" !

P.F. and C.L., EPJC 79, 457 (2019)

A closer look (2)

3) The *same* degenerate scenario minimizes, at the same time, the difference between the ${}^{1}S_{0}$ and ${}^{3}S_{1} + k \, {}^{3}P_{J}$ polarizations

P.F. and C.L., EPJC 79, 457 (2019)

A closer look (2)

- 3) The *same* degenerate scenario minimizes, at the same time, the difference between the ${}^{1}S_{0}$ and ${}^{3}S_{1} + k \, {}^{3}P_{1}$ polarizations
- 4) ... and agrees with the polarization data towards high $p_{\rm T}$

However, any ³S₁ + 1.8 ³P_J contribution is strongly disfavoured by data

P.F. and C.L., EPJC 79, 457 (2019)

Summary: a new, conceptual, NRQCD puzzle ?

In either case, **zero** and **constant** polarization is the biggest challenge to NRQCD More precise measurements are needed to reach a decisive conclusion

Backup

What about the χ_{c1} and χ_{c2} ?

