Thermal modification of open heavy-flavour mesons from an effective hadronic theory

Glòria Montaña

University of Barcelona Institute of Cosmos Sciences

[GM, Angels Ramos, Laura Tolos, Juan Torres-Rincon, Phys.Lett.B 806 (2020)]
 [GM, Angels Ramos, Laura Tolos, Juan Torres-Rincon, Phys.Rev.D 102 (2020)]
 [GM, Olaf Kaczmarek, Laura Tolos, Angels Ramos, Eur.Phys.J.A 56 (2020)]
 [Juan Torres-Rincon, GM, Angels Ramos, Laura Tolos, arXiv:2106.01156]

A Virtual Tribute to Quark Confinement and the Hadron Spectrum 2021 2-6 August 2021

Introduction

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
•0	0000	00	000	00	00	00
						(

Matter at very high temperatures and vanishing baryon densities (QGP?) is produced in HICs at RHIC and LHC → hot mesonic (pionic) matter after confinement transition

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
•0	0000	00	000	00	00	00

- Matter at very high temperatures and vanishing baryon densities (QGP?) is produced in HICs at RHIC and LHC
 hot mesonic (pionic) matter after confinement transition
- Heavy quarks are formed at the initial stage of the collision and have a large relaxation time

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
●O	0000	00	000	00	00	00

Comover scattering

- Matter at very high temperatures and vanishing baryon densities (QGP?) is produced in HICs at RHIC and LHC
 hot mesonic (pionic) matter after confinement transition
- Heavy quarks are formed at the initial stage of the collision and have a large relaxation time
- Heavy mesons are a powerful probe of the QGP
 - Open heavy-flavour mesons created at the confinement transition
 - They iteract with the light mesons in the medium
 - Quarkonia suppression: color screening + comover scattering

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
●O	0000	00	000	00	00	00

Comover scattering

- Matter at very high temperatures and vanishing baryon densities (QGP?) is produced in HICs at RHIC and LHC
 hot mesonic (pionic) matter after confinement transition
- Heavy quarks are formed at the initial stage of the collision and have a large relaxation time
- Heavy mesons are a powerful probe of the QGP
 - ⊲ Open heavy-flavour mesons created at the confinement transition
 - They iteract with the light mesons in the medium
 - Quarkonia suppression: color screening + comover scattering
- Properties of hadrons and their thermal modification are contained in their spectral functions

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
•0	0000	00	000	00	00	00

Comover scattering

- Matter at very high temperatures and vanishing baryon densities (QGP?) is produced in HICs at RHIC and LHC
 hot mesonic (pionic) matter after confinement transition
- Heavy quarks are formed at the initial stage of the collision and have a large relaxation time
- Heavy mesons are a powerful probe of the QGP
 - Open heavy-flavour mesons created at the confinement transition
 - They iteract with the light mesons in the medium
 - Quarkonia suppression: color screening + comover scattering
- Properties of hadrons and their thermal modification are contained in their spectral functions
- Spectral functions can be calculated with effective hadronic theories within a unitarized approach

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	00	00	00

OPEN HEAVY-FLAVOUR SPECTRUM

- Broad resonances with S = 0
- Narrow states with S = 1

[P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)]

How do these states change with temperature?

Scattering of open heavy-flavour mesons off light mesons in free space

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	00	00	00

EFFECTIVE THEORY

Effective Lagrangian based on approximate chiral and heavy-quark spin symmetries

- Chiral expansion up to NLO: broken by light meson masses ($\Phi = \pi, K, \overline{K}, \eta$)
- ▶ Heavy-quark expansion up to LO: broken by physical heavy meson masses (D, D_s, D^{*}, D^{*}_s)

$$\mathcal{L}(D^{(*)}, \Phi) = \mathcal{L}_{\rm LO}(D^{(*)}, \Phi) + \mathcal{L}_{\rm NLO}(D^{(*)}, \Phi)$$

$$\mathcal{L}_{\text{LO}} = \langle \nabla^{\mu} D \nabla_{\mu} D^{\dagger} \rangle - m_{D}^{2} \langle D D^{\dagger} \rangle - \langle \nabla^{\mu} D^{*\nu} \nabla_{\mu} D_{\nu}^{*\dagger} \rangle + m_{D}^{2} \langle D^{*\nu} D_{\nu}^{*\dagger} \rangle$$

$$+ ig \langle D^{*\mu} u_{\mu} D^{\dagger} - D u^{\mu} D_{\mu}^{*\dagger} \rangle + \frac{g}{2m_{D}} \langle D_{\mu}^{*} u_{\alpha} \nabla_{\beta} D_{\nu}^{*\dagger} - \nabla_{\beta} D_{\mu}^{*} u_{\alpha} D_{\nu}^{*\dagger} \rangle \epsilon^{\mu\nu\alpha\beta}$$

$$u = \exp\left(\frac{i\Phi}{\sqrt{2}f}\right), \quad \nabla^{\mu} = \partial^{\mu} - \frac{1}{2} (u^{\dagger} \partial^{\mu} u + u \partial^{\mu} u^{\dagger}), \quad u^{\mu} = i (u^{\dagger} \partial^{\mu} u - u \partial^{\mu} u^{\dagger})$$

[Kolomeitsev and Lutz (2004)] [Lutz and Soyeur (2008)] [Guo, Hanhart and Meißner (2009)] [Geng, Kaiser, Martin-Camalich and Weise (2010)]
$$\begin{split} D &= \begin{pmatrix} D^0 & D^+ & D_s^+ \end{pmatrix}, \\ D_{\mu}^* &= \begin{pmatrix} D^{*0} & D^{*+} & D_s^{*+} \end{pmatrix}_{\mu} \end{split}$$

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	00	00	00

EFFECTIVE THEORY

Effective Lagrangian based on approximate chiral and heavy-quark spin symmetries

• Chiral expansion up to NLO: broken by light meson masses ($\Phi = \pi, K, \overline{K}, \eta$)

LECs : $h_{0,...,5}, \tilde{h}_{0,...,5}$

▶ Heavy-quark expansion up to LO: broken by physical heavy meson masses (D, D_s, D^{*}, D^{*}_s)

$$\mathcal{L}(D^{(*)}, \Phi) = \mathcal{L}_{\rm LO}(D^{(*)}, \Phi) + \mathcal{L}_{\rm NLO}(D^{(*)}, \Phi)$$

$$\begin{aligned} \mathcal{L}_{\mathrm{LO}} &= \langle \nabla^{\mu} D \nabla_{\mu} D^{\dagger} \rangle - m_{D}^{2} \langle D D^{\dagger} \rangle - \langle \nabla^{\mu} D^{*\nu} \nabla_{\mu} D_{\nu}^{*\dagger} \rangle + m_{D}^{2} \langle D^{*\nu} D_{\nu}^{*\dagger} \rangle \\ &+ i g \langle D^{*\mu} u_{\mu} D^{\dagger} - D u^{\mu} D_{\mu}^{*\dagger} \rangle + \frac{g}{2m_{D}} \langle D_{\mu}^{*} u_{\alpha} \nabla_{\beta} D_{\nu}^{*\dagger} - \nabla_{\beta} D_{\mu}^{*} u_{\alpha} D_{\nu}^{*\dagger} \rangle \epsilon^{\mu\nu\alpha\beta} \\ u &= \exp\left(\frac{i\Phi}{\sqrt{2}f}\right), \quad \nabla^{\mu} = \partial^{\mu} - \frac{1}{2} (u^{\dagger} \partial^{\mu} u + u \partial^{\mu} u^{\dagger}), \quad u^{\mu} = i (u^{\dagger} \partial^{\mu} u - u \partial^{\mu} u^{\dagger}) \end{aligned}$$

$$\mathcal{L}_{\text{NLO}} = - \frac{h_0}{\langle DD^{\dagger} \rangle \langle \chi_+ \rangle} + \frac{h_1}{h_1} \langle D\chi_+ D^{\dagger} \rangle + \frac{h_2}{h_2} \langle DD^{\dagger} \rangle \langle u^{\mu} u_{\mu} \rangle + \frac{h_3}{h_3} \langle Du^{\mu} u_{\mu} D^{\dagger} \rangle$$
$$+ \frac{h_4}{h_4} \langle \nabla_{\mu} D\nabla_{\nu} D^{\dagger} \rangle \langle u^{\mu} u^{\nu} \rangle + \frac{h_5}{h_5} \langle \nabla_{\mu} D\{u^{\mu}, u^{\nu}\} \nabla_{\nu} D^{\dagger} \rangle + \{D \to D^*_{\mu}\}$$

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	00	00	00

s-wave scattering amplitude of
$$D^{(*)},\,D^{(*)}_s$$
 mesons with $\pi,\,K,\,ar{K},\,\eta$:

$$\mathcal{L} \to V^{ij}(s, t, u) = \frac{1}{f_{\pi}^2} \left[\frac{1}{4} \quad C_{\text{LO}}^{ij} \quad (s - u) - 4 \quad C_0^{ij} \quad h_0 + 2 \quad C_1^{ij} \quad h_1 \\ - 2 \quad C_{24}^{ij} \quad \left(2h_2(p_2 \cdot p_4) + h_4 \left((p_1 \cdot p_2)(p_3 \cdot p_4) + (p_1 \cdot p_4)(p_2 \cdot p_3) \right) \right) \\ + 2 \quad C_{35}^{ij} \quad \left(h_3(p_2 \cdot p_4) + h_5 \left((p_1 \cdot p_2)(p_3 \cdot p_4) + (p_1 \cdot p_4)(p_2 \cdot p_3) \right) \right) \right],$$

 C_n^{ij} : isospin coefficients

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	00	00	00

s-wave scattering amplitude of
$$D^{(*)},\,D^{(*)}_s$$
 mesons with $\pi,\,K,\,ar{K},\,\eta$:

$$\mathcal{L} \to V^{ij}(s, t, u) = \frac{1}{f_{\pi}^2} \left[\frac{1}{4} C_{\text{LO}}^{ij}(s - u) - 4 C_0^{ij} h_0 + 2 C_1^{ij} h_1 - 2 C_{24}^{ij} \left(2h_2(p_2 \cdot p_4) + h_4 \left((p_1 \cdot p_2)(p_3 \cdot p_4) + (p_1 \cdot p_4)(p_2 \cdot p_3) \right) \right) + 2 C_{35}^{ij} \left(h_3(p_2 \cdot p_4) + h_5 \left((p_1 \cdot p_2)(p_3 \cdot p_4) + (p_1 \cdot p_4)(p_2 \cdot p_3) \right) \right) \right],$$

 C_n^{ij} : isospin coefficients

Unitarization: Bethe-Salpeter equation

$$D_i \qquad D_j \qquad D_j \qquad D_i \qquad D_j \qquad D_i \qquad D_j \qquad D_i \qquad D_k \qquad D_j \qquad D_k \qquad D_k \qquad D_j \qquad D_k \qquad D_k$$

 $T_{ij} = V_{ij} + V_{ik}G_kV_{kj} + V_{ik}G_kV_{kl}G_lV_{lj} + \dots$

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	00	00	00

s-wave scattering amplitude of
$$D^{(*)},\,D^{(*)}_s$$
 mesons with $\pi,\,K,\,ar{K},\,\eta$

$$\mathcal{L} \to V^{ij}(s, t, u) = \frac{1}{f_{\pi}^2} \Big[\frac{1}{4} \ C^{ij}_{\mathrm{LO}} \ (s-u) - 4 \ C^{ij}_0 \ h_0 + 2 \ C^{ij}_1 \ h_1 \\ - 2 \ C^{ij}_{24} \ \Big(2h_2(p_2 \cdot p_4) + h_4 \big((p_1 \cdot p_2)(p_3 \cdot p_4) + (p_1 \cdot p_4)(p_2 \cdot p_3) \big) \Big) \\ + 2 \ C^{ij}_{35} \ \Big(h_3(p_2 \cdot p_4) + h_5 \big((p_1 \cdot p_2)(p_3 \cdot p_4) + (p_1 \cdot p_4)(p_2 \cdot p_3) \big) \Big) \Big],$$

Unitarization: Bethe-Salpeter equation

 $T_{ij} = V_{ij} + V_{ik}G_kT_{kj}$

On-shell factorization of the *T*-matrix: $T = (1 - VG)^{-1}V$

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	00	00	00

s-wave scattering amplitude of
$$D^{(*)},\,D^{(*)}_s$$
 mesons with $\pi,\,K,\,ar{K},\,\eta$

$$\begin{aligned} \mathcal{L} \to V^{ij}(s,t,u) &= \frac{1}{f_{\pi}^2} \left[\frac{1}{4} \ C_{\text{LO}}^{ij} \ (s-u) - 4 \ C_0^{ij} \ h_0 + 2 \ C_1^{ij} \ h_1 \\ &- 2 \ C_{24}^{ij} \ \left(2h_2(p_2 \cdot p_4) + h_4 \big((p_1 \cdot p_2)(p_3 \cdot p_4) + (p_1 \cdot p_4)(p_2 \cdot p_3) \big) \right) \\ &+ 2 \ C_{35}^{ij} \ \left(h_3(p_2 \cdot p_4) + h_5 \big((p_1 \cdot p_2)(p_3 \cdot p_4) + (p_1 \cdot p_4)(p_2 \cdot p_3) \big) \big) \right], \end{aligned}$$

$$D_i \qquad D_j \qquad D_i \qquad D_j \qquad D_i \qquad D_j \qquad D_i \qquad D_k \qquad D_j \qquad \Phi_i \qquad \Phi_j \qquad \Phi_i \qquad \Phi_i \qquad \Phi_k \qquad \Phi_j \qquad \Phi_i \qquad \Phi_k \qquad \Phi_j \qquad \Phi_j \qquad \Phi_i \qquad \Phi_k \qquad \Phi_j \qquad \Phi_j \qquad \Phi_k \qquad \Phi_j \qquad \Phi_k \qquad \Phi_j \qquad \Phi_k \qquad \Phi_j \qquad \Phi_k \qquad \Phi_k \qquad \Phi_j \qquad \Phi_k \qquad \Phi_k$$

► The two-meson propagator is regularized with a cutoff

$$G_k = i \int^{\Lambda} \frac{d^4 q}{(2\pi)^4} \frac{1}{q^2 - m_{D,k}^2 + i\varepsilon} \frac{1}{(P-q)^2 - m_{\Phi,k}^2 + i\varepsilon}$$

 $T_{ij} = V_{ij} + V_{ik} G_k T_{kj}$

On-shell factorization of the *T*-matrix: $T = (1 - VG)^{-1} V$

- Poles in different Riemann sheets: bound states, resonances and virtual states, $m_R = \operatorname{Re} z_R$, $\Gamma_R = 2 \operatorname{Im} z_R$
- Identification of the dynamically generated states with the experimental ones

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	00	00	00

	$D_0^*(2300)$	$D_{s0}^{*}(2317)$	$D_1^*(2430)$	$D_{s1}^{*}(2460)$
M_R (MeV)	2343 ± 10	2317.8 ± 0.5	2412 ± 9	2459.5 ± 0.6
Γ_R (MeV)	229 ± 16	< 3.8	314 ± 29	< 3.5

J^P	(S, I)	Coupled c	hannels		RS	Poles	Couplings
						(MeV)	(GeV)
0^+	$(0, \frac{1}{2})$	$D\pi$	$D\eta$	$D_s \bar{K}$	(-, +, +)	2081.9 - i86.0	$ g_{\scriptscriptstyle D\pi} =8.9$, $ g_{\scriptscriptstyle D\eta} =0.4,$ $ g_{\scriptscriptstyle D_8\bar{K}} =5.4$
		(2005.28)	(2415.10)	(2463.98)	(-,-,+)	2529.3 - i145.4	$ g_{D\pi} = 6.7, g_{D\eta} = 9.9, g_{D_s\bar{K}} = 19.4$
	(1, 0)	DK	$D_s\eta$		(+, +)	2252.5 - i0.0	$ g_{_{DK}} =13.3$, $ g_{_{D_s\eta}} =9.2$
		(2364.88)	(2516.20)				
1^+	$(0, \frac{1}{2})$	$D^*\pi$	$D^*\eta$	$D_s^* \bar{K}$	(-,+,+)	2222.3 - i84.7	$ g_{{}_{D^{*}\pi}} =9.5$, $ g_{{}_{D^{*}\eta}} =0.4,$ $ g_{{}_{D^{*}_{s}\bar{K}}} =5.7$
		(2146.59)	(2556.42)	(2607.84)	(-,-,+)	2654.6 - i117.3	$ g_{D^*\pi} = 6.5, g_{D^*\eta} = 10.0, g_{D^*\bar{K}} = 18.5$
	(1, 0)	D^*K	$D_s^*\eta$		(+, +)	2393.3 - i0.0	$ g_{{\scriptscriptstyle D}^{*}{\scriptscriptstyle K}} =14.2$, $ g_{{\scriptscriptstyle D}^{*}{\scriptscriptstyle \eta}} =9.7$
		(2504.20)	(2660.06)				-

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	00	00	00

	$D_0^*(2300)$	$D_{s0}^{*}(2317)$	$D_1^*(2430)$	$D_{s1}^{*}(2460)$
M_R (MeV)	2343 ± 10	2317.8 ± 0.5	2412 ± 9	2459.5 ± 0.6
Γ_R (MeV)	229 ± 16	< 3.8	314 ± 29	< 3.5

J^P	(S, I)	Coupled c	hannels		RS	Poles	Couplings
						(MeV)	(GeV)
0^{+}	$(0, \frac{1}{2})$	$D\pi$	$D\eta$	$D_s \bar{K}$	(-, +, +)	2081.9 - i86.0	$ g_{D\pi}^{} =8.9$, $ g_{D\eta}^{} =0.4,$ $ g_{D_s\bar{K}}^{} =5.4$
		(2005.28)	(2415.10)	(2463.98)	(-, -, +)	2529.3 - i145.4	$ g_{D\pi} = 6.7, g_{D\eta} = 9.9, g_{D_s\bar{K}} = 19.4$
	(1, 0)	DK	$D_s\eta$		(+, +)	2252.5 - i0.0	$ g_{_{DK}} =13.3$, $ g_{_{D_s\eta}} =9.2$
		(2364.88)	(2516.20)				
1^{+}	$(0, \frac{1}{2})$	$D^*\pi$	$D^*\eta$	$D_s^* \bar{K}$	(-,+,+)	2222.3 - i84.7	$ g_{{}_{D^{*}\pi}} =9.5$, $ g_{{}_{D^{*}\eta}} =0.4$, $ g_{{}_{D^{*}_{s}\overline{K}}} =5.7$
		(2146.59)	(2556.42)	(2607.84)	(-,-,+)	2654.6 - i117.3	$ g_{D^*\pi} = 6.5, g_{D^*\eta} = 10.0, g_{D^*\bar{K}} = 18.5$
	(1, 0)	D^*K	$D_s^*\eta$		(+, +)	2393.3 - i0.0	$ g_{{\scriptscriptstyle D}^{*}{\scriptscriptstyle K}} =14.2$, $ g_{{\scriptscriptstyle D}^{*}{\scriptscriptstyle \eta}} =9.7$
		(2504.20)	(2660.06)				-

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	00	00	00

	$D_0^*(2300)$	$D_{s0}^{*}(2317)$	$D_1^*(2430)$	$D_{s1}^{*}(2460)$
M_R (MeV)	2343 ± 10	2317.8 ± 0.5	2412 ± 9	2459.5 ± 0.6
Γ_R (MeV)	229 ± 16	< 3.8	314 ± 29	< 3.5

J^P	(S, I)	Coupled c	hannels		RS	Poles	Couplings
						(MeV)	(GeV)
0^+	$(0, \frac{1}{2})$	$D\pi$	$D\eta$	$D_s \bar{K}$	(-, +, +)	2081.9 - i86.0	$ g_{\scriptscriptstyle D\pi} =8.9$, $ g_{\scriptscriptstyle D\eta} =0.4,$ $ g_{\scriptscriptstyle D_8\bar{K}} =5.4$
		(2005.28)	(2415.10)	(2463.98)	(-,-,+)	2529.3 - i145.4	$ g_{D\pi} = 6.7, g_{D\eta} = 9.9, g_{D_s\bar{K}} = 19.4$
	(1,0)	DK	$D_s\eta$		(+, +)	2252.5 - i0.0	$ g_{_{DK}} =13.3$, $ g_{_{D_s\eta}} =9.2$
		(2364.88)	(2516.20)				
1^+	$(0, \frac{1}{2})$	$D^*\pi$	$D^*\eta$	$D_s^* \bar{K}$	(-,+,+)	2222.3 - i84.7	$ g_{{}_{D^{*}\pi}} =9.5$, $ g_{{}_{D^{*}\eta}} =0.4, g_{{}_{D^{*}_{s}\overline{K}}} =5.7$
		(2146.59)	(2556.42)	(2607.84)	(-,-,+)	2654.6 - i117.3	$ g_{D^*\pi} = 6.5, g_{D^*\eta} = 10.0, g_{D^*\bar{K}} = 18.5$
	(1, 0)	D^*K	$D_s^*\eta$		(+, +)	2393.3 - i0.0	$ g_{{\scriptscriptstyle D}^*{\scriptscriptstyle K}} =14.2$, $ g_{{\scriptscriptstyle D}^*_{s}\eta} =9.7$
		(2504.20)	(2660.06)				-

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	00	00	00

	$D_0^*(2300)$	$D_{s0}^{*}(2317)$	$D_1^*(2430)$	$D_{s1}^{*}(2460)$
M_R (MeV)	2343 ± 10	2317.8 ± 0.5	2412 ± 9	2459.5 ± 0.6
Γ_R (MeV)	229 ± 16	< 3.8	314 ± 29	< 3.5

J^P	(S, I)	Coupled c	hannels		RS	Poles	Couplings
						(MeV)	(GeV)
0^+	$(0, \frac{1}{2})$	$D\pi$	$D\eta$	$D_s \bar{K}$	(-, +, +)	2081.9 - i86.0	$ g_{\scriptscriptstyle D\pi} =8.9$, $ g_{\scriptscriptstyle D\eta} =0.4,$ $ g_{\scriptscriptstyle D_8\bar{K}} =5.4$
		(2005.28)	(2415.10)	(2463.98)	(-,-,+)	2529.3 - i145.4	$ g_{D\pi} = 6.7, g_{D\eta} = 9.9, g_{D_s\bar{K}} = 19.4$
	(1, 0)	DK	$D_s\eta$		(+, +)	2252.5 - i0.0	$ g_{_{DK}} =13.3$, $ g_{_{D_s\eta}} =9.2$
		(2364.88)	(2516.20)				
1^+	$(0, \frac{1}{2})$	$D^*\pi$	$D^*\eta$	$D_s^* \bar{K}$	(-, +, +)	2222.3 - i84.7	$ g_{{}_{D^{st}\pi}} =9.5$, $ g_{{}_{D^{st}\eta}} =0.4,$ $ g_{{}_{D^{st}_{st}\overline{K}}} =5.7$
		(2146.59)	(2556.42)	(2607.84)	(-, -, +)	2654.6 - i117.3	$ g_{D^*\pi} = 6.5, g_{D^*\eta} = 10.0, g_{D^*\overline{K}} = 18.5$
	(1, 0)	D^*K	$D_s^*\eta$		(+, +)	2393.3 - i0.0	$ g_{D^{st}K} =14.2$, $ g_{D^{st}_{st}\eta} =9.7$
		(2504.20)	(2660.06)				-

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	00	00	00

	$D_0^*(2300)$	$D_{s0}^{*}(2317)$	$D_1^*(2430)$	$D_{s1}^{*}(2460)$
M_R (MeV)	2343 ± 10	2317.8 ± 0.5	2412 ± 9	2459.5 ± 0.6
Γ_R (MeV)	229 ± 16	< 3.8	314 ± 29	< 3.5

J^P	(S, I)	Coupled channels			RS	Poles	Couplings
						(MeV)	(GeV)
0^+	$(0, \frac{1}{2})$	$D\pi$	$D\eta$	$D_s \bar{K}$	(-, +, +)	2081.9 - i86.0	$ g_{\scriptscriptstyle D\pi} =8.9$, $ g_{\scriptscriptstyle D\eta} =0.4,$ $ g_{\scriptscriptstyle D_8\bar{K}} =5.4$
		(2005.28)	(2415.10)	(2463.98)	(-,-,+)	2529.3 - i145.4	$ g_{D\pi} = 6.7, g_{D\eta} = 9.9, g_{D_s\bar{K}} = 19.4$
	(1, 0)	DK	$D_s\eta$		(+, +)	2252.5 - i0.0	$ g_{_{DK}} =13.3$, $ g_{_{D_s\eta}} =9.2$
		(2364.88)	(2516.20)				
1^+	$(0, \frac{1}{2})$	$D^*\pi$	$D^*\eta$	$D_s^* \bar{K}$	(-,+,+)	2222.3 - i84.7	$ g_{{}_{D^{*}\pi}} =9.5$, $ g_{{}_{D^{*}\eta}} =0.4, g_{{}_{D^{*}_{s}\overline{K}}} =5.7$
		(2146.59)	(2556.42)	(2607.84)	(-,-,+)	2654.6 - i117.3	$ g_{D^*\pi} = 6.5, g_{D^*\eta} = 10.0, g_{D^*\bar{K}} = 18.5$
	(1, 0)	D^*K	$D_s^*\eta$		(+, +)	2393.3 - i0.0	$ g_{{}_{D^{*}K}} =14.2$, $ g_{{}_{D^{*}\eta}} =9.7$
		(2504.20)	(2660.06)				- -

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	00	00	00

	$B_1^*(5721)$	$B_{s1}^{*}(5830)$
M_R (MeV)	$5725.9^{+2.5}_{-2.7}$	5828.7 ± 0.2
Γ_R (MeV)	$B_1^*(5721)^+: 31 \pm 6$	0.5 ± 0.4
	$B_1^*(5721)^0: 27.5 \pm 3.4$	

J^P	(S, I)	Coupled c	hannels		RS	Poles	Couplings
						(MeV)	(GeV)
0^{+}	$(0, \frac{1}{2})$	$\bar{B}\pi$	$\bar{B}\eta$	$\bar{B}_s\bar{K}$	(-, +, +)	5483.1 - i71.8	$ g_{\bar{B}\pi} =22.4$, $ g_{\bar{B}\eta} =0.8,$ $ g_{\bar{B}_8\bar{K}} =14.4$
		(5417.51)	(5827.34)	(5862.53)	(-,-,+)	5848.0 - i65.9	$ g_{\bar{B}\pi} = 10.9, g_{\bar{B}\eta} = 18.0, g_{\bar{B}_8\bar{K}} = 32.0$
	(1, 0)	$\bar{B}K$	$\bar{B}_s\eta$		(+, +)	5639.3 - i0.0	$ g_{ar{B}K} =35.6$, $ g_{ar{B}_{8}\eta} =23.8$
		(5775.12)	(5914.75)				
1^{+}	$(0, \frac{1}{2})$	$\bar{B}^*\pi$	$\bar{B}^*\eta$	$\bar{B}_s^* \bar{K}$	(-, +, +)	5528.6 - i72.3	$ g_{\bar{B}^{\ast}\pi} =22.6$, $ g_{\bar{B}^{\ast}\eta} =0.8, g_{\bar{B}^{\ast}_{s}\bar{K}} =14.4$
		(5462.69)	(5872.51)	(5911.04)	(-,-,+)	5893.3 - i65.0	$ g_{\bar{B}^*\pi} = 10.7, g_{\bar{B}^*\pi} = 18.0, g_{\bar{B}^*\bar{K}} = 32.1$
	(1, 0)	\bar{B}^*K	$\bar{B}_s^*\eta$		(+, +)	5686.0 - i0.0	$ g_{ar{B}^{st}K} =14.2$, $ g_{ar{B}^{st}\eta} =9.7$
		(5820.29)	(5963.26)				~

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	00	00	00

	$B_1^*(5721)$	$B_{s1}^{*}(5830)$
M_R (MeV)	$5725.9^{+2.5}_{-2.7}$	5828.7 ± 0.2
Γ_R (MeV)	$B_1^*(5721)^+: 31 \pm 6$	0.5 ± 0.4
	$B_1^*(5721)^0: 27.5 \pm 3.4$	

J^P	(S, I)	Coupled c	hannels		RS	Poles	Couplings
						(MeV)	(GeV)
0^{+}	$(0, \frac{1}{2})$	$\bar{B}\pi$	$ar{B}\eta$	$\bar{B}_s\bar{K}$	(-, +, +)	5483.1 - i71.8	$ g_{ar{B}\pi} =22.4$, $ g_{ar{B}\eta} =0.8,$ $ g_{ar{B}_sar{\kappa}} =14.4$
		(5417.51)	(5827.34)	(5862.53)	(-, -, +)	5848.0 - i65.9	$ g_{\bar{B}\pi} = 10.9, g_{\bar{B}\eta} = 18.0, g_{\bar{B}_8\bar{K}} = 32.0$
	(1, 0)	$\bar{B}K$	$\bar{B}_s\eta$		(+, +)	5639.3 - i0.0	$ g_{ar{B}K} =35.6$, $ g_{ar{B}_{s}\eta} =23.8$
		(5775.12)	(5914.75)				
1^{+}	$(0, \frac{1}{2})$	$\bar{B}^*\pi$	$\bar{B}^*\eta$	$\bar{B}_s^* \bar{K}$	(-, +, +)	5528.6 - i72.3	$ g_{\bar{B}^{\ast}\pi} =22.6$, $ g_{\bar{B}^{\ast}\eta} =0.8,$ $ g_{\bar{B}^{\ast}_{s}\bar{K}} =14.4$
		(5462.69)	(5872.51)	(5911.04)	(-,-,+)	5893.3 - i65.0	$ g_{\bar{B}^*\pi} = 10.7, g_{\bar{B}^*\pi} = 18.0, g_{\bar{B}^*\bar{K}} = 32.1$
	(1, 0)	\bar{B}^*K	$\bar{B}_s^*\eta$		(+, +)	5686.0 - i0.0	$ g_{ar{B}^{st}K} =14.2$, $ g_{ar{B}^{st}_{st}\eta} =9.7$
		(5820.29)	(5963.26)				v

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	00	00	00

	$B_1^*(5721)$	$B_{s1}^{*}(5830)$
M_R (MeV)	$5725.9^{+2.5}_{-2.7}$	5828.7 ± 0.2
Γ_R (MeV)	$B_1^*(5721)^+: 31 \pm 6$	0.5 ± 0.4
	$B_1^*(5721)^0: 27.5 \pm 3.4$	

J^P	(S, I)	Coupled channels			RS	Poles	Couplings
						(MeV)	(GeV)
0^{+}	$(0, \frac{1}{2})$	$\bar{B}\pi$	$\bar{B}\eta$	$\bar{B}_s\bar{K}$	(-, +, +)	5483.1 - i71.8	$ g_{\bar{B}\pi} =22.4$, $ g_{\bar{B}\eta} =0.8,$ $ g_{\bar{B}s\bar{K}} =14.4$
		(5417.51)	(5827.34)	(5862.53)	(-,-,+)	5848.0 - i65.9	$ g_{\bar{B}\pi} = 10.9, g_{\bar{B}\eta} = 18.0, g_{\bar{B}_8\bar{K}} = 32.0$
	(1, 0)	$\bar{B}K$	$ar{B}_s\eta$		(+, +)	5639.3 - i0.0	$ g_{ar{B}K} =35.6$, $ g_{ar{B}_{s}\eta} =23.8$
		(5775.12)	(5914.75)				
1^{+}	$(0, \frac{1}{2})$	$\bar{B}^*\pi$	$\bar{B}^*\eta$	$\bar{B}_s^* \bar{K}$	(-, +, +)	5528.6 - i72.3	$ g_{ar{B}^{*}\pi} =22.6$, $ g_{ar{B}^{*}\eta} =0.8$, $ g_{ar{B}^{*}_{s}ar{K}} =14.4$
		(5462.69)	(5872.51)	(5911.04)	(-,-,+)	5893.3 - i65.0	$ g_{\bar{B}^*\pi} = 10.7, g_{\bar{B}^*\eta} = 18.0, g_{\bar{B}^*\bar{K}} = 32.1$
	(1, 0)	\bar{B}^*K	$\bar{B}_s^*\eta$		(+, +)	5686.0 - i0.0	$ g_{ar{B}^{st}K} =14.2$, $ g_{ar{B}^{st}\eta} =9.7$
		(5820.29)	(5963.26)				

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	00	00	00

	$B_1^*(5721)$	$B_{s1}^{*}(5830)$
M_R (MeV)	$5725.9^{+2.5}_{-2.7}$	5828.7 ± 0.2
Γ_R (MeV)	$B_1^*(5721)^+: 31\pm 6$	0.5 ± 0.4
	$B_1^*(5721)^0: 27.5 \pm 3.4$	

J^P	(S, I)	Coupled c	hannels		RS	Poles	Couplings
						(MeV)	(GeV)
0^+	$(0, \frac{1}{2})$	$\bar{B}\pi$	$\bar{B}\eta$	$\bar{B}_s \bar{K}$	(-, +, +)	5483.1 - i71.8	$ g_{\bar{B}\pi} =22.4$, $ g_{\bar{B}\eta} =0.8,$ $ g_{\bar{B}_8\bar{K}} =14.4$
		(5417.51)	(5827.34)	(5862.53)	(-,-,+)	5848.0 - i65.9	$ g_{\bar{B}\pi} = 10.9, g_{\bar{B}\eta} = 18.0, g_{\bar{B}_8\bar{K}} = 32.0$
	(1, 0)	$\bar{B}K$	$\bar{B}_s\eta$		(+, +)	5639.3 - i0.0	$ g_{ar{B}K} =35.6$, $ g_{ar{B}_{s}\eta} =23.8$
		(5775.12)	(5914.75)				
1^+	$(0, \frac{1}{2})$	$ar{B}^*\pi$	$ar{B}^*\eta$	$\bar{B}_s^* \bar{K}$	(-, +, +)	5528.6 - i72.3	$ g_{\bar{B}^{\ast}\pi} =22.6$, $ g_{\bar{B}^{\ast}\eta} =0.8,$ $ g_{\bar{B}^{\ast}_{s}\bar{K}} =14.4$
		(5462.69)	(5872.51)	(5911.04)	(-, -, +)	5893.3 - i65.0	$ g_{\bar{B}^*\pi} = 10.7, g_{\bar{B}^*\eta} = 18.0, g_{\bar{B}^*_s\bar{K}} = 32.1$
	(1, 0)	\bar{B}^*K	$\bar{B}_s^*\eta$		(+, +)	5686.0 - i0.0	$ g_{ar{B}^{st}K} =14.2$, $ g_{ar{B}^{st}\eta} =9.7$
		(5820.29)	(5963.26)				ŭ

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	00	00	00

	$B_1^*(5721)$	$B_{s1}^{*}(5830)$
M_R (MeV)	$5725.9^{+2.5}_{-2.7}$	5828.7 ± 0.2
Γ_R (MeV)	$B_1^*(5721)^+: 31\pm 6$	0.5 ± 0.4
	$B_1^*(5721)^0: 27.5 \pm 3.4$	

J^P	(S, I)	Coupled c	hannels		RS	Poles	Couplings
						(MeV)	(GeV)
0^{+}	$(0, \frac{1}{2})$	$\bar{B}\pi$	$\bar{B}\eta$	$\bar{B}_s\bar{K}$	(-, +, +)	5483.1 - i71.8	$ g_{\bar{B}\pi} =22.4$, $ g_{\bar{B}\eta} =0.8,$ $ g_{\bar{B}_8\bar{K}} =14.4$
		(5417.51)	(5827.34)	(5862.53)	(-,-,+)	5848.0 - i65.9	$ g_{\bar{B}\pi} = 10.9, g_{\bar{B}\eta} = 18.0, g_{\bar{B}_8\bar{K}} = 32.0$
	(1, 0)	$\bar{B}K$	$\bar{B}_s\eta$		(+, +)	5639.3 - i0.0	$ g_{ar{B}K} =35.6$, $ g_{ar{B}_{8}\eta} =23.8$
		(5775.12)	(5914.75)				
1^+	$(0, \frac{1}{2})$	$\bar{B}^*\pi$	$\bar{B}^*\eta$	$\bar{B}_s^* \bar{K}$	(-, +, +)	5528.6 - i72.3	$ g_{\bar{B}^{\ast}\pi} =22.6$, $ g_{\bar{B}^{\ast}\eta} =0.8, g_{\bar{B}^{\ast}_{s}\bar{K}} =14.4$
		(5462.69)	(5872.51)	(5911.04)	(-,-,+)	5893.3 - i65.0	$ g_{\bar{B}^*\pi} = 10.7, g_{\bar{B}^*\pi} = 18.0, g_{\bar{B}^*\bar{K}} = 32.1$
	(1, 0)	\bar{B}^*K	$\bar{B}_s^*\eta$		(+, +)	5686.0 - i0.0	$ g_{ar{B}^{st}K} =14.2$, $ g_{ar{B}^{st}\eta} =9.7$
		(5820.29)	(5963.26)				· · ·

Thermal Effective Field Theory

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	●O	000	00	00	00

THERMAL MODIFICATION OF HEAVY MESONS IN A MESONIC BATH

- Imaginary-time formalism
 - Sum over Matsubara frequencies \rightarrow Bose-Einstein distribution functions

$$q^0 \to i\omega_n = \frac{i}{\beta} 2\pi n, \quad \int \frac{d^4 q}{(2\pi^4)} \to \frac{i}{\beta} \sum_n \int \frac{d^3 q}{(2\pi)^3} \quad (\text{bosons})$$

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	●O	000	00	00	00

THERMAL MODIFICATION OF HEAVY MESONS IN A MESONIC BATH

- Imaginary-time formalism
 - + Sum over Matsubara frequencies \rightarrow Bose-Einstein distribution functions

$$q^0 \to i\omega_n = \frac{i}{\beta} 2\pi n, \quad \int \frac{d^4q}{(2\pi^4)} \to \frac{i}{\beta} \sum_n \int \frac{d^3q}{(2\pi)^3} \quad (\text{bosons})$$

- Dressing the mesons in the loop function
 - Self-energy corrections
 - Pion mass varies slightly below $T_c
 ightarrow$ only the heavy meson is dressed

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	●O	000	00	00	00

THERMAL MODIFICATION OF HEAVY MESONS IN A MESONIC BATH

- Imaginary-time formalism
 - + Sum over Matsubara frequencies \rightarrow Bose-Einstein distribution functions

$$q^0 \to i\omega_n = \frac{i}{\beta} 2\pi n, \quad \int \frac{d^4q}{(2\pi^4)} \to \frac{i}{\beta} \sum_n \int \frac{d^3q}{(2\pi)^3} \quad (\text{bosons})$$

- Dressing the mesons in the loop function
 - Self-energy corrections
 - Pion mass varies slightly below $T_c
 ightarrow$ only the heavy meson is dressed

In the bath, processes that are forbidden in free space become possible: both production and absorption of heavy-light pairs.

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	00	00	00

$$G_{D\Phi}(E,\vec{p};T) = \int \frac{d^3q}{(2\pi)^3} \int d\omega \int d\omega' \frac{S_D(\omega,\vec{q};T)S_{\Phi}(\omega',\vec{p}-\vec{q};T)}{E-\omega-\omega'+i\varepsilon} \left[1 + f(\omega,T) + f(\omega',T)\right]$$

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	00	00	00

Spectral functions

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	00	00	00

$$G_{D\Phi}(E,\vec{p};T) = \int \frac{d^3q}{(2\pi)^3} \int d\omega \int d\omega' \frac{S_D(\omega,\vec{q};T)S_{\Phi}(\omega',\vec{p}-\vec{q};T)}{E-\omega-\omega'+i\varepsilon} \left[1 + f(\omega,T) + f(\omega',T)\right]$$

Spectral functions

Bose distribution function at T: $f(\omega, T) = \frac{1}{e^{\omega/T} - 1}$ (At zero temperature $f(\omega, T = 0) = 0$.)

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	00	00	00

$$G_{D\Phi}(E,\vec{p};T) = \int \frac{d^3q}{(2\pi)^3} \int d\omega \int d\omega' \frac{S_D(\omega,\vec{q};T)S_{\Phi}(\omega',\vec{p}-\vec{q};T)}{E-\omega-\omega'+i\varepsilon} \left[1 + f(\omega,T) + f(\omega',T)\right]$$

Spectral functions

Bose distribution function at T: $f(\omega, T) = \frac{1}{e^{\omega/T} - 1}$ (At zero temperature $f(\omega, T = 0) = 0$.)

Regularized with a cutoff Λ

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	00	00	00

$$T_{ij} = V_{ij} + V_{ik}G_kT_{kj}$$

$$D_i \qquad D_j \qquad D_i \qquad D_j + D_i \qquad D_k \qquad D_j$$

$$\Phi_i \qquad \Phi_j \qquad \Phi_i \qquad \Phi_j \qquad \Phi_i \qquad \Phi_k \qquad \Phi_j$$

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	00	00	00

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	00	00	00

Results: Thermal modification of open-charm mesons

Introduction	Free space	Thermal EFT OO	Results ●00	Euclidean correlators	Transport coefficients	Conclusions
LOOP FU	NCTIONS					

 $T = 0 \,\text{MeV}$ $T = 80 \,\text{MeV}$ $T = 120 \,\text{MeV}$ $T = 150 \,\text{MeV}$

Introduction	Free space	Thermal EFT OO	Results ●OO	Euclidean correlators	Transport coefficients	Conclusions

LOOP FUNCTIONS

 $T = 0 \,\mathrm{MeV}$ $T = 80 \,\mathrm{MeV}$ $T = 80 \,\mathrm{MeV}$

 $T = 120 \,\mathrm{MeV}$ $T = 150 \,\mathrm{MeV}$

Introduction	Free space	Thermal EFT OO	Results ●OO	Euclidean correlators	Transport coefficients	Conclusions

LOOP FUNCTIONS

 $T = 0 \text{ MeV} \qquad T = 80 \text{ MeV} \qquad T = 120 \text{ MeV}$

 $120 \,\mathrm{MeV}$ $I = 150 \,\mathrm{MeV}$

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	00	00	00

CHIRAL PARTNERS

Evolution of masses and widths

- Pionic bath (solid lines)
- ► Bath of π, K, \overline{K} (dashed lines)

$$I(J^P) = \frac{1}{2}(0^{\pm}), \ 0(0^{\pm})$$

[GM, A. Ramos, L. Tolos, J. Torres-Rincon, Phys.Rev.D 102 (2020)]

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	00	00	00

CHIRAL PARTNERS

Evolution of masses and widths

- Pionic bath (solid lines)
- Bath of π , K, \overline{K} (dashed lines)

$$I(J^P) = \frac{1}{2}(1^{\pm}), \ 0(1^{\pm})$$

[GM, A. Ramos, L. Tolos, J. Torres-Rincon, Phys.Rev.D 102 (2020)]

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	00	00	00

B MESONS

Evolution of masses and widths of the ground states

► Pionic bath $I(J^P) = \frac{1}{2}(0^-), 0(0^-)$

Similiar thermal effects for D and B mesons

Euclidean correlators: comparison with lattice QCD

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	•0	00	00

Spectral function $\rho(\omega, \vec{p}; T) \longrightarrow$ Euclidean correlator $G_E(\tau, \vec{p}; T)$

$$G_E(au, ec{p}; T) = \int_0^\infty d\omega \ K(au, \omega; T) \
ho(\omega, ec{p}; T)$$

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	•0	00	00

Spectral function $\rho(\omega, \vec{p}; T) \longrightarrow$ Euclidean correlator $G_E(\tau, \vec{p}; T)$

$$G_E(\tau, \vec{p}; T) = \int_0^\infty d\omega \ K(\tau, \omega; T) \ \rho(\omega, \vec{p}; T) \qquad \rightarrow \quad K(\tau, \omega; T) = \frac{\cosh[\omega(\tau - \frac{1}{2T})]}{\sinh(\frac{\omega}{2T})}$$

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	●O	00	00

Spectral function $\rho(\omega, \vec{p}; T) \longrightarrow$ Euclidean correlator $G_E(\tau, \vec{p}; T)$

$$G_E(\tau, \vec{p}; T) = \int_0^\infty d\omega \ K(\tau, \omega; T) \ \rho(\omega, \vec{p}; T) \qquad \rightarrow \quad K(\tau, \omega; T) = \frac{\cosh[\omega(\tau - \frac{1}{2T})]}{\sinh(\frac{\omega}{2T})}$$

Euclidean correlator \longrightarrow Spectral function (ill-posed)

- Bayesian methods (e.g. MEM)
- Fitting Ansätze

(

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	•0	00	00

Spectral function $\rho(\omega, \vec{p}; T) \longrightarrow$ Euclidean correlator $G_E(\tau, \vec{p}; T)$

$$G_E(\tau, \vec{p}; T) = \int_0^\infty d\omega \ K(\tau, \omega; T) \ \rho(\omega, \vec{p}; T) \qquad \rightarrow \quad K(\tau, \omega; T) = \frac{\cosh[\omega(\tau - \frac{1}{2T})]}{\sinh(\frac{\omega}{2T})}$$

Euclidean correlator \longrightarrow Spectral function (

(ill-posed)

- Bayesian methods (e.g. MEM)
- Fitting Ansätze

$$S_D(\omega, \vec{q}; T) = -\frac{1}{\pi} \operatorname{Im} \left(\frac{1}{\omega^2 - \vec{q}^2 - M_D^2 - \Pi_D(\omega, \vec{q}; T)} \right)$$

at unphysical meson masses (used in the lattice)

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	•0	00	00

Spectral function $\rho(\omega, \vec{p}; T) \longrightarrow$ Euclidean correlator $G_E(\tau, \vec{p}; T)$

$$G_E(\tau, \vec{p}; T) = \int_0^\infty d\omega \ K(\tau, \omega; T) \ \rho(\omega, \vec{p}; T) \qquad \rightarrow \quad K(\tau, \omega; T) = \frac{\cosh[\omega(\tau - \frac{1}{2T})]}{\sinh(\frac{\omega}{2T})}$$

Euclidean correlator \longrightarrow Spectral function

(ill-posed)

- Bayesian methods (e.g. MEM)
- Fitting Ansätze

$$S_D(\omega, \vec{q}; T) = -\frac{1}{\pi} \operatorname{Im} \left(\frac{1}{\omega^2 - \vec{q}^2 - M_D^2 - \Pi_D(\omega, \vec{q}; T)} \right)$$

at unphysical meson masses (used in the lattice)

► Full:
$$\rho(\omega; T) = \rho_{gs}(\omega; T) + a\rho_{cont}(\omega; T)$$

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	0●	00	00

EUCLIDEAN CORRELATORS WITH EFT

 $\begin{array}{l} m_{\pi} = 384 \; {\rm MeV} \\ m_{K} = 546 \; {\rm MeV} \\ m_{\eta} = 589 \; {\rm MeV} \\ m_{D} = 1880 \; {\rm MeV} \\ m_{D_{s}} = 1943 \; {\rm MeV} \end{array}$

[Kelly, Rothkopf, Skullerud (2018)]

[GM, O. Kaczmarek, L. Tolos, A. Ramos, Eur.Phys.J.A 56 (2020)]

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	0●	00	00

EUCLIDEAN CORRELATORS WITH EFT

 $m_{\pi} = 384 \text{ MeV}$ $m_{K} = 546 \text{ MeV}$ $m_{\eta} = 589 \text{ MeV}$ $m_{D} = 1880 \text{ MeV}$ $m_{D_{s}} = 1943 \text{ MeV}$

[Kelly, Rothkopf, Skullerud (2018)]

- The inclusion of the continuum improves the comparison at small τ
- Good agreement at the lowest temperature. At larger temperatures: excited states?
- ► Close and above *T_c* the EFT breaks down
- ▶ Similiar results for the D_s

[GM, O. Kaczmarek, L. Tolos, A. Ramos, Eur.Phys.J.A 56 (2020)]

Transport coefficients of an off-shell D meson

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	00	●O	00

TRANSPORT COEFFICIENTS OF AN OFF-SHELL D-MESON

Fokker-Planck equation for the Green's function

$$\frac{\partial}{\partial t}G_D^<(t,k) = \frac{\partial}{\partial k^i} \left\{ \hat{A}(k;T) \ k^i G_D^<(t,k) + \frac{\partial}{\partial k^j} \left[\hat{B}_0(k;T) \ \Delta^{ij} + \ \hat{B}_1(k;T) \ \frac{k^i k^j}{\mathbf{k}^2} \right] G_D^<(t,k) \right\}$$

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	00	●O	00

TRANSPORT COEFFICIENTS OF AN OFF-SHELL D-MESON

Fokker-Planck equation for the Green's function

$$\frac{\partial}{\partial t}G_D^<(t,k) = \frac{\partial}{\partial k^i} \left\{ \hat{A}(k;T) k^i G_D^<(t,k) + \frac{\partial}{\partial k^j} \left[\hat{B}_0(k;T) \Delta^{ij} + \hat{B}_1(k;T) \frac{k^i k^j}{\mathbf{k}^2} \right] G_D^<(t,k) \right\}$$

Off-shell transport coefficients

Drag force
$$\hat{A}(k^{0},\mathbf{k};T) \equiv \frac{1}{2k^{0}} \int \frac{dk_{1}^{0}}{2\pi} \frac{d^{3}q}{(2\pi)^{3}} W(k^{0},\mathbf{k},k_{1}^{0},\mathbf{q}) \frac{\mathbf{q}\cdot\mathbf{k}}{\mathbf{k}^{2}}$$

Diffusion coefficients

.

$$\begin{split} \hat{B}_0(k^0, \mathbf{k}; T) &\equiv \frac{1}{4} \; \frac{1}{2k^0} \int \frac{dk_1^0}{2\pi} \frac{d^3q}{(2\pi)^3} \, W(k^0, \mathbf{k}, k_1^0, \mathbf{q}) \; \left[\mathbf{q}^2 - \frac{(\mathbf{q} \cdot \mathbf{k})^2}{\mathbf{k}^2} \right] \\ \hat{B}_1(k^0, \mathbf{k}; T) &\equiv \frac{1}{2} \; \frac{1}{2k^0} \int \frac{dk_1^0}{2\pi} \frac{d^3q}{(2\pi)^3} \, W(k^0, \mathbf{k}, k_1^0, \mathbf{q}) \; \frac{(\mathbf{q} \cdot \mathbf{k})^2}{\mathbf{k}^2} \end{split}$$

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	00	•0	00

TRANSPORT COEFFICIENTS OF AN OFF-SHELL D-MESON

Fokker-Planck equation for the Green's function

$$\frac{\partial}{\partial t}G_D^<(t,k) = \frac{\partial}{\partial k^i} \left\{ \hat{A}(k;T) \ k^i G_D^<(t,k) + \frac{\partial}{\partial k^j} \left[\hat{B}_0(k;T) \ \Delta^{ij} + \ \hat{B}_1(k;T) \ \frac{k^i k^j}{\mathbf{k}^2} \right] G_D^<(t,k) \right\}$$

Off-shell transport coefficients

• Drag force
$$\hat{A}(k^0, \mathbf{k}; T) \equiv \frac{1}{2k^0} \int \frac{dk_1^0}{2\pi} \frac{d^3q}{(2\pi)^3} W(k^0, \mathbf{k}, k_1^0, \mathbf{q}) \frac{\mathbf{q} \cdot \mathbf{k}}{\mathbf{k}^2}$$

• Diffusion coefficients
$$\hat{B}_0(k^0, \mathbf{k}; T) \equiv \frac{1}{4} \frac{1}{2k^0} \int \frac{dk_1^0}{2\pi} \frac{d^3q}{(2\pi)^3} W(k^0, \mathbf{k}, k_1^0, \mathbf{q}) \left[\mathbf{q}^2 - \frac{(\mathbf{q} \cdot \mathbf{k})^2}{\mathbf{k}^2} \right]$$
$$\hat{B}_1(k^0, \mathbf{k}; T) \equiv \frac{1}{2} \frac{1}{2k^0} \int \frac{dk_1^0}{2\pi} \frac{d^3q}{(2\pi)^3} W(k^0, \mathbf{k}, k_1^0, \mathbf{q}) \frac{(\mathbf{q} \cdot \mathbf{k})^2}{\mathbf{k}^2}$$

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	00	00	00

RESULTS: *D* **MESON TRANSPORT COEFFIECIENTS**

In the static limit $\mathbf{k} \to \mathbf{0}$

For $k^0 = E_k$ solution of $E_k^2 - \mathbf{k}^2 - m_D^2 - \operatorname{Re} \Pi(E_k, \vec{k}; T) = 0$

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	00	0●	00

RESULTS: *D* **MESON TRANSPORT COEFFIECIENTS**

In the static limit $\mathbf{k} \to 0$ For $k^0 = E_k$ solution of $E_k^2 - \mathbf{k}^2 - m_D^2 - \operatorname{Re} \Pi(E_k, \vec{k}; T) = 0$ Spatial diffusion coefficient $2\pi TD_s(T) = \lim_{\mathbf{k}\to 0} \frac{2\pi T^3}{\hat{B}_0(E_k, \mathbf{k}; T)}$ Momentum diffusion coefficient $\kappa(T) = 2\hat{B}_0(E_k, \mathbf{k} \to 0; T)$

[J. Torres-Rincon, GM, A. Ramos, L. Tolos, arXiv:2106.01156]

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	00	0●	00

RESULTS: *D* **MESON TRANSPORT COEFFIECIENTS**

Good matching around T_c of our results with the lattice QCD data and a Bayesian analysis, specially when thermal and off-shell effects are included.

Conclusions

Introduction	Free space	Thermal EFT	Results	Euclidean correlators	Transport coefficients	Conclusions
00	0000	00	000	00	00	● 0

CONCLUSIONS

- We have described the scattering of open heavy-flavour mesons off light mesons including temperature corrections in a self-consistent manner.
- \blacktriangleright We have obtained spectral functions at various temperatures below T_c .
- ► The mass of the open heavy-flavour ground-state mesons decreases with temperature while they acquire a substantial width.
- Modification also of the dynamically generated resonances, but still far from chiral degeneracy at the temperatures explored.
- ▶ The largest effect comes form the pions in the bath. Heavier light mesons are less abundant.
- ► We have obtained Euclidean correlators from spectral functions at unphysical masses, which are in good agreement with LQCD results well below T_c. The the discrepancy close to T_c indicates the missing contribution of higher-excited states.
- ► We have introduced thermal and off-shell effects in the computation of *D*-meson transport coefficients. The Landau Cut contributes sizeably at moderate temperatures.

Thermal modification of open heavy-flavour mesons from an effective hadronic theory

Glòria Montaña

University of Barcelona Institute of Cosmos Sciences

[GM, Angels Ramos, Laura Tolos, Juan Torres-Rincon, Phys.Lett.B 806 (2020)]
 [GM, Angels Ramos, Laura Tolos, Juan Torres-Rincon, Phys.Rev.D 102 (2020)]
 [GM, Olaf Kaczmarek, Laura Tolos, Angels Ramos, Eur.Phys.J.A 56 (2020)]
 [Juan Torres-Rincon, GM, Angels Ramos, Laura Tolos, arXiv:2106.01156]

A Virtual Tribute to Quark Confinement and the Hadron Spectrum 2021 2-6 August 2021

