Hadronic contribution to $(g - 2)_{\mu}$ in the Standard Model: data-driven approach

Gilberto Colangelo

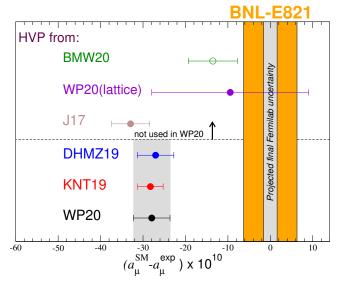
$u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

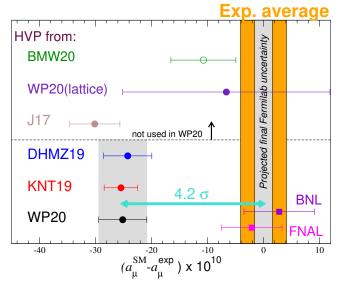
vQCHS Conference 2021 Online, August 2-6, 2021 Outline

Introduction: $(g - 2)_{\mu}$ in the Standard Model


Hadronic Vacuum Polarization contribution to $(g-2)_{\mu}$

Hadronic light-by-light contribution to $(g-2)_{\mu}$

Conclusions and Outlook


Present status of $(g - 2)_{\mu}$, experiment vs SM

Before the Fermilab result

Present status of $(g - 2)_{\mu}$, experiment vs SM

After the Fermilab result

Present status of $(g - 2)_{\mu}$, experiment vs SM

$$a_\mu(\mathit{BNL}) = 116\,592\,089(63) imes10^{-11}$$

$$a_{\mu}(\mathit{FNAL}) = 116\,592\,040(54) imes10^{-11}$$

$$a_\mu(\textit{Exp}) =$$
 116 592 061(41) $imes$ 10 $^{-11}$

→ talk by E. Valetov

Contribution	Value $\times 10^{11}$
HVP LO (e^+e^-)	6931(40)
HVP NLO (e^+e^-)	-98.3(7)
HVP NNLO (e^+e^-)	12.4(1)
HVP LO (lattice , <i>udsc</i>)	7116(184)
HLbL (phenomenology)	92(19)
HLbL NLO (phenomenology)	2(1)
HLbL (lattice, <i>uds</i>)	79(35)
HLbL (phenomenology + lattice)	90(17)
QED	116584718.931(104)
Electroweak	153.6(1.0)
HVP (e^+e^- , LO + NLO + NNLO)	6845(40)
HLbL (phenomenology + lattice + NLO)	92(18)
Total SM Value	116 591 810(43)
Experiment	116 592 061 (41)
Difference: $\Delta a_{\mu} := a_{\mu}^{exp} - a_{\mu}^{SM}$	251(59)

Contribution	Value $\times 10^{11}$
HVP LO (e^+e^-)	6931(40)
HVP NLO (e^+e^-)	-98.3(7)
HVP NNLO (e^+e^-)	12.4(1)
HVP LO (lattice BMW(20), udsc)	7075(55)
HLbL (phenomenology)	92(19)
HLbL NLO (phenomenology)	2(1)
HLbL (lattice, <i>uds</i>)	79(35)
HLbL (phenomenology + lattice)	90(17)
QED	116584718.931(104)
Electroweak	153.6(1.0)
HVP (e^+e^- , LO + NLO + NNLO)	6845(40)
HLbL (phenomenology + lattice + NLO)	92(18)
Total SM Value	116 591 810(43)
Experiment	116 592 061 (41)
Difference: $\Delta a_{\mu} := a_{\mu}^{\exp} - a_{\mu}^{SM}$	251(59)

White Paper:

T. Aoyama et al. Phys. Rep. 887 (2020) = WP(20)

Muon g - 2 Theory Initiative Steering Committee: GC Michel Davier (vice-chair) Simon Eidelman Aida El-Khadra (chair) Martin Hoferichter Christoph Lehner (vice-chair) Tsutomu Mibe (J-PARC E34 experiment) (Andreas Nyffeler until summer 2020) Lee Roberts (Fermilab E989 experiment) Thomas Teubner Hartmut Wittig

White Paper:

T. Aoyama et al. Phys. Rep. 887 (2020) = WP(20)

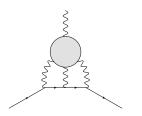
Muon g-2 Theory Initiative

Workshops:

- First plenary meeting, Q-Center (Fermilab), 3-6 June 2017
- HVP WG workshop, KEK (Japan), 12-14 February 2018
- HLbL WG workshop, U. of Connecticut, 12-14 March 2018
- Second plenary meeting, Mainz, 18-22 June 2018
- Third plenary meeting, Seattle, 9-13 September 2019
- Lattice HVP workshop, virtual, 16-20 November 2020
- Fourth plenary meeting, KEK (virtual), 28 June-02 July 2021

Theory uncertainty comes from hadronic physics

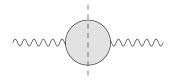
- ► Hadronic contributions responsible for most of the theory uncertainty → see also talk by M. Della Morte
- Hadronic vacuum polarization (HVP) is O(α²), dominates the total uncertainty, despite being known to < 1%</p>



unitarity and analyticity ⇒ dispersive approach
 ⇒ direct relation to experiment: σ_{tot}(e⁺e⁻ → hadrons)
 e⁺e⁻ Exps: BaBar, Belle, BESIII, CMD2/3, KLOE2, SND
 alternative approach: lattice, becoming competitive
 (BMW, ETMC, Fermilab, HPQCD, Mainz, MILC, RBC/UKQCD)

 \rightarrow talk by Z. Fodor

Theory uncertainty comes from hadronic physics


- ► Hadronic contributions responsible for most of the theory uncertainty → see also talk by M. Della Morte
- Hadronic vacuum polarization (HVP) is O(α²), dominates the total uncertainty, despite being known to < 1%
- Hadronic light-by-light (HLbL) is O(α³), known to ~ 20%, second largest uncertainty (now subdominant)

- 4-point fct. of em currents in QCD: more complicated than HVP
- ► recently: dispersive approach ⇒ data-driven, systematic treatment
- lattice QCD is becoming competitive (Mainz, RBC/UKQCD)

HVP contribution: Master Formula

Unitarity relation: simple, same for all intermediate states

Im
$$\Pi(q^2) \propto \sigma(e^+e^- \rightarrow \text{hadrons}) = \sigma(e^+e^- \rightarrow \mu^+\mu^-)R(q^2)$$

Analyticity \Rightarrow Master formula for HVP

Bouchiat, Michel (61)

$$a_{\mu}^{
m hvp} = rac{lpha^2}{3\pi^2} \int_{s_{th}}^{\infty} rac{ds}{s} K(s) R(s)$$

K(s) known, depends on m_{μ} and $K(s) \sim \frac{1}{s}$ for large s

Comparison between DHMZ19 and KNT19

	DHMZ19	KNT19	Difference
$\pi^+\pi^-$	507.85(0.83)(3.23)(0.55)	504.23(1.90)	3.62
$\pi^{+}\pi^{-}\pi^{0}$	46.21(0.40)(1.10)(0.86)	46.63(94)	-0.42
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	13.68(0.03)(0.27)(0.14)	13.99(19)	-0.31
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	18.03(0.06)(0.48)(0.26)	18.15(74)	-0.12
$\kappa^+\kappa^-$	23.08(0.20)(0.33)(0.21)	23.00(22)	0.08
K _S K _L	12.82(0.06)(0.18)(0.15)	13.04(19)	-0.22
$\pi^0\gamma$	4.41(0.06)(0.04)(0.07)	4.58(10)	-0.17
Sum of the above	626.08(0.95)(3.48)(1.47)	623.62(2.27)	2.46
[1.8, 3.7] GeV (without cc)	33.45(71)	34.45(56)	-1.00
$J/\psi, \psi(2S)$	7.76(12)	7.84(19)	-0.08
$[3.7,\infty)$ GeV	17.15(31)	16.95(19)	0.20
Total $a_{\mu}^{{ m HVP,\ LO}}$	$694.0(1.0)(3.5)(1.6)(0.1)_{\psi}(0.7)_{\rm DV+QCD}$	692.8(2.4)	1.2

DHMZ = Davier, Hoecker, Malaescu, Zhang, KNT = Keshavarzi, Nomura, Teubner

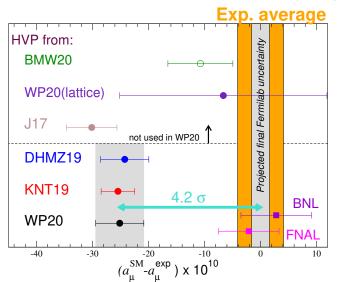
2π : comparison with the dispersive approach

The 2π channel can itself be described dispersively \Rightarrow more constrained theoretically Ananthanarayan, Caprini, Das (19), GC, Hoferichter, Stoffer (18)

Energy range	ACD18	CHS18	DHMZ19	KNT19
$\begin{array}{l} \leq 0.6 {\rm GeV} \\ \leq 0.7 {\rm GeV} \\ \leq 0.8 {\rm GeV} \\ \leq 0.9 {\rm GeV} \\ \leq 1.0 {\rm GeV} \end{array}$		110.1(9) 214.8(1.7) 413.2(2.3) 479.8(2.6) 495.0(2.6)	110.4(4)(5) 214.7(0.8)(1.1) 414.4(1.5)(2.3) 481.9(1.8)(2.9) 497.4(1.8)(3.1)	108.7(9) 213.1(1.2) 412.0(1.7) 478.5(1.8) 493.8(1.9)
[0.6, 0.7] GeV [0.7, 0.8] GeV [0.8, 0.9] GeV [0.9, 1.0] GeV		104.7(7) 198.3(9) 66.6(4) 15.3(1)	104.2(5)(5) 199.8(0.9)(1.2) 67.5(4)(6) 15.5(1)(2)	104.4(5) 198.9(7) 66.6(3) 15.3(1)
	132.9(8)	132.8(1.1) 369.6(1.7) 490.7(2.6)	132.9(5)(6) 371.5(1.5)(2.3) 493.1(1.8)(3.1)	131.2(1.0) 369.8(1.3) 489.5(1.9)

WP(20)

Combination method and final result


Complete analyses DHMZ19 and KNT19, as well as CHS19 (2π) and HHK19 (3π) , have been so combined:

- central values are obtained by simple averages (for each channel and mass range)
- the largest experimental and systematic uncertainty of DHMZ and KNT is taken
- ► 1/2 difference DHMZ-KNT (or BABAR-KLOE in the 2π channel, if larger) is added to the uncertainty

Final result:

$$a_{\mu}^{ ext{HVP, LO}} = 693.1(2.8)_{ ext{exp}}(2.8)_{ ext{sys}}(0.7)_{ ext{DV+QCD}} imes 10^{-10} = 693.1(4.0) imes 10^{-10}$$

What if the BMW result is right?

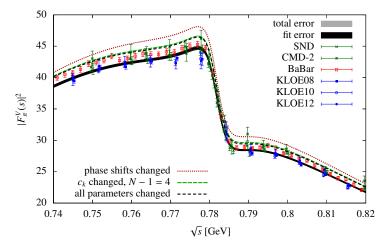
 \rightarrow talk by Z. Fodor

Consequences of the BMW result

A shift in the value of $a_{\mu}^{\text{HVP, LO}}$ would have consequences:

- $\blacktriangleright \Delta a_{\mu}^{\text{HVP, LO}} \Leftrightarrow \Delta \sigma (e^+e^- \rightarrow \text{hadrons})$
- ► $\Delta \alpha_{had}(M_Z^2)$ is determined by an integral of the same $\sigma(e^+e^- \rightarrow hadrons)$ (more weight at high energy)
- ► changing $a_{\mu}^{\text{HVP, LO}}$ necessarily implies a shift in $\Delta \alpha_{\text{had}}(M_Z^2)$: ⇒ impact on the EW-fit
- ► to save the EW-fit $\Delta\sigma(e^+e^- \rightarrow \text{hadrons})$ must occur below \sim 1 (max 2) GeV

Crivellin, Hoferichter, Manzari, Montull (20)/Keshavarzi, Marciano, Passera, Sirlin (20)/Malaescu, Schott (20)

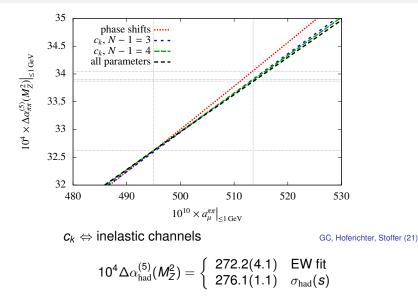

or the need for BSM physics would be moved elsewhere

for a BSM perspective \rightarrow talk by A. Crivellin

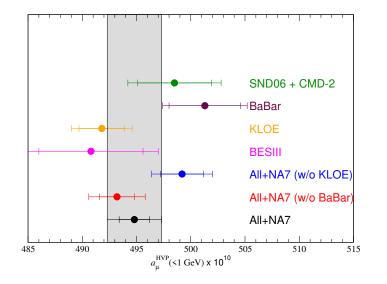
Changes in $\sigma(e^+e^- \rightarrow \text{hadrons})$ below 1 GeV?

- ▶ Below 1 2 GeV only one significant channel: $\pi^+\pi^-$
- Strongly constrained by analyticity and unitarity $(F_{\pi}^{V}(s))$
- ► $F_{\pi}^{V}(s)$ parametrization which satisfies these \Rightarrow small number of parameters GC, Hoferichter, Stoffer (18)
- ► $\Delta a_{\mu}^{\text{HVP, LO}}$ \Leftrightarrow shifts in these parameters analysis of the corresponding scenarios GC, Hoferichter, Stoffer (21)

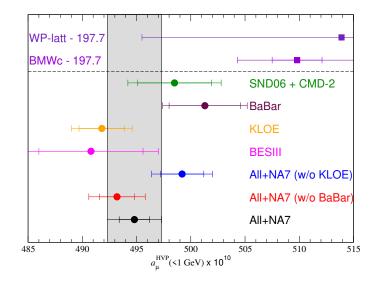
Changes in $\sigma(e^+e^- \rightarrow hadrons)$ below 1 GeV?

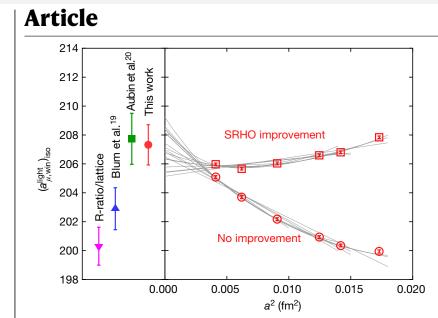


$c_k \Leftrightarrow$ inelastic channels

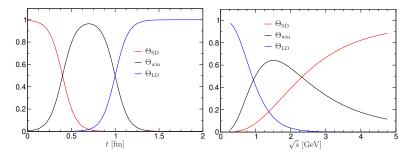

GC, Hoferichter, Stoffer (21)

Tension [BMW20 vs e^+e^- data] stronger for KLOE than for BABAR

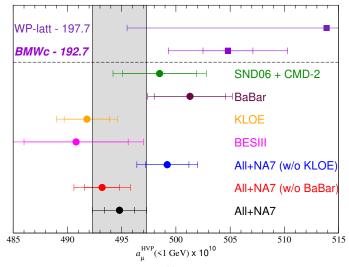

Changes in $\sigma(e^+e^- \rightarrow hadrons)$ below 1 GeV?


BMW vs individual $\pi^+\pi^-$ experiments

BMW vs individual $\pi^+\pi^-$ experiments



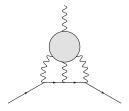
BMW vs individual $\pi^+\pi^-$ experiments



BMW vs individual $\pi^+\pi^-$ experiments

Weight functions for the window quantities

BMW vs individual $\pi^+\pi^-$ experiments


 $a_\mu^{
m win}$ suggests that $\sim 5 imes 10^{-10}$ must come from above 1 GeV

GC, Hoferichter, Stoffer

Calculating the HLbL contribution

Calculating the HLbL contribution is complicated \rightarrow talk by M. Hoferichter

4-point function of em currents in QCD

a data-driven approach like for HVP seemed hopeless but has been recently developed and used

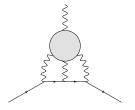
GC, Hoferichter, Procura, Stoffer=CHPS (14,15,17), Hoferichter, Hoid, Kubis, Leupold, Schneider (18)

Iattice QCD is an alternative and is making fast progress

RBC/UKQCD (20), Mainz (19,20)

HLbL contribution: Master Formula

$$a_{\mu}^{\text{HLbL}} = \frac{2\alpha^3}{48\pi^2} \int_0^{\infty} dQ_1 \int_0^{\infty} dQ_2 \int_{-1}^{1} \sqrt{1-\tau^2} \sum_{i=1}^{12} T_i(Q_1, Q_2, \tau) \bar{\Pi}_i(Q_1, Q_2, \tau)$$


 Q_i^{μ} are the Wick-rotated four-momenta and τ the four-dimensional angle between Euclidean momenta:

$$Q_1 \cdot Q_2 = |Q_1| |Q_2| \tau$$

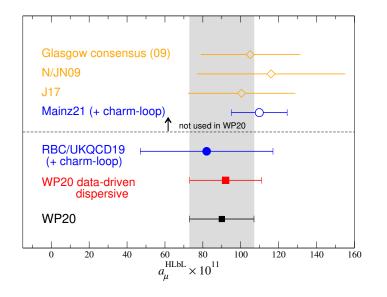
The integration variables $Q_1 := |Q_1|, Q_2 := |Q_2|$.

CHPS (15)

- \blacktriangleright T_i : known kernel functions

Improvements obtained with the dispersive approach

Contribution	PdRV(09) Glasgow consensus	N/JN(09)	J(17)	WP(20)
π^0, η, η' -poles π, K -loops/boxes S-wave $\pi\pi$ rescattering	114(13) -19(19) -7(7)	99(16) -19(13) -7(2)	95.45(12.40) -20(5) -5.98(1.20)	93.8(4.0) -16.4(2) -8(1)
subtotal	88(24)	73(21)	69.5(13.4)	69.4(4.1)
scalars tensors axial vectors <i>u</i> , <i>d</i> , <i>s</i> -loops / short-distance	 15(10) 	 22(5) 21(3)	1.1(1) 7.55(2.71) 20(4)	} - 1(3) 6(6) 15(10)
<i>c</i> -loop	2.3	-	2.3(2)	3(1)
total	105(26)	116(39)	100.4(28.2)	92(19)


 significant reduction of uncertainties in the first three rows: low-energy region well constrained by a dispersive approach

CHPS (17), Masjuan, Sánchez-Puertas (17) Hoferichter, Hoid et al. (18), Gerardin, Meyer, Nyffeler (19)

 1 – 2 GeV and asymptotic region (short distance constraints) have been improved, but still work in progress (see WP(20))

Melnikov, Vainshtein (04), (.....), Bijnens, Hermansson-Truedsson, Laub, Rodríguez-Sánchez (20,21)

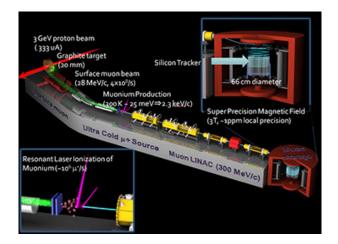
Situation for HLbL

Conclusions

- The WP provides the current status of the SM evaluation of (g – 2)_μ: 4.2σ discrepancy with experiment (w/ FNAL)
- ► Evaluation of the HVP contribution based on the dispersive approach: 0.6% error ⇒ dominates the theory uncertainty
- ► Recent lattice calculation [BMW(20)] has reached a similar precision but differs from the dispersive one (=from e⁺e⁻ data). If confirmed ⇒ discrepancy with experiment ↘ below 2σ
- Evaluation of the HLbL contribution based on the dispersive approach: 20% accuracy. Two recent lattice calculations [RBC/UKQCD(20), Mainz(21)] agree with it

Outlook

- ► The Fermilab experiment aims to reduce the BNL uncertainty by a factor four \Rightarrow potential 7σ discrepancy
- Improvements on the SM theory side:
 - HVP data-driven:


Other e^+e^- experiments are available or forthcoming: SND, BaBar, Belle II, BESIII, CMD3 \Rightarrow Error reduction MuonE will provide an alternative way to measure HVP

HVP lattice:

BMW result must be confirmed (or refuted) by others. Difference to data-driven evaluation must be understood

- HLbL data-driven: goal of ~ 10% uncertainty within reach
- ► HLbL lattice: RBC/UKQCD ⇒ similar precision as Mainz. Good agreement with data-driven evaluation.

Future: Muon g - 2/EDM experiment @ J-PARC

Credit: J-PARC