exploring hadron dynamics in the large N_c limit

vConf21 2021/08/04

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 813942

based on:

- J.J. Baeza Ballesteros, P. Hernández, F. Romero-López, in preparation [see JBB's talk @ Latt21]
- A. Donini, P. Hernández, CP, **F. Romero-López**, Dissecting the $\Delta I=1/2$ rule at large N_c , EPJC 80 (2020) 638 [arXiv:2003.10293].
- F. Romero-López, A. Donini, P. Hernández, CP, Mesons interactions at large N_c from lattice QCD, PoS LATTICE2019 (2019) 005 [arXiv:1910.10418].
- P. Hernández, CP, **F. Romero-López**, *Large N_c scaling of meson masses and decay constants*, EPJC 79 (2019) 865 [<u>arXiv:1907.11511</u>].
- A. Donini, P. Hernández, CP, **F. Romero-López**, *Nonleptonic kaon decays at large N_c*, PRD 94 (2016) 114511 [<u>arXiv:1607.03262</u>].
- E. Endress, CP, Exploring the role of the charm quark in the $\Delta I = 1/2$ rule, PRD 90 (2014) 094504.
- P. Hernández, M. Laine, CP, E. Torró, J. Wennekers, H. Wittig, Determination of the $\Delta S = 1$ weak Hamiltonian in the SU(4) chiral limit through topological zero-mode wave functions, JHEP 0805 (2008) 043.
- L. Giusti, P. Hernández, M. Laine, CP, J. Wennekers, H. Wittig, On $K \rightarrow \pi \pi$ amplitudes with a light charm quark, PRL 98 (2007) 082003.

FRL

motivation & plan

- lattice simulations can be used as a lab to explore quark mass, N_{f} , volume dependence of hadron dynamics
- ditto: number of colours

 \Rightarrow explore N_c dependence in problems where qualitative/quantitative insight can be expected

motivation & plan

- lattice simulations can be used as a lab to explore quark mass, N_{f} , volume dependence of hadron dynamics
- ditto: number of colours

 \Rightarrow explore N_c dependence in problems where qualitative/quantitative insight can be expected

• original motivation: non-leptonic kaon decay, especially $\Delta I = 1/2$ rule

• spinoffs (current focus): meson properties (mass, decay constants) and interactions

QCD @ large N_c

varying- N_c lattice simulations have become a mature tool

• Yang-Mills

- string tension, glueball masses
- topological susceptibility
- Wilson-flow coupling and factorisation
- quenched QCD
 - meson masses, decay constants
 - kaon weak decay matrix elements

dynamical

- $N_f = 2$: meson+baryon masses, topological susceptibility, finite T [DeGrand, Liu 2017; DeGrand 2021]
- N_f=4: kaon weak decay matrix elements, ChiPT LECs, meson interactions
- also: reduced models

[cf. review by Hernández, Romero-López 2012.03331]

- [Bali et al. 2013]
- [Cè, García Vera, Giusti, Schaefer 2016]
 - [García Vera, Sommer 2019]

- [García Vera, Sommer 2019]
 - [this talk]

[this talk]

[cf. review by García Pérez, Lattice 2019]

QCD @ large N_c

't Hooft's large N_c limit of QCD: $N_c \rightarrow \infty |_{\lambda = q^2 N_c = \text{fixed}}$

QCD @ large N_c

't Hooft's large N_c limit of QCD: $N_c \rightarrow \infty$

à la 't Hooft proper: $\frac{N_f}{N_c} \to 0 \implies m_{\eta'}^2$

à la Veneziano: $\frac{N_f}{N_c} = const \Rightarrow m_{\eta'}^2 \gg$

• preserves asymptotic freedom

- captures most non-perturbative properties (confinement, chiral SSB, ...)
- simplifies the theory by suppressing dynamical quark effects

$$|\lambda = g^2 N_c = \text{fixed}$$
 ['t Hooft
 $= m_\pi^2 , \ U(N_f)$ chiral symmetry
 $\gg m_\pi^2 , \ SU(N_f)$ chiral symmetry [Veneziano

$$\mu \frac{\mathrm{d}\lambda}{\mathrm{d}\mu} = -\left(\frac{11}{3} - \frac{2}{3}\frac{N_{\mathrm{f}}}{N_{c}}\right)\frac{\lambda^{2}}{8\pi^{2}} \to \Lambda_{\infty}$$

1974] 1979] [also: Witten 1979]

\sim	1

lattice setup

- simulate for $N_c=3,...,6$ (+7,8,17 quenched) at fixed lattice spacing (+1 at $N_c=3$), change quark mass along $m_u=m_d=m_s=m_c$
 - **quenched**: use line of constant physics provided by quenched study of meson physics
 - **dynamical:** use gradient flow scale t₀ to set constant physics

• use Wilson fermions for sea (HiRep code), twisted-mass QCD for valence

- twisted valence à la Frezzotti-Rossi allows to avoid mixing with wrong-chirality operators
- mixed-action approach requires matching of valence and sea, performed with meson mass
- check for residual cutoff effects by changing value of c_{sw} + simulation on finer lattice
- use perturbative renormalization and running (non-perturbative results unavailable)

• develop/check necessary bits of SU(4) χ PT

[Bursa et al. 2013]

[Frezzotti, Rossi 2004]

[Constantinou et al. 2011; Alexandrou et al. 2012] [Ciuchini et al. 1998; Buras et al. 2000]

N_c scaling of χ PT LECs

Goldstone boson physics is well-parametrized by Chiral Perturbation Theory

$$F_{\pi} = F\left\{1 + \frac{M_{\pi}^{2}}{F_{\pi}^{2}}\left[4L_{5}(\mu) + 4N_{f}L_{4}(\mu)\right] + \frac{N_{f}}{2}\frac{M_{\pi}^{2}}{(4\pi F_{\pi})^{2}}\log\left(\frac{M_{\pi}^{2}}{\mu}\right)\right\}$$

$$\mathcal{L}_{2}$$

$$\mathcal{L}_{4}$$

$$\mathcal{L}_{2}$$

$$F_{\pi}^{2} = \mathcal{O}(N_{c})$$
$$L_{5} = \mathcal{O}(N_{c})$$
$$L_{4} = \mathcal{O}(1)$$

[Gasser, Leutwyler 1985]

$$F_{\pi} \underset{N_c \to \infty}{\approx} F \left\{ 1 + 4 \frac{M_{\pi}^2}{F_{\pi}^2} L_5 + \log s \right\}$$

N_c scaling of χ PT LECs

$$+\frac{N_{\rm f}}{2}\frac{M_{\pi}^2}{(4\pi F_{\pi})^2}\log\left(\frac{M_{\pi}^2}{\mu^2}\right)\right]$$

$$L_F = N_c L_F^{(0)} + L_F^{(1)}$$

- 0.000

- 0.006

N_c scaling of χ PT LECs

$$M_{\pi}^{2} = 2Bm \left\{ 1 + \frac{M_{\pi}^{2}}{F_{\pi}^{2}} 8L_{M} + \frac{1}{N_{f}} \frac{M_{\pi}^{2}}{(4\pi F_{\pi})^{2}} \log \left(\frac{M_{\pi}^{2}}{\mu^{2}}\right) \right\}$$
$$B = B^{(0)} + \frac{B^{(1)}}{N_{c}} \qquad L_{M} = N_{c} L_{M}^{(0)} + L_{M}^{(1)}$$

N_c scaling of χPT LECs

• LO LECs:

 $- \frac{F}{\sqrt{N_c}} = \left[67(3) - 26(4) \frac{N_f}{N_c} \right] \text{ MeV } \Rightarrow$

ETM 15A	[386]	86.3(2.8)		[FLAG 2019]
Engel 14	[50]	85.8(0.7)(2.0)		
Brandt 13	[49]	84(8)(2)		
QCDSF 13	[402]	86(1)		
TWQCD 11	[394]	83.39(35)(38)		
ETM 09C	[48]	$85.91(07)\binom{+78}{-07}$	JLQCD/TWQCD 1	0A[389] 71(3)(8)
ETM 08	[53]	86.6(7)(7)		
Hasenfratz 08	[397]	90(4)	MILC 10	[36] 80.3(2.5)(5.4)
JLQCD/TWQCD 08	A [376]	$79.0(2.5)(0.7)\binom{+4.2}{-0.0}$	MILC 09A	[17] 78.3(1.4)(2.9)
JLQCD/TWQCD 07	[398]	87.3(5.6)	MILC 09	[129]
		· · · ·	PACS-CS 08	[162] 83.8(6.4)
Colangelo 03	[403]	86.2(5)	RBC/UKQCD 08	$\begin{bmatrix} 163 \end{bmatrix}$ 66.1(5.2)

$F_{N_{f}=2} =$	86(3)	MeV
-----------------	-------	-----

$F_{N_f=3} =$	71(3)	MeV
---------------	-------	-----

N_c scaling of χPT LECs

• LO LECs:

$$- \frac{F}{\sqrt{N_c}} = \begin{bmatrix} 67(3) - 26(4) \frac{N_f}{N_c} \end{bmatrix} \text{ MeV} \implies F_{N_f=2} = 86(3) \text{ MeV} \qquad F_{N_f=3} = 71(3) \text{ MeV} \\ - \sum_{N_f=3}^{1/3} = 223(9) \text{ MeV} \qquad \text{vs} \qquad \sum_{N_f=3}^{1/3} = 214(6)(24) \text{ MeV} \qquad \text{[Fukaya et al. 2010]} \\ - \frac{\sum_{N_f=3}}{\sum_{N_f=2}} = 1.49(10) \qquad \text{vs} \qquad \frac{\sum_{N_f=3}}{\sum_{N_f=2}} = 1.51(11) \qquad \text{[Bernard, Descotes-Genon, Toucas 2012]} \end{bmatrix}$$

• NLO LECs:

- $\bar{\ell}_4 = 5.1(3)$ vs $\bar{\ell}_4 = 4.40(28)$

- n.b. subleading corrections to LECs are si

[FLAG 2019]

izable:
$$\frac{L_M^{N_f=4}}{N_c} \times 10^3 = -0.2(2) + \frac{2.9(6)}{N_c} + \mathcal{O}\left(\frac{1}{N_c}\right)$$

K_S^0		$I(J^{P}) = \frac{1}{2}(0^{-1})$)				
	Mean life $ au = (0.8954 \pm 100)$ ing <i>CPT</i>	$\pm \ 0.0004) imes 10^{-10}$ s	(S=1.1) ,	Assum-			
	Mean life $ au = (0.89564)$	\pm 0.00033) $ imes$ 10 ⁻	¹⁰ s Not assu	ming			
K ⁰ DECAY	MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	р (MeV/c)			
0 0	Had	ronic modes					
$\pi^{0}\pi^{0}$ $\pi^{+}\pi^{-}$		$(30.69 \pm 0.05)\%$		209 206			
		(09.20±0.03) /0		200			
K_L^0		$I(J^P) = \frac{1}{2}(0^-)$					
m _K	$m_L - m_{K_S}$	10 1					
=	$=(0.5293\pm 0.0009) imes 10^{-1}$	10 \hbar s ⁻¹ (S = 1.3)) Assuming C	PT			
=	$= (3.484 \pm 0.006) \times 10^{-1}$	⁻ MeV Assuming 10 \hbar s $^{-1}$ Not assi	CPT				
	Mean life $ au = (5.116 \pm 0.0010)$	$(5.021) \times 10^{-8}$ s (5.0021)	$\delta = 1.1$)				
	MODES	Exaction (Γ / Γ)	Scale factor/	p			
	MODES	Fraction (I_i/I)	Confidence level	iviev/c)			
	Semileptonic modes						
$\pi^{\pm} e^{\mp} \nu_e$	_ [<i>o</i>]	(40.55 ± 0.11)%	S=1.7	229			
$\pi^{\pm}\mu^{\mp}\nu_{\mu}$	[0]	(27.04 ± 0.07)%	S=1.1	216			
Hadronic n	nodes, including Charge o	conjugation×Parity \	/iolating (CPV)	modes			
$3\pi^{0}$		(19.52 ± 0.12) %	S=1.6	139			
$\pi^+\pi^-\pi^0$		(12.54 ± 0.05) %	2	133			
$\pi^{ op}\pi^{ op}$	CPV [q]	$(1.967 \pm 0.010) \times 10$	$S^{-3} = 1.5$	206			
	CPV	$(0.04 \pm 0.00) \times 10$	5 5=1.8	209			

5 20 [PDG

$$-iT[K^0 \to (\pi\pi)_I] = A_i e^{i\delta_I}$$
$$T[(\pi\pi)_I \to (\pi\pi)_I]_{l=0} = 2e^{i\delta_I} \sin \delta_I$$

$$\left|\frac{A_0}{A_2}\right| = 22.45(6)$$

(similar observations in baryon sector — e.g., $\Lambda/\Sigma \rightarrow N\pi$, heavy meson decay, ...)

[fully?] satisfactory understanding of result within SM lacking for almost 50 years

CP-violation effects neglected $\left(\frac{V_{td}V_{ts}^*}{V_{ud}V_{us}^*} \sim 10^{-3}\right)$, keep active charm quark:

$$\mathcal{H}_{w}^{\text{eff}} = \frac{g_{w}^{2}}{2M_{W}^{2}} V_{us}^{*} V_{ud} \sum_{\sigma=\pm} \left\{ k_{1}^{\sigma} \mathcal{Q}_{1}^{\sigma} + k_{2}^{\sigma} \mathcal{Q}_{2}^{\sigma} \right\}$$

 $Q_{1}^{\pm} = (\bar{s}_{\mathrm{L}}\gamma_{\mu}u_{\mathrm{L}})(\bar{u}_{\mathrm{L}}\gamma_{\mu}d_{\mathrm{L}}) \pm (\bar{s}_{\mathrm{L}}\gamma_{\mu}d_{\mathrm{L}})(\bar{u}_{\mathrm{L}}\gamma_{\mu}u_{\mathrm{L}}) - [u \leftrightarrow c]$ $Q_{2}^{\pm} = (m_{u}^{2} - m_{c}^{2}) \{m_{d}(\bar{s}_{\mathrm{L}}d_{\mathrm{R}}) + m_{s}(\bar{s}_{\mathrm{R}}d_{\mathrm{L}})\}$ (do not contribute to physical $K \to \pi\pi$ transitions)

(penguin contributions cancel in GIM limit $m_c = m_u$)

CP-violation effects neglected $\left(\frac{V_{td}V_{ts}^*}{V_{ud}V_{us}^*} \sim 10^{-3}\right)$, keep active charm quark:

$$\mathcal{H}_{w}^{\text{eff}} = \frac{g_{w}^{2}}{2M_{W}^{2}} V_{us}^{*} V_{ud} \sum_{\sigma=\pm} \left\{ k_{1}^{\sigma} \mathcal{Q}_{1}^{\sigma} + k_{2}^{\sigma} \mathcal{Q}_{2}^{\sigma} \right\}$$

$$Q_{1}^{\pm} = (\bar{s}_{\rm L} \gamma_{\mu} u_{\rm L}) (\bar{u}_{\rm L} \gamma_{\mu} d_{\rm L}) \pm (\bar{s}_{\rm L} \gamma_{\mu} d_{\rm L}) (\bar{u}_{\rm L} \gamma_{\mu} d_{\rm L}) (\bar{u}_{\rm L} \gamma_{\mu} d_{\rm L}) (\bar{u}_{\rm L} \gamma_{\mu} d_{\rm L})$$
$$Q_{2}^{\pm} = (m_{u}^{2} - m_{c}^{2}) \{ m_{d} (\bar{s}_{\rm L} d_{\rm R}) + m_{s} (\bar{s}_{\rm R} d_{\rm L}) \}$$

$$\left|\frac{A_0}{A_2}\right| = \frac{k_1^-(M_W)}{k_1^+(M_W)} \frac{\langle (\pi\pi)_{I=0} |Q_1^-|K\rangle}{\langle (\pi\pi)_{I=2} |Q_1^+|K\rangle}$$

o bulk of effect should come from long-distance QCD contribution

• reliable non-perturbative determination mandatory [Cabibbo, Martinelli, Petronzio; Brower, Maturana, Gavela, Gupta 1984]

$$\frac{k_1^-(M_W)}{k_1^+(M_W)} \simeq 2.8$$

[Gaillard, Lee; Altarelli, Maiani 1974]

approximate methods/effective theory

O spectacular failure of naive $1/N_c$ expansion

$$\Gamma[K^0 \to \pi^0 \pi^0] \sim 0 \quad \Rightarrow \quad \left| \frac{A_0}{A_2} \right|_{N \to \infty} \sim \sqrt{2}$$

[Fukugita et al. 1977] [Chivukula, Flynn, Georgi 1986]

• elaborate approaches that combine $1/N_c$, chiral perturbation theory+vector dominance, and quark-hadron duality claim (non-universal) success

[Aebischer, Bobeth, Buras 2020 (⊃ earlier)] [Gisbert, Pich 2018 (⊃ earlier)]

approximate methods/effective theory

O spectacular failure of naive $1/N_c$ expansion

$$\Gamma[K^0 \to \pi^0 \pi^0] \sim 0 \quad \Rightarrow \quad \left| \frac{A_0}{A_2} \right|_{N \to \infty} \sim \sqrt{2}$$

[Fukugita et al. 1977] [Chivukula, Flynn, Georgi 1986]

 \circ elaborate approaches that combine $1/N_c$, chiral perturbation theory+vector dominance, and quark-hadron duality claim (non-universal) success

[Aebischer, Bobeth, Buras 2020 (⊃ earlier)] [Gisbert, Pich 2018 (⊃ earlier)]

anatomy of $\Delta I = 1/2$

several possible sources for $\Delta I = 1/2$ enhancement:

- **o** physics at "intrinsic" QCD scale $\sim \Lambda_{\rm QCD}$
- physics at charm scale (penguins)
- final state interactions
- all of the above (no dominating "mechanism")

separate low-energy QCD and charm-scale physics: consider amplitudes as a function of charm mass for fixed u,d,s masses

 $m_{c} = m_{u} = m_{d} = m_{s}$

implementation:

- O active charm

[Giusti, Hernández, Laine, Weisz, Wittig 2004] [ChiPT: Hernández, Laine 2006]

$$\longrightarrow m_c \gg m_u = m_d \le m_s$$

o use fermions with good chiral properties (good renormalisation, arbitrarily low masses with GW) • give up (too expensive) direct computation, use ChiPT (\Rightarrow FSI captured at weak pion coupling only)

anatomy of $\Delta I = 1/2$ (GIM limit)

Color-disconnected $O(N_c^2)$

 $\frac{A_0}{A_2} = \frac{1}{2\sqrt{2}} \left(1 + 3\frac{g^-}{g^+} \right) \xrightarrow{\text{Large } N_c} \sqrt{2}$

 $B_K \propto A_2$ $m_u = m_d = m_s$ limit:

n.b. also chiral corrections are anticorrelated: $A^{\pm} = g^{\pm} \left| 1 + 3 \left(\frac{M_{\pi}}{4\pi F_{\pi}} \right)^2 \left(\log \frac{M_{\pi}^2}{\mu^2} + L_{\pm}^r(\mu) \right) \right|$

anatomy of $\Delta I = 1/2$ (GIM limit)

o scaling with N_c confirms expectations, with natural O(1) coefficients **O** dynamical quarks enhance effect • lighter quark masses enhance effect

anatomy of $\Delta I = 1/2$: B_K

anatomy of $\Delta I = 1/2$: conclusions

$$\hat{B}_{K} \Big|_{M_{K}=M_{\pi}}^{N_{f}=3} = 0.67(2)_{\text{stat}}(6)_{Z^{+}}(3)_{\text{fit}}$$
$$\text{Re} \left. \frac{A_{0}}{A_{2}} \right|_{N_{f}=4} = 24(5)_{\text{stat}}(4)_{\text{fit}}(5)_{Z^{\pm}}(4)_{X^{\pm}$$

 $Re(A_0)/Re(A_2) = 22.45(6)$ [expt] $\operatorname{Re}(A_0)/\operatorname{Re}(A_2) = 19.9(2.3)(4.4)$ [RBC/UKQCD, PRD 102 (2020) 054509]

anatomy of $\Delta I = 1/2$: conclusions

- B_K displays a large N_f (in GIM limit), chiral dependence
- ratio of decay amplitudes in GIM limit comes very close to the physical value (!)
- handle on N_f dependence in principle allows us to make connection with other physical kinematics, but we are still missing a direct analysis of the m_c dependence
- "mechanism budget":
 - short-distance
 - o physics at "intrinsic" QCD scale $\sim \Lambda_{\rm QCD}$
 - physics at charm scale (penguins)
 - final state interactions

$$\hat{B}_{K} \Big|_{M_{K}=M_{\pi}}^{N_{f}=3} = 0.67(2)_{\text{stat}}(6)_{Z^{+}}(3)_{\text{fit}}$$

$$\operatorname{Re} \left. \frac{A_{0}}{A_{2}} \right|_{N_{f}=4} = 24(5)_{\text{stat}}(4)_{\text{fit}}(5)_{Z^{\pm}}(5)_{Z^{\pm}}(5)_{X^{\pm}}(5)_$$

 $\operatorname{Re}(A_0)/\operatorname{Re}(A_2) = 22.45(6)$ |expt| $\operatorname{Re}(A_0)/\operatorname{Re}(A_2) = 19.9(2.3)(4.4)$ [RBC/UKQCD, PRD 102 (2020) 054509]

x 3
 \times 4 [gluons] \times 2 [quarks] (N_f ????)
 × O(1) (???)
 small?

conclusions & outlook

- strong interaction physics
- indirect CP violation well under control
- direct CP violation, isospin enhancement still witness claims of new physics
- lattice toolbox making steady progress
 - controlled quantitative predictions for amplitudes are at hand
 - major role in enhancement
- interesting spinoffs: qualitative understanding of meson interactions at low energies
- simultaneously at play!

non-leptonic kaon decay remains an open problem... and a fertile ground to learn about

- the anatomy of the effect is ever better understood, pure "low-energy" dynamics seems to play

a theorist's paradise: field-theory, phenomenology, and computational physics all

QCD @ large N_c

't Hooft's large N_c limit of QCD: $N_c \rightarrow \infty |_{\lambda = q^2 N_c = \text{fixed}}$

à la Veneziano:
$${N_f\over N_c}=const\ \Rightarrow\ m_{\eta'}^2$$
 >

- preserves asymptotic freedom
- O captures most non-perturbative properties (confinement, chiral SSB, ...)
- leads to some *quantitative* non-perturbative predictions!

$$\langle 0|A^a_\mu(x)A^b_\mu(y)|0\rangle \propto F^2_\pi \sim N_c$$

 $g_s^2 N_c^2 \propto \mathcal{O}(N_c)$

QCD @ large N_c

't Hooft's large N_c limit of QCD: $N_c \rightarrow \infty |_{\lambda = q^2 N_c = \text{fixed}}$

à la Veneziano:
$${N_f\over N_c}=const\ \Rightarrow\ m_{\eta'}^2$$
 >

- preserves asymptotic freedom
- O captures most non-perturbative properties (confinement, chiral SSB, ...)
- leads to some *quantitative* non-perturbative predictions!

$$\langle 0|\bar{q}q|0\rangle = -\Sigma \sim N_c$$

 $g_s^2 N_c^2 \propto \mathcal{O}(N_c)$

lattice setup

quenched simulations in 16³ lattices at (roughly) constant PS mass [Wilson+Wilson]

$\overline{N_c}$	T/a	β	$am_{ m PCAC}$	am_{PS}	$R_{\rm bare}^+$	$R_{\rm bare}^{-}$
3	48	6.0175	-0.002(14)	0.2718(61)	0.774(21)	1.218(31)
4	48	11.028	-0.0015(11)	0.2637(39)	0.783(15)	1.198(19)
5	48	17.535	0.0028(9)	0.2655(31)	0.839(8)	1.145(12)
6	32	25.452	0.0013(7)	0.2676(28)	0.871(6)	1.125(7)
7	32	34.8343	-0.0034(6)	0.2819(19)	0.880(5)	1.122(5)

renormalisation (RI scheme) at scale around 2 GeV performed using one-loop P.T.

- [Constantinou et al. 2011]
 - [Alexandrou et al. 2012]

perturbative two-loop RG running in RI to connect to RGIs

> [Ciuchini et al. 1998] [Buras et al. 2000]

dynamical simulations at varying PS mass and constant t₀ [Iwasaki+Clover]

Ensemble	N_c	eta	$\mathcal{C}_{\mathrm{sw}}$	$T \times L$	am_0^s
3A10		1.778	1.69	36×20	-0.4040
3A11				48×24	-0.4040
3A20	3			48×24	-0.4060
3A30				48×24	-0.4070
3A40				60×32	-0.4080
3B10	2	1 890	1 66	48×24	-0.3915
3B20	J	1.020	1.00	60×32	-0.3946
4A10		3.570	1.69	36×20	-0.3725
4A30	4			48×24	-0.3760
4A40				60×32	-0.3780
5A10				36×20	-0.3458
5A30	5	5.969	1.69	48×24	-0.3500
5A40				60×32	-0.3530
6A10	6	8.974	1.69	36×20	-0.3260
6A30				48×24	-0.3311
6A40				60×32	-0.3340

+ extra quenched points ($N_c=8,17$)

chiral and finite volume corrections

$$\operatorname{Re} \left. \frac{A_0}{A_2} \right|_{M_{\pi}, M_D \to 0, M_K^{\text{phys}}} = \frac{1}{2\sqrt{2}} \left(1 + \frac{1}{2} + \frac{17}{12\sqrt{2}} \left(1 + \frac{1}{17} \frac{g^-}{g^+} \right) \frac{M_K^2}{(4\pi F_K)^2} \log \frac{M_K^2}{(4\pi F_K)^2} \right)$$

0.00 0.050.100.200.2535 0.150.00chiral and finite volume corrections

$$\operatorname{Re} \left. \frac{A_0}{A_2} \right|_{M_{\pi}, M_D \to 0, M_K^{\text{phys}}} = \frac{1}{2\sqrt{2}} \left(1 + \frac{1}{2} + \frac{17}{12\sqrt{2}} \left(1 + \frac{1}{17} \frac{g^-}{g^+} \right) \frac{M_K^2}{(4\pi F_K)^2} \log \left(1 + \frac{1}{17} \frac{g^-}{g^+} \right) \frac{M_K^2}{(4\pi F_K)^2} \log \left(1 + \frac{1}{17} \frac{g^-}{g^+} \right) \frac{M_K^2}{(4\pi F_K)^2} \log \left(1 + \frac{1}{17} \frac{g^-}{g^+} \right) \frac{M_K^2}{(4\pi F_K)^2} \log \left(1 + \frac{1}{17} \frac{g^-}{g^+} \right) \frac{M_K^2}{(4\pi F_K)^2} \log \left(1 + \frac{1}{17} \frac{g^-}{g^+} \right) \frac{M_K^2}{(4\pi F_K)^2} \log \left(1 + \frac{1}{17} \frac{g^-}{g^+} \right) \frac{M_K^2}{(4\pi F_K)^2} \log \left(1 + \frac{1}{17} \frac{g^-}{g^+} \right) \frac{M_K^2}{(4\pi F_K)^2} \log \left(1 + \frac{1}{17} \frac{g^-}{g^+} \right) \frac{M_K^2}{(4\pi F_K)^2} \log \left(1 + \frac{1}{17} \frac{g^-}{g^+} \right) \frac{M_K^2}{(4\pi F_K)^2} \log \left(1 + \frac{1}{17} \frac{g^-}{g^+} \right) \frac{M_K^2}{(4\pi F_K)^2} \log \left(1 + \frac{1}{17} \frac{g^-}{g^+} \right) \frac{M_K^2}{(4\pi F_K)^2} \log \left(1 + \frac{1}{17} \frac{g^-}{g^+} \right) \frac{M_K^2}{(4\pi F_K)^2} \log \left(1 + \frac{1}{17} \frac{g^-}{g^+} \right) \frac{M_K^2}{(4\pi F_K)^2} \log \left(1 + \frac{1}{17} \frac{g^-}{g^+} \right) \frac{M_K^2}{(4\pi F_K)^2} \log \left(1 + \frac{1}{17} \frac{g^-}{g^+} \right) \frac{M_K^2}{(4\pi F_K)^2} \log \left(1 + \frac{1}{17} \frac{g^-}{g^+} \right) \frac{M_K^2}{(4\pi F_K)^2} \log \left(1 + \frac{1}{17} \frac{g^-}{g^+} \right) \frac{M_K^2}{(4\pi F_K)^2} \log \left(1 + \frac{1}{17} \frac{g^-}{g^+} \right) \frac{M_K^2}{(4\pi F_K)^2} \log \left(1 + \frac{1}{17} \frac{g^-}{g^+} \right) \frac{M_K^2}{(4\pi F_K)^2} \log \left(1 + \frac{1}{17} \frac{g^-}{g^+} \right) \frac{M_K^2}{(4\pi F_K)^2} \log \left(1 + \frac{1}{17} \frac{g^-}{g^+} \right) \frac{M_K^2}{(4\pi F_K)^2} \log \left(1 + \frac{1}{17} \frac{g^-}{g^+} \right) \frac{M_K^2}{(4\pi F_K)^2} \log \left(1 + \frac{1}{17} \frac{g^-}{g^+} \right) \frac{M_K^2}{(4\pi F_K)^2} \log \left(1 + \frac{1}{17} \frac{g^-}{g^+} \right) \frac{M_K^2}{(4\pi F_K)^2} \log \left(1 + \frac{1}{17} \frac{g^-}{g^+} \right) \frac{M_K^2}{(4\pi F_K)^2} \log \left(1 + \frac{1}{17} \frac{g^-}{g^+} \right) \frac{M_K^2}{(4\pi F_K)^2} \log \left(1 + \frac{1}{17} \frac{g^-}{g^+} \right) \frac{M_K^2}{(4\pi F_K)^2} \log \left(1 + \frac{1}{17} \frac{g^-}{g^+} \right) \frac{M_K^2}{(4\pi F_K)^2} \log \left(1 + \frac{1}{17} \frac{g^-}{g^+} \right) \frac{M_K^2}{(4\pi F_K)^2} \log \left(1 + \frac{1}{17} \frac{g^-}{g^+} \right) \frac{M_K^2}{(4\pi F_K)^2} \log \left(1 + \frac{1}{17} \frac{g^-}{g^+} \right) \frac{M_K^2}{(4\pi F_K)^2} \log \left(1 + \frac{1}{17} \frac{g^-}{g^+} \right) \frac{M_K^2}{(4\pi F_K)^2} \log \left(1 + \frac{1}{17} \frac{g^-}{g^+} \right) \frac{M_K^2}{(4\pi F_K)^2} \log \left(1 + \frac{1}{17} \frac{g^-}{g^+} \right) \frac{M_K^2}{(4\pi F_K)^2} \log \left(1 + \frac{1}{17} \frac{g^-}{g^+} \right) \frac{M_K^2}{(4\pi F_K)^2} \log$$

$$\hat{B}_{K}^{QP} = \hat{B}_{K} \big|_{M_{K} = M_{\pi}} \left[1 + \frac{2}{3} \left(\frac{M_{K}}{4\pi F_{K}} \right)^{2} \log \left$$

$$\bar{R}^{\pm}(L) = \bar{R}^{\pm} \left[1 \pm 6\sqrt{2\pi}\xi \frac{e^{-M_{\pi}L}}{(M_{\pi}L)^{3/2}} (M_{\pi}L)^{3/2} \right]$$

[extension to $N_f=4$ framework of Golterman, Leung PRD 56 (1997) 2950]

 $\frac{\Lambda_{\mathrm{eff}}^{B_K}}{M_K}$

[Hernández, Laine 2006] [Colangelo, Dürr, Haefeli 2005]

meson scattering

Long-term goal: understand QCD at large N_c

- Resonances \rightarrow Stable ($\Gamma \sim 1/N_c$)
- Exotic states (tetraquarks?)
- $K \to (\pi \pi)_{I=0,2}$ { Intrinsic QCD effects [Donini, et al. 2020] Final state interactions

This work: $\pi\pi$ scattering at large N_c from lattice simulations

• $N_{\rm f} = 4$ (u, d, s c) $\rightarrow 7$ channels (4 with s-wave)

$$15 \otimes 15 = \mathbf{84} \oplus 45 \oplus \overline{45} \oplus \mathbf{20}$$
$$\pi^+ \pi^+ \qquad \pi^+ D_s^+ - \pi^+ D_s^- - \pi^+ D_s^+ - \pi^+ D_s^+ - \pi^+ D_s^- - \pi^- - \pi^- D_s^- - \pi^- D_s^- - \pi^- D_s^- - \pi^- D_s^- - \pi^- - \pi^- D_s^- - \pi^- - \pi^-$$

Match to Chiral Perturbation Theory (ChPT) to constrain Low Energy Coupling (LECs)

- \oplus 15 \oplus 15 \oplus 1 $-K^{+}D^{+}$

 $C_{I=2} = D - C$ $C_{AA} = D + C$

[slides from Jorge Baeza-Ballesteros' talk @ Lattice 2001]

meson scattering

4

NLO, $N_{\rm f} =$

4

 $N_{\rm f} =$

$$\pi \pi \text{ scatering amplitudes for } N_{\rm f} \text{ flavours are known to NNLO} \begin{bmatrix} \text{Weinberg 1979} \\ \text{Gasser, Leutwyler 1985} \\ \text{Bijnens, Lu 2011} \end{bmatrix}$$

$$M_{\pi} a_{0}^{I=2} = -\frac{M_{\pi}^{2}}{16\pi F_{\pi}^{2}} \left[1 - \frac{16M_{\pi}^{2}}{F_{\pi}^{2}} L_{I=2} + \frac{M_{\pi}^{2}}{32\pi^{2}F_{\pi}^{2}} \left(\frac{13}{4} \ln \frac{M_{\pi}^{2}}{\mu^{2}} - \frac{3}{4} \right) \right]$$

$$L_{I=2} = L^{(0)} N_{\rm c} + L_{I=2}^{(1)} + \dots$$

$$L_{AA} = L^{(0)} N_{\rm c} + L_{AA}^{(1)} + \dots$$

We have computed $M_{I=2}$ and M_{AA} to NNLO in U(N_f) ChPT

$$M_{\pi}a_{0}^{I=2} = -\frac{M_{\pi}^{2}}{16\pi F_{\pi}^{2}} \left\{ 1 - \frac{16M_{\pi}^{2}}{F_{\pi}^{2}} L_{I=2} + N_{c}^{2}K_{I=2}^{(0)} \left(\frac{M_{\pi}^{2}}{F_{\pi}^{2}}\right)^{2} + \frac{M_{\pi}^{2}}{32\pi^{2}F_{\pi}^{2}} \left[\frac{15M_{\pi}^{2} - 13M_{\eta'}^{2}}{4(M_{\pi}^{2} - M_{\eta'}^{2})} \ln \frac{M_{\pi}^{2}}{\mu^{2}} + \frac{M_{\pi}^{2} - 3M_{\pi}^{2}}{4(M_{\pi}^{2} - M_{\eta'}^{2})}\right]^{2} \right\}$$

$$M_{\pi}a_{0}^{AA} = \frac{M_{\pi}^{2}}{16\pi F_{\pi}^{2}} \left\{ 1 - \frac{16M_{\pi}^{2}}{F_{\pi}^{2}}L_{AA} + N_{c}^{2}K_{AA}^{(0)}\left(\frac{M_{\pi}^{2}}{F_{\pi}^{2}}\right)^{2} - \frac{M_{\pi}^{2}}{32\pi^{2}F_{\pi}^{2}}\left[\frac{15M_{\pi}^{2} - 21M_{\eta'}^{2}}{4(M_{\pi}^{2} - M_{\eta'}^{2})}\ln\frac{M_{\pi}^{2}}{\mu^{2}} + \frac{M_{\pi}^{2} + 5M_{\pi}^{2}}{4(M_{\pi}^{2} - M_{\eta'}^{2})}\right] \right\}$$

[slides from Jorge Baeza-Ballesteros' talk @ Lattice 2001]

$$\frac{M_{\eta'}^{2}}{M_{\eta'}^{2}}\ln\frac{M_{\eta'}^{2}}{\mu^{2}} - \frac{1}{2}\Big]\Big\}$$

$$\frac{M_{\eta'}^{2}}{M_{\eta'}^{2}}\ln\frac{M_{\eta'}^{2}}{\mu^{2}} + \frac{3}{2}\Big]\Big\}$$

Large N_c or U(N_f) ChPT [Kaiser, Leutwyler 2000]:

• Leutwyler counting scheme

 $\delta \sim \mathcal{O}(m_q) \sim \mathcal{O}(M_\pi^2) \sim \mathcal{O}(k^2) \sim \mathcal{O}(N_c^{-1})$

• $F_{\pi} \sim \sqrt{N_c} \rightarrow \text{Loop diagrams are NNLO}$

I = 2 channel

$$\mathcal{Z}\left(\frac{Lk}{2\pi}\right)$$

[slides from Jorge Baeza-Ballesteros' talk @ Lattice 2001]

meson scattering

Match to ChPT to constrain LECs

SU(4)
$$\frac{L_{I=2}}{N_{c}} \times 10^{3} = -0.11(4) - \frac{1.43(16)}{N_{c}}$$
 $\frac{L_{AA}}{N_{c}} \times 10^{3} = -1.08(13) + \frac{2.2(3)}{N_{c}}$
U(4) $\frac{L_{I=2}}{N_{c}} \times 10^{3} = -0.10(7) - \frac{1.29(16)}{N_{c}}$ $\frac{L_{AA}}{N_{c}} \times 10^{3} = -0.6(4) + \frac{2.4(3)}{N_{c}}$

I = 2 channel

[slides from Jorge Baeza-Ballesteros' talk @ Lattice 2001]