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• lattice simulations can be used as a 
lab to explore quark mass, Nf, volume 
dependence of hadron dynamics 

• ditto: number of colours

⇒ explore Nc dependence in problems 
where qualitative/quantitative insight 
can be expected
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(Möbius) RBC-UKQCD Nf = 2 + 1
(DSDR) RBC-UKQCD Nf = 2 + 1

RBC-UKQCD Nf = 2 + 1
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• lattice simulations can be used as a 
lab to explore quark mass, Nf, volume 
dependence of hadron dynamics 

• ditto: number of colours

⇒ explore Nc dependence in problems 
where qualitative/quantitative insight 
can be expected

• original motivation: non-leptonic kaon decay, especially ΔI=1/2 rule 

• spinoffs (current focus): meson properties (mass, decay constants) and interactions



varying-Nc lattice simulations have become a mature tool

• Yang-Mills 
- string tension, glueball masses 
- topological susceptibility 
- Wilson-flow coupling and factorisation 

• quenched QCD 
- meson masses, decay constants 
- kaon weak decay matrix elements 

• dynamical 
- Nf =2: meson+baryon masses, topological susceptibility, finite T 
- Nf =4: kaon weak decay matrix elements, ChiPT LECs, meson interactions 

• also: reduced models

[Bali et al. 2013]

[Cè, García Vera, Giusti, Schaefer 2016]

[García Vera, Sommer 2019]

[García Vera, Sommer 2019]

[this talk]

[this talk]

[DeGrand, Liu 2017; DeGrand 2021]

[cf. review by García Pérez, Lattice 2019]

QCD @ large Nc

[cf. review by Hernández, 
Romero-López 2012.03331]

https://arxiv.org/abs/2012.03331


’t Hooft’s large Nc limit of QCD: [’t Hooft 1974]

QCD @ large Nc

Nc ! 1|�=g2Nc=fixed

à la ’t Hooft proper:                                            chiral symmetry
Nf

Nc
! 0 ) m2

⌘0 = m2
⇡ , U(Nf )

à la Veneziano:                                                    chiral symmetry
Nf

Nc
= const ) m2

⌘0 � m2
⇡ , SU(Nf ) [Veneziano 1979]

[also: Witten 1979]
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QCD@LargeNc Lattice QCD@LargeNc M⇡ & F⇡ �I = 1�2 rule Summary

The ’t Hooft limit, Nc →∞, Nf =const

At Large Nc , the theory is dominated by gluon loops:

1 Gluon loops ∼ g2
N

2
c ∼ Nc

2 Quark loops ∼ g2
Nc ∼ 1

A diagrammatic expansion of correlation functions leads to some
definite non-perturbative predictions in the Large Nc limit.
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Three examples:

1 Decay constant (F⇡)

2 Low Energy Constants (LECs)

3 K → ⇡⇡ amplitudes

⇠ g2N2
c ⇠ Nc

⇠ g2Nc ⇠ 1

• preserves asymptotic freedom 

• captures most non-perturbative properties 
(confinement, chiral SSB, …) 

• simplifies the theory by suppressing 
dynamical quark effects

à la ’t Hooft proper:                                            chiral symmetry
Nf
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! 0 ) m2

⌘0 = m2
⇡ , U(Nf )

à la Veneziano:                                                    chiral symmetry
Nf

Nc
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⌘0 � m2
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lattice setup
• simulate for Nc=3,…,6 (+7,8,17 quenched) at fixed lattice spacing (+1 at 

Nc=3), change quark mass along mu=md=ms=mc  

- quenched: use line of constant physics provided by quenched study of meson physics 

- dynamical: use gradient flow scale t0 to set constant physics 

• use Wilson fermions for sea (HiRep code), twisted-mass QCD for valence 

- twisted valence à la Frezzotti-Rossi allows to avoid mixing with wrong-chirality operators 

- mixed-action approach requires matching of valence and sea, performed with meson mass 

- check for residual cutoff effects by changing value of csw + simulation on finer lattice 

- use perturbative renormalization and running (non-perturbative results unavailable) 

• develop/check necessary bits of SU(4) χPT

[Bursa et al. 2013]

[Frezzotti, Rossi 2004]

[Constantinou et al. 2011; Alexandrou et al. 2012]
[Ciuchini et al. 1998; Buras et al. 2000]



Nc scaling of χPT LECs
Goldstone boson physics is well-parametrized by Chiral Perturbation Theory

Motivation Ensembles M⇡ & F⇡ Scattering K ! ⇡⇡ Summary

Meson decay constant at Large Nc
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F⇡ at Large Nc

Simultaneous chiral and Nc fit.
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• LO LECs: 

-   

-   

-   

• NLO LECs: 

-   

- n.b. subleading corrections to LECs are sizable:
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Table 20: Results for the SU(2) low-energy constant F (in MeV) and for the ratio F⇡/F . All
ETM values that were available only in r0 units were converted on the basis of r0 = 0.48(2) fm
[386, 400, 401], with this error being added in quadrature to any existing systematic error.

Numbers in slanted fonts have been calculated by us, based on
p
2F phys

⇡ = 130.41(20)MeV
[170], with this error being added in quadrature to any existing systematic error (otherwise
to the statistical error). The systematic error in ETM 11 has been carried over from ETM 10.
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which specify the e↵ective SU(3) Lagrangian at leading order. The ratios F/F0, B/B0, ⌃/⌃0,
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fonts are calculated by us, from the information given in the references.
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[FLAG 2019]

Nc scaling of χPT LECs



• LO LECs: 

-   

-   

-   

• NLO LECs: 

-   

- n.b. subleading corrections to LECs are sizable:

Fp
Nc

=


67(3)� 26(4)

Nf

Nc

�
MeV ) FNf=2 = 86(3) MeV FNf=3 = 71(3) MeV

⌃Nf=3

⌃Nf=2
= 1.49(10) vs

⌃Nf=3

⌃Nf=2
= 1.51(11)

¯̀
4 = 5.1(3) vs ¯̀

4 = 4.40(28)

L
Nf=4
M

Nc
⇥ 103 = �0.2(2) +

2.9(6)

Nc
+O

✓
1

N2
c

◆

[Fukaya et al. 2010]⌃Nf=3 = 223(9) MeV vs ⌃1/3
Nf=3 = 214(6)(24) MeV

[Bernard, Descotes-Genon, Toucas 2012]

[FLAG 2019]

Nc scaling of χPT LECs

1/3



weak decay and ΔI=1/2

Citation: K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014) (URL: http://pdg.lbl.gov)

K 0K 0
K 0K 0 I (JP ) = 1

2 (0−)

50% KS , 50% KL

Mass m = 497.614 ± 0.024 MeV (S = 1.6)
mK0 − mK± = 3.937 ± 0.028 MeV (S = 1.8)

Mean Square Charge RadiusMean Square Charge RadiusMean Square Charge RadiusMean Square Charge Radius
〈

r2
〉

= −0.077 ± 0.010 fm2

T-violation parameters in K0-K0 mixingT-violation parameters in K0-K0 mixingT-violation parameters in K0-K0 mixingT-violation parameters in K0-K0 mixing [d]

Asymmetry AT in K0-K 0 mixing = (6.6 ± 1.6) × 10−3

CPT-violation parametersCPT-violation parametersCPT-violation parametersCPT-violation parameters [d]

Re δ = (2.5 ± 2.3) × 10−4

Im δ = (−1.5 ± 1.6) × 10−5

Re(y), Ke3 parameter = (0.4 ± 2.5) × 10−3

Re(x−), Ke3 parameter = (−2.9 ± 2.0) × 10−3
∣

∣mK0 − mK0

∣

∣ / maverage < 6 × 10−19, CL = 90% [k]

(ΓK0 − ΓK0)/maverage = (8 ± 8) × 10−18

Tests of ∆S = ∆QTests of ∆S = ∆QTests of ∆S = ∆QTests of ∆S = ∆Q

Re(x+), Ke3 parameter = (−0.9 ± 3.0) × 10−3

K 0
S

K 0
SK 0
S

K 0
S

I (JP ) = 1
2 (0−)

Mean life τ = (0.8954 ± 0.0004)×10−10 s (S = 1.1) Assum-
ing CPT

Mean life τ = (0.89564 ± 0.00033) × 10−10 s Not assuming
CPT
cτ = 2.6844 cm Assuming CPT

CP-violation parametersCP-violation parametersCP-violation parametersCP-violation parameters [l]

Im(η+−0) = −0.002 ± 0.009
Im(η000) = (−0.1 ± 1.6) × 10−2

∣

∣η000

∣

∣ =
∣

∣A(K0
S → 3π0)/A(K0

L → 3π0)
∣

∣ < 0.0088, CL =
90%

CP asymmetry A in π+π− e+ e− = (−0.4 ± 0.8)%
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Scale factor/ p

K0
S

DECAY MODESK0
S

DECAY MODESK0
S

DECAY MODESK0
S

DECAY MODES Fraction (Γi /Γ) Confidence level (MeV/c)

Hadronic modesHadronic modesHadronic modesHadronic modes
π0π0 (30.69±0.05) % 209

π+π− (69.20±0.05) % 206

π+π−π0 ( 3.5 +1.1
−0.9 ) × 10−7 133

Modes with photons or ℓℓ pairsModes with photons or ℓℓ pairsModes with photons or ℓℓ pairsModes with photons or ℓℓ pairs
π+π−γ [f,n] ( 1.79±0.05) × 10−3 206

π+π− e+ e− ( 4.79±0.15) × 10−5 206

π0γγ [n] ( 4.9 ±1.8 ) × 10−8 231

γγ ( 2.63±0.17) × 10−6 S=3.0 249

Semileptonic modesSemileptonic modesSemileptonic modesSemileptonic modes
π± e∓ νe [o] ( 7.04±0.08) × 10−4 229

CP violating (CP) and ∆S = 1 weak neutral current (S1) modesCP violating (CP) and ∆S = 1 weak neutral current (S1) modesCP violating (CP) and ∆S = 1 weak neutral current (S1) modesCP violating (CP) and ∆S = 1 weak neutral current (S1) modes

3π0 CP < 2.6 × 10−8 CL=90% 139

µ+µ− S1 < 9 × 10−9 CL=90% 225

e+ e− S1 < 9 × 10−9 CL=90% 249

π0 e+ e− S1 [n] ( 3.0 +1.5
−1.2 ) × 10−9 230

π0µ+µ− S1 ( 2.9 +1.5
−1.2 ) × 10−9 177

K 0
L

K 0
LK 0
L

K 0
L

I (JP ) = 1
2 (0−)

mKL
− mKS

= (0.5293 ± 0.0009)× 1010 h̄ s−1 (S = 1.3) Assuming CPT
= (3.484 ± 0.006) × 10−12 MeV Assuming CPT
= (0.5289 ± 0.0010)× 1010 h̄ s−1 Not assuming CPT

Mean life τ = (5.116 ± 0.021)× 10−8 s (S = 1.1)
cτ = 15.34 m

Slope parameter gSlope parameter gSlope parameter gSlope parameter g [b]

(See Particle Listings for other linear and quadratic coefficients)

K0
L → π+π−π0: g = 0.678 ± 0.008 (S = 1.5)

K0
L → π0π0π0: h = (+0.59 ± 0.20 ± 1.16) × 10−3

KL decay form factorsKL decay form factorsKL decay form factorsKL decay form factors [d]

Linear parametrization assuming µ-e universality

λ+(K0
µ3) = λ+(K0

e3) = (2.82 ± 0.04) × 10−2 (S = 1.1)

λ0(K
0
µ3) = (1.38 ± 0.18) × 10−2 (S = 2.2)

HTTP://PDG.LBL.GOV Page 5 Created: 8/21/2014 13:13

Citation: K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014) (URL: http://pdg.lbl.gov)

Scale factor/ p

K0
S

DECAY MODESK0
S

DECAY MODESK0
S

DECAY MODESK0
S

DECAY MODES Fraction (Γi /Γ) Confidence level (MeV/c)

Hadronic modesHadronic modesHadronic modesHadronic modes
π0π0 (30.69±0.05) % 209

π+π− (69.20±0.05) % 206

π+π−π0 ( 3.5 +1.1
−0.9 ) × 10−7 133

Modes with photons or ℓℓ pairsModes with photons or ℓℓ pairsModes with photons or ℓℓ pairsModes with photons or ℓℓ pairs
π+π−γ [f,n] ( 1.79±0.05) × 10−3 206

π+π− e+ e− ( 4.79±0.15) × 10−5 206

π0γγ [n] ( 4.9 ±1.8 ) × 10−8 231

γγ ( 2.63±0.17) × 10−6 S=3.0 249

Semileptonic modesSemileptonic modesSemileptonic modesSemileptonic modes
π± e∓ νe [o] ( 7.04±0.08) × 10−4 229

CP violating (CP) and ∆S = 1 weak neutral current (S1) modesCP violating (CP) and ∆S = 1 weak neutral current (S1) modesCP violating (CP) and ∆S = 1 weak neutral current (S1) modesCP violating (CP) and ∆S = 1 weak neutral current (S1) modes

3π0 CP < 2.6 × 10−8 CL=90% 139

µ+µ− S1 < 9 × 10−9 CL=90% 225

e+ e− S1 < 9 × 10−9 CL=90% 249

π0 e+ e− S1 [n] ( 3.0 +1.5
−1.2 ) × 10−9 230

π0µ+µ− S1 ( 2.9 +1.5
−1.2 ) × 10−9 177

K 0
L

K 0
LK 0
L

K 0
L

I (JP ) = 1
2 (0−)

mKL
− mKS

= (0.5293 ± 0.0009)× 1010 h̄ s−1 (S = 1.3) Assuming CPT
= (3.484 ± 0.006) × 10−12 MeV Assuming CPT
= (0.5289 ± 0.0010)× 1010 h̄ s−1 Not assuming CPT

Mean life τ = (5.116 ± 0.021)× 10−8 s (S = 1.1)
cτ = 15.34 m

Slope parameter gSlope parameter gSlope parameter gSlope parameter g [b]

(See Particle Listings for other linear and quadratic coefficients)

K0
L → π+π−π0: g = 0.678 ± 0.008 (S = 1.5)

K0
L → π0π0π0: h = (+0.59 ± 0.20 ± 1.16) × 10−3

KL decay form factorsKL decay form factorsKL decay form factorsKL decay form factors [d]

Linear parametrization assuming µ-e universality

λ+(K0
µ3) = λ+(K0

e3) = (2.82 ± 0.04) × 10−2 (S = 1.1)

λ0(K
0
µ3) = (1.38 ± 0.18) × 10−2 (S = 2.2)

HTTP://PDG.LBL.GOV Page 5 Created: 8/21/2014 13:13

Citation: K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014) (URL: http://pdg.lbl.gov)

Not assuming CPT

φ+− = (43.4 ± 0.5)◦ (S = 1.2)

φ00 = (43.7 ± 0.6)◦ (S = 1.2)

φϵ = (43.5 ± 0.5)◦ (S = 1.3)

CP asymmetry A in K0
L → π+π− e+ e− = (13.7 ± 1.5)%

βCP from K0
L → e+ e− e+ e− = −0.19 ± 0.07

γCP from K0
L → e+ e− e+ e− = 0.01 ± 0.11 (S = 1.6)

j for K0
L → π+π−π0 = 0.0012 ± 0.0008

f for K0
L → π+π−π0 = 0.004 ± 0.006

∣

∣η+−γ

∣

∣ = (2.35 ± 0.07) × 10−3

φ+−γ = (44 ± 4)◦
∣

∣ϵ
′

+−γ

∣

∣/ϵ < 0.3, CL = 90%
∣

∣gE1

∣

∣ for K0
L → π+π−γ < 0.21, CL = 90%

T-violation parametersT-violation parametersT-violation parametersT-violation parameters

Im(ξ) in K0
µ3 = −0.007 ± 0.026

CPT invariance testsCPT invariance testsCPT invariance testsCPT invariance tests

φ00 − φ+− = (0.34 ± 0.32)◦

Re(2
3η+− + 1

3η00)−
AL
2 = (−3 ± 35) × 10−6

∆S = −∆Q in K0
ℓ3 decay∆S = −∆Q in K0
ℓ3 decay∆S = −∆Q in K0
ℓ3 decay∆S = −∆Q in K0
ℓ3 decay

Re x = −0.002 ± 0.006
Im x = 0.0012 ± 0.0021

Scale factor/ p

K0
L

DECAY MODESK0
L

DECAY MODESK0
L

DECAY MODESK0
L

DECAY MODES Fraction (Γi /Γ) Confidence level(MeV/c)

Semileptonic modesSemileptonic modesSemileptonic modesSemileptonic modes
π± e∓ νe [o] (40.55 ±0.11 ) % S=1.7 229

Called K0
e3.

π±µ∓ νµ [o] (27.04 ±0.07 ) % S=1.1 216

Called K0
µ3.

(πµatom)ν ( 1.05 ±0.11 ) × 10−7 188

π0π± e∓ ν [o] ( 5.20 ±0.11 ) × 10−5 207

π± e∓ ν e+ e− [o] ( 1.26 ±0.04 ) × 10−5 229

Hadronic modes, including Charge conjugation×Parity Violating (CPV) modesHadronic modes, including Charge conjugation×Parity Violating (CPV) modesHadronic modes, including Charge conjugation×Parity Violating (CPV) modesHadronic modes, including Charge conjugation×Parity Violating (CPV) modes

3π0 (19.52 ±0.12 ) % S=1.6 139

π+π−π0 (12.54 ±0.05 ) % 133

π+π− CPV [q] ( 1.967±0.010) × 10−3 S=1.5 206

π0π0 CPV ( 8.64 ±0.06 ) × 10−4 S=1.8 209
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[fully?] satisfactory understanding of result within 
SM lacking for almost 50 years

(similar observations in baryon sector — e.g., 
Λ/Σ→Nπ, heavy meson decay, ...)
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CP-violation effects neglected (                  ), keep active charm quark:VtdV ⇤
ts

VudV ⇤
us

⇠ 10�3CP-violation effects neglected (                  ), keep active charm quark:

����
A0
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���� =
k�1 (MW )
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⇥(��)I=0|Q�
1 |K⇤

⇥(��)I=2|Q+
1 |K⇤

k�1 (MW )

k+1 (MW )
� 2.8

bulk of effect should come from long-distance QCD contribution 

reliable non-perturbative determination mandatory
[Gaillard, Lee; Altarelli, Maiani 1974]

[Cabibbo, Martinelli, Petronzio; Brower, Maturana, Gavela, Gupta 1984]
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(do not contribute to physical             transitions)K ! ��

weak decay and ΔI=1/2
Active charm quark Propagator techniques Results: physical amplitudes Summary and outlook

E�ective Hamiltonian (II)

Lowest QCD corrections

(penguin contributions cancel in GIM limit            )mc = mu
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bulk of effect should come from long-distance QCD contribution 

reliable non-perturbative determination mandatory
[Gaillard, Lee; Altarelli, Maiani 1974]
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weak decay and ΔI=1/2
approximate methods/effective theory

spectacular failure of naive 1/Nc expansion 

elaborate approaches that combine 1/Nc, 
ch i ra l p e r tu rbat ion theory+vector 
dominance, and quark-hadron duality claim 
(non-universal) success

T [K0 ! �0�0] ⇠ 0 )
����
A0

A2

����
N!1

⇠
p
2

[Fukugita et al. 1977] 
[Chivukula, Flynn, Georgi 1986]

[Aebischer, Bobeth, Buras 2020 (⊃ earlier)]
[Gisbert, Pich 2018 (⊃ earlier)]
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far-reaching effort by RBC/UKQCD collaboration

[Boyle et al., PRL 110 (2013) 152001]

Toward an quantitative understanding of the �I = 1/2 rule

Two kinds of contraction for each �I = 3/2 operator
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“emerging understanding of the ΔI=1/2 rule”



anatomy of ΔI=1/2

active charm 
use fermions with good chiral properties (good renormalisation, arbitrarily low masses with GW) 
give up (too expensive) direct computation, use ChiPT (⇒ FSI captured at weak pion coupling only)

[Giusti, Hernández, Laine, Weisz, Wittig 2004]
[ChiPT: Hernández, Laine 2006]

several possible sources for ΔI=1/2 enhancement:

separate low-energy QCD and charm-scale physics: consider amplitudes as a 
function of charm mass for fixed u,d,s masses

mc = mu = md = ms �! mc � mu = md  ms

implementation:

physics at “intrinsic” QCD scale  
physics at charm scale (penguins) 
final state interactions 
all of the above (no dominating “mechanism”)

⇠ ⇤QCD



anatomy of ΔI=1/2 (GIM limit)

Motivation Ensembles M⇡ & F⇡ Scattering K ! ⇡⇡ Summary

Relating K ! ⇡ to A2 and A0
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5

mer keeps Nf constant when taking Nc ! 1, the latter
keeps the ratio Nf/Nc constant. From Eq. (20), it is then
clear that ã and b̃ have the same scaling in the Veneziano
limit (the same holds for c̃ and d̃). In our simulations,
we will be studying the ’t Hooft limit, since we keep Nf

fixed, but the quantity Nf/Nc is large (ranging from 4/3
to 2/3, depending on Nc), so its contribution may be very
significant even for naturally large ã� d̃ coefficients.

IV. �S = 1 AMPLITUDES IN CHIRAL
PERTURBATION THEORY

A. Chiral Dependence of the K ! ⇡ amplitudes

The chiral dependence of the ratios in Eq.(13) can
be studied within the framework of Chiral Perturba-
tion Theory (ChPT) with Nf = 4 active flavours. An
extensive discussion of this framework can be found in
Refs. [27, 43]. Here we just summarize the required for-
mulæ, and refer to those references for details.

The weak Hamiltonian in Eq. (1) can be translated to
an effective weak Hamiltonian in terms of meson fields
preserving the flavour symmetries. Since the operators
Q̄+ and Q̄� transform under representations of SU(4)L
of dimension 84 and 20, their ChPT counterparts must
be constructed accordingly. At leading order, there are
only two terms, with couplings g±, that need to be de-
termined non-perturbatively:

HChPT
W = g+O+ + g�O�, (21)

with

O� =
X

ijkl

c�ijklF
4(U@µU

†)ij(U@µU †)kl, (22)

where U is the chiral meson field, i, j, k, l are flavour in-
dices, and c�ijkl are Clebsch-Gordan coefficients (see Ap-
pendix A in Ref. [27]).

By means of the chiral weak Hamiltonian in Eq. (21)
and the standard NLO ChPT Lagrangian, the chiral pre-
dictions for the normalized amplitudes in Eq. (16) are
found to be:

A± = g±
"
1⌥ 3
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4⇡F⇡

◆2 ✓
log

M2
⇡

µ2
+ Lr

±(µ)

◆#
, (23)

where Lr
± are the NLO counterterms6. The NLO correc-

tions in Eq. (23) are fully anticorrelated. Extrapolating
the ratios in Eq. (13) to zero pion mass, one can de-
termine the leading low-energy couplings (LECs) of the

6
L
r
± are a combination of standard QCD NLO LECs with those

associated to higher order operators in the chiral weak Hamil-
tonean. See Refs. [44] and [43] for explicit expressions.

chiral weak Hamiltonian:

g± = lim
M⇡!0

A±. (24)

The extracted values of g± can then be used to make
predictions of other observables, such as the K ! ⇡⇡
decay amplitudes.

We now turn to the analysis of the combined chiral
and Nc dependence. First, we note that Eq. (20) should
hold at any pion mass, and therefore we expect:

g± = 1± a�
1
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N2
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1
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+ d�
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N3
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+ · · · (25)

Furthermore, by comparing the chiral dependence in
Eq. (23) with the Nc scaling in Eq. (20) we can see that
both Lr

+ and Lr
� must be O(N0

c ), and identical at this
order. The next term in the 1/Nc expansion for Lr

± could
in principle differ:

Lr
± = L(0) +

1

Nc
L(1)
± + · · · . (26)

Hence, the combination of Eq. (23) with Eqs. (25,26) can
be used to do global fits including different meson masses
and values of Nc.

It will be convenient to also study the chiral and Nc

dependence of the product of A+A�. The reason is that
the leading chiral and Nc corrections cancel out, which
leads to a more robust chiral extrapolation. The chiral
corrections for this quantity are

A+A� = g+g�
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with
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+ . . . , (28)

Lr
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+ =
L(1)
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+

Nc
+ . . . , (29)

where ↵ and � depend on the coefficients a� � d�.

B. Relation to K ! ⇡⇡ amplitudes

Once the effective couplings g± have been extracted
from the chiral extrapolations of the ratios A±, they can
be used to compute the K ! ⇡⇡ weak decay amplitudes.
The two pions in the final state can be in a state with
total isospin I = 0 or 2:

iAIe
i�I = h(⇡⇡)I |H

ChPT
W |K0i , (30)

where �I is the two-pion scattering phase. The ratio of
the two amplitudes can be calculated at leading order in
ChPT using the Hamiltonian in Eq. (21) [27, 45]:
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where all the coefficients a� f in these expressions (each
of them related to one or more diagrams in Figs. 2 and 3)
are independent of Nc and Nf . These relations imply
that the leading Nc corrections in the ± correlation func-
tions of Eq. (10) are of O(N2

c , NfNc), but factorizable.
On the other hand, the leading non-factorizable correc-
tions are of O(Nc) and O(Nf ), and cancel in the sum of

the ± correlators:
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They are therefore fully anticorrelated in the ± corre-
lators. Importantly, the anticorrelated terms include the
leading fermion loop corrections, O(Nf ). These relations
also imply the following scaling of the renormalization
factors:
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and a similar one for the Wilson coefficients, k�. This
dependence can be explicitly checked in the perturbative
coefficients known up to two loops in the MS scheme
[37, 38].

These results imply the following scaling of the ampli-
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where the coefficients ã� d̃ are combinations of the coef-
ficients a� f in Eq. (17), and are also independent of Nc

and Nf , and a natural expectation is that they are O(1).
Not only the leading corrections N�1

c are, therefore,
fully anticorrelated in the ratios, but also the leading ef-
fects of dynamical quarks, O(Nf ). Note that this analysis
does not predict the sign of the different terms, i.e., the
sign of the ã � d̃ coefficients, only the (anti)-correlation
between the two isospin channels. This way, a negative
sign of ã and b̃ results into an enhancement of the ratio
A�/A+.

B. ’t Hooft vs. Veneziano scaling

As we will see the number of active flavours, Nf , plays
a relevant role in the 1/Nc expansion of the K ! ⇡ ampli-
tudes. The scaling in Nf is in fact the difference between
the ’t Hooft and Veneziano limits of QCD. While the for-
mer keeps Nf constant when taking Nc ! 1, the latter
keeps the ratio Nf/Nc constant. From Eq. (20), it is then
clear that ã and b̃ have the same scaling in the Veneziano
limit (the same holds for c̃ and d̃). In our simulations,
we will be studying the ’t Hooft limit, since we keep Nf

fixed, but the quantity Nf/Nc is large (ranging from 4/3
to 2/3, depending on Nc), so its contribution may be very
significant even for naturally large ã� d̃ coefficients.
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mer keeps Nf constant when taking Nc ! 1, the latter
keeps the ratio Nf/Nc constant. From Eq. (20), it is then
clear that ã and b̃ have the same scaling in the Veneziano
limit (the same holds for c̃ and d̃). In our simulations,
we will be studying the ’t Hooft limit, since we keep Nf

fixed, but the quantity Nf/Nc is large (ranging from 4/3
to 2/3, depending on Nc), so its contribution may be very
significant even for naturally large ã� d̃ coefficients.

IV. �S = 1 AMPLITUDES IN CHIRAL
PERTURBATION THEORY

A. Chiral Dependence of the K ! ⇡ amplitudes

The chiral dependence of the ratios in Eq.(13) can
be studied within the framework of Chiral Perturba-
tion Theory (ChPT) with Nf = 4 active flavours. An
extensive discussion of this framework can be found in
Refs. [27, 43]. Here we just summarize the required for-
mulæ, and refer to those references for details.

The weak Hamiltonian in Eq. (1) can be translated to
an effective weak Hamiltonian in terms of meson fields
preserving the flavour symmetries. Since the operators
Q̄+ and Q̄� transform under representations of SU(4)L
of dimension 84 and 20, their ChPT counterparts must
be constructed accordingly. At leading order, there are
only two terms, with couplings g±, that need to be de-
termined non-perturbatively:

HChPT
W = g+O+ + g�O�, (21)

with

O� =
X
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c�ijklF
4(U@µU

†)ij(U@µU †)kl, (22)

where U is the chiral meson field, i, j, k, l are flavour in-
dices, and c�ijkl are Clebsch-Gordan coefficients (see Ap-
pendix A in Ref. [27]).

By means of the chiral weak Hamiltonian in Eq. (21)
and the standard NLO ChPT Lagrangian, the chiral pre-
dictions for the normalized amplitudes in Eq. (16) are
found to be:
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where Lr
± are the NLO counterterms6. The NLO correc-

tions in Eq. (23) are fully anticorrelated. Extrapolating
the ratios in Eq. (13) to zero pion mass, one can de-
termine the leading low-energy couplings (LECs) of the

6
L
r
± are a combination of standard QCD NLO LECs with those

associated to higher order operators in the chiral weak Hamil-
tonean. See Refs. [44] and [43] for explicit expressions.

chiral weak Hamiltonian:

g± = lim
M⇡!0

A±. (24)

The extracted values of g± can then be used to make
predictions of other observables, such as the K ! ⇡⇡
decay amplitudes.

We now turn to the analysis of the combined chiral
and Nc dependence. First, we note that Eq. (20) should
hold at any pion mass, and therefore we expect:
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Furthermore, by comparing the chiral dependence in
Eq. (23) with the Nc scaling in Eq. (20) we can see that
both Lr
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c ), and identical at this
order. The next term in the 1/Nc expansion for Lr
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in principle differ:
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Hence, the combination of Eq. (23) with Eqs. (25,26) can
be used to do global fits including different meson masses
and values of Nc.

It will be convenient to also study the chiral and Nc

dependence of the product of A+A�. The reason is that
the leading chiral and Nc corrections cancel out, which
leads to a more robust chiral extrapolation. The chiral
corrections for this quantity are
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where ↵ and � depend on the coefficients a� � d�.

B. Relation to K ! ⇡⇡ amplitudes

Once the effective couplings g± have been extracted
from the chiral extrapolations of the ratios A±, they can
be used to compute the K ! ⇡⇡ weak decay amplitudes.
The two pions in the final state can be in a state with
total isospin I = 0 or 2:

iAIe
i�I = h(⇡⇡)I |H

ChPT
W |K0i , (30)

where �I is the two-pion scattering phase. The ratio of
the two amplitudes can be calculated at leading order in
ChPT using the Hamiltonian in Eq. (21) [27, 45]:
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where all the coefficients a� f in these expressions (each
of them related to one or more diagrams in Figs. 2 and 3)
are independent of Nc and Nf . These relations imply
that the leading Nc corrections in the ± correlation func-
tions of Eq. (10) are of O(N2

c , NfNc), but factorizable.
On the other hand, the leading non-factorizable correc-
tions are of O(Nc) and O(Nf ), and cancel in the sum of
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They are therefore fully anticorrelated in the ± corre-
lators. Importantly, the anticorrelated terms include the
leading fermion loop corrections, O(Nf ). These relations
also imply the following scaling of the renormalization
factors:
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and a similar one for the Wilson coefficients, k�. This
dependence can be explicitly checked in the perturbative
coefficients known up to two loops in the MS scheme
[37, 38].

These results imply the following scaling of the ampli-
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where the coefficients ã� d̃ are combinations of the coef-
ficients a� f in Eq. (17), and are also independent of Nc

and Nf , and a natural expectation is that they are O(1).
Not only the leading corrections N�1

c are, therefore,
fully anticorrelated in the ratios, but also the leading ef-
fects of dynamical quarks, O(Nf ). Note that this analysis
does not predict the sign of the different terms, i.e., the
sign of the ã � d̃ coefficients, only the (anti)-correlation
between the two isospin channels. This way, a negative
sign of ã and b̃ results into an enhancement of the ratio
A�/A+.

B. ’t Hooft vs. Veneziano scaling

As we will see the number of active flavours, Nf , plays
a relevant role in the 1/Nc expansion of the K ! ⇡ ampli-
tudes. The scaling in Nf is in fact the difference between
the ’t Hooft and Veneziano limits of QCD. While the for-
mer keeps Nf constant when taking Nc ! 1, the latter
keeps the ratio Nf/Nc constant. From Eq. (20), it is then
clear that ã and b̃ have the same scaling in the Veneziano
limit (the same holds for c̃ and d̃). In our simulations,
we will be studying the ’t Hooft limit, since we keep Nf

fixed, but the quantity Nf/Nc is large (ranging from 4/3
to 2/3, depending on Nc), so its contribution may be very
significant even for naturally large ã� d̃ coefficients.
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4

ized and bare correlators are therefore of the form:

hP ijJji
µ i = Nc

✓
a+ b

Nf

Nc

◆
+ . . . ,

hP duOsuudPusi = hP duJud
µ ihP suJus

µ i+ c+ d
Nf

Nc
+ . . . ,

hP duOsduuPusi = Nc

✓
e+ f

Nf

Nc

◆
+ . . . , (17)

(a) O(N2
c )

(b) O(NcNf )

(c) O(N0
c )

(d) O

⇣
Nf

Nc

⌘

FIG. 2: Nc, Nf scaling of various contributions to the colour-
disconnected contraction, corresponding to the O

suud(x) in-
sertion.

(e)

8
>>>>>>>>>><

>>>>>>>>>>:

O(Nc)

O(Nc)

(f) O (Nf )

FIG. 3: Nc, Nf scaling of various contributions to the colour-
connected contraction, corresponding to the O

sduu(x) inser-
tion.

where all the coefficients a� f in these expressions (each
of them related to one or more diagrams in Figs. 2 and 3)
are independent of Nc and Nf . These relations imply
that the leading Nc corrections in the ± correlation func-
tions of Eq. (10) are of O(N2

c , NfNc), but factorizable.
On the other hand, the leading non-factorizable correc-
tions are of O(Nc) and O(Nf ), and cancel in the sum of

the ± correlators:

C+
3 + C�

3 = disconnected +O(N0
c ) +O

✓
Nf

Nc

◆
+ · · · ,

C+
3 � C�

3 = O(Nc) +O(Nf ) + · · · (18)

They are therefore fully anticorrelated in the ± corre-
lators. Importantly, the anticorrelated terms include the
leading fermion loop corrections, O(Nf ). These relations
also imply the following scaling of the renormalization
factors:

Z+
Q + Z�

Q

2
= 1 +O

✓
1

N2
c

◆
+O

✓
Nf

N3
c

◆
+ · · ·

Z+
Q � Z�

Q

2
= O

✓
1

Nc

◆
+O

✓
Nf

N2
c

◆
+ · · · , (19)

and a similar one for the Wilson coefficients, k�. This
dependence can be explicitly checked in the perturbative
coefficients known up to two loops in the MS scheme
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ficients a� f in Eq. (17), and are also independent of Nc

and Nf , and a natural expectation is that they are O(1).
Not only the leading corrections N�1

c are, therefore,
fully anticorrelated in the ratios, but also the leading ef-
fects of dynamical quarks, O(Nf ). Note that this analysis
does not predict the sign of the different terms, i.e., the
sign of the ã � d̃ coefficients, only the (anti)-correlation
between the two isospin channels. This way, a negative
sign of ã and b̃ results into an enhancement of the ratio
A�/A+.

B. ’t Hooft vs. Veneziano scaling

As we will see the number of active flavours, Nf , plays
a relevant role in the 1/Nc expansion of the K ! ⇡ ampli-
tudes. The scaling in Nf is in fact the difference between
the ’t Hooft and Veneziano limits of QCD. While the for-
mer keeps Nf constant when taking Nc ! 1, the latter
keeps the ratio Nf/Nc constant. From Eq. (20), it is then
clear that ã and b̃ have the same scaling in the Veneziano
limit (the same holds for c̃ and d̃). In our simulations,
we will be studying the ’t Hooft limit, since we keep Nf

fixed, but the quantity Nf/Nc is large (ranging from 4/3
to 2/3, depending on Nc), so its contribution may be very
significant even for naturally large ã� d̃ coefficients.
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limit (the same holds for c̃ and d̃). In our simulations,
we will be studying the ’t Hooft limit, since we keep Nf

fixed, but the quantity Nf/Nc is large (ranging from 4/3
to 2/3, depending on Nc), so its contribution may be very
significant even for naturally large ã� d̃ coefficients.

IV. �S = 1 AMPLITUDES IN CHIRAL
PERTURBATION THEORY

A. Chiral Dependence of the K ! ⇡ amplitudes

The chiral dependence of the ratios in Eq.(13) can
be studied within the framework of Chiral Perturba-
tion Theory (ChPT) with Nf = 4 active flavours. An
extensive discussion of this framework can be found in
Refs. [27, 43]. Here we just summarize the required for-
mulæ, and refer to those references for details.

The weak Hamiltonian in Eq. (1) can be translated to
an effective weak Hamiltonian in terms of meson fields
preserving the flavour symmetries. Since the operators
Q̄+ and Q̄� transform under representations of SU(4)L
of dimension 84 and 20, their ChPT counterparts must
be constructed accordingly. At leading order, there are
only two terms, with couplings g±, that need to be de-
termined non-perturbatively:
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W = g+O+ + g�O�, (21)

with
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where U is the chiral meson field, i, j, k, l are flavour in-
dices, and c�ijkl are Clebsch-Gordan coefficients (see Ap-
pendix A in Ref. [27]).

By means of the chiral weak Hamiltonian in Eq. (21)
and the standard NLO ChPT Lagrangian, the chiral pre-
dictions for the normalized amplitudes in Eq. (16) are
found to be:
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where Lr
± are the NLO counterterms6. The NLO correc-

tions in Eq. (23) are fully anticorrelated. Extrapolating
the ratios in Eq. (13) to zero pion mass, one can de-
termine the leading low-energy couplings (LECs) of the
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associated to higher order operators in the chiral weak Hamil-
tonean. See Refs. [44] and [43] for explicit expressions.

chiral weak Hamiltonian:

g± = lim
M⇡!0

A±. (24)

The extracted values of g± can then be used to make
predictions of other observables, such as the K ! ⇡⇡
decay amplitudes.

We now turn to the analysis of the combined chiral
and Nc dependence. First, we note that Eq. (20) should
hold at any pion mass, and therefore we expect:
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Furthermore, by comparing the chiral dependence in
Eq. (23) with the Nc scaling in Eq. (20) we can see that
both Lr

+ and Lr
� must be O(N0

c ), and identical at this
order. The next term in the 1/Nc expansion for Lr

± could
in principle differ:

Lr
± = L(0) +

1

Nc
L(1)
± + · · · . (26)

Hence, the combination of Eq. (23) with Eqs. (25,26) can
be used to do global fits including different meson masses
and values of Nc.

It will be convenient to also study the chiral and Nc

dependence of the product of A+A�. The reason is that
the leading chiral and Nc corrections cancel out, which
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where ↵ and � depend on the coefficients a� � d�.

B. Relation to K ! ⇡⇡ amplitudes

Once the effective couplings g± have been extracted
from the chiral extrapolations of the ratios A±, they can
be used to compute the K ! ⇡⇡ weak decay amplitudes.
The two pions in the final state can be in a state with
total isospin I = 0 or 2:
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where �I is the two-pion scattering phase. The ratio of
the two amplitudes can be calculated at leading order in
ChPT using the Hamiltonian in Eq. (21) [27, 45]:
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where all the coefficients a� f in these expressions (each
of them related to one or more diagrams in Figs. 2 and 3)
are independent of Nc and Nf . These relations imply
that the leading Nc corrections in the ± correlation func-
tions of Eq. (10) are of O(N2

c , NfNc), but factorizable.
On the other hand, the leading non-factorizable correc-
tions are of O(Nc) and O(Nf ), and cancel in the sum of

the ± correlators:
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+ · · · ,

C+
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3 = O(Nc) +O(Nf ) + · · · (18)

They are therefore fully anticorrelated in the ± corre-
lators. Importantly, the anticorrelated terms include the
leading fermion loop corrections, O(Nf ). These relations
also imply the following scaling of the renormalization
factors:
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and a similar one for the Wilson coefficients, k�. This
dependence can be explicitly checked in the perturbative
coefficients known up to two loops in the MS scheme
[37, 38].

These results imply the following scaling of the ampli-
tudes:

A± = 1± ã
1

Nc
± b̃

Nf

N2
c

+ c̃
1

N2
c

+ d̃
Nf

N3
c

+ · · · , (20)

where the coefficients ã� d̃ are combinations of the coef-
ficients a� f in Eq. (17), and are also independent of Nc

and Nf , and a natural expectation is that they are O(1).
Not only the leading corrections N�1

c are, therefore,
fully anticorrelated in the ratios, but also the leading ef-
fects of dynamical quarks, O(Nf ). Note that this analysis
does not predict the sign of the different terms, i.e., the
sign of the ã � d̃ coefficients, only the (anti)-correlation
between the two isospin channels. This way, a negative
sign of ã and b̃ results into an enhancement of the ratio
A�/A+.

B. ’t Hooft vs. Veneziano scaling

As we will see the number of active flavours, Nf , plays
a relevant role in the 1/Nc expansion of the K ! ⇡ ampli-
tudes. The scaling in Nf is in fact the difference between
the ’t Hooft and Veneziano limits of QCD. While the for-
mer keeps Nf constant when taking Nc ! 1, the latter
keeps the ratio Nf/Nc constant. From Eq. (20), it is then
clear that ã and b̃ have the same scaling in the Veneziano
limit (the same holds for c̃ and d̃). In our simulations,
we will be studying the ’t Hooft limit, since we keep Nf

fixed, but the quantity Nf/Nc is large (ranging from 4/3
to 2/3, depending on Nc), so its contribution may be very
significant even for naturally large ã� d̃ coefficients.
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IV. �S = 1 AMPLITUDES IN CHIRAL
PERTURBATION THEORY

A. Chiral Dependence of the K ! ⇡ amplitudes

The chiral dependence of the ratios in Eq.(13) can
be studied within the framework of Chiral Perturba-
tion Theory (ChPT) with Nf = 4 active flavours. An
extensive discussion of this framework can be found in
Refs. [26, 42]. Here we just summarize the required for-
mulæ, and refer to those references for details.

The weak Hamiltonian in Eq. (1) can be translated to
an effective weak Hamiltonian in terms of meson fields
preserving the flavour symmetries. Since the operators
Q̄+ and Q̄� transform under representations of SU(4)L
of dimension 84 and 20, their ChPT counterparts must
be constructed accordingly. At leading order, there are
only two terms, with couplings g±, that need to be de-
termined non-perturbatively:

HChPT
W = g+O+ + g�O+, (21)

with

O� =
X

ijkl

c�ijklF
4(U@U†)ij(U@U†)kl, (22)

where U is the chiral meson field, i, j, k, l are flavour in-
dices, and c�ijkl are Clebsch-Gordan coefficients (see Ap-
pendix A in Ref. [26]).

By means of the chiral weak Hamiltonian in Eq. (21)
and the standard NLO ChPT Lagrangian, the chiral pre-
dictions for the amplitudes in Eq. (16) are found to be:

A± = g±
"
1⌥ 3

✓
M⇡

4⇡F⇡

◆2 ✓
log

M2
⇡

µ2
+ Lr

±(µ)

◆#
, (23)

where Lr
± are the NLO counterterms. The NLO correc-

tions in Eq. (23) are fully anticorrelated. Extrapolating
the ratios in Eq. (13) to zero pion mass, one can de-
termine the leading low-energy couplings (LECs) of the
chiral weak Hamiltonian:

g± = lim
M⇡!0

A±. (24)

The extracted values of g± can then be used to make
predictions of other observables, such as the K ! ⇡⇡
decay amplitudes.

We now turn to the analysis of the combined chiral
and Nc dependence. First, we note that Eq. (20) should
hold at any pion mass, and therefore we expect:

g± = 1± a�
1

Nc
± b�

Nf

N2
c

+ c�
1

N2
c

+ d�
Nf

N3
c

+ · · · (25)

Furthermore, by comparing the chiral dependence in
Eq. (23) with the Nc scaling in Eq. (20) we can see that
both Lr

+ and Lr
� must be O(N0

c ), and identical at this

order. The next term in the 1/Nc expansion for Lr
± could

in principle differ:

Lr
± = L(0) +

1

Nc
L(1)
± + · · · . (26)

Hence, the combination of Eq. (23) with Eqs. (25,26) can
be used to do global fits including different meson masses
and values of Nc.

It will be convenient to also study the chiral and Nc

dependence of the product of A+A�. The reason is that
the leading chiral and Nc corrections cancel out, which
leads to a more robust chiral extrapolation. The chiral
corrections for this quantity are

A+A� = g+g�
"
1 + 3

✓
M⇡

4⇡F⇡

◆2

(Lr
� � Lr

+)

#
, (27)

with

g+g� = 1 + ↵
1

N2
c

+ �
1

N3
c

+ . . . , (28)

Lr
� � Lr

+ =
L(1)
� � L(1)

+

Nc
+ . . . , (29)

where ↵ and � depend on the coefficients a� � d�.

B. Relation to K ! ⇡⇡ amplitudes

Once the effective couplings g± have been extracted
from the chiral extrapolations of the ratios A±, they can
be used to compute the K ! ⇡⇡ weak decay amplitudes.
The two pions in the final state can be in a state with
total isospin I = 0 or 2:

iAIe
i�I = h(⇡⇡)I |H

ChPT
W |K0i , (30)

where �I is the two-pion scattering phase. The ratio of
the two amplitudes can be calculated at leading order in
ChPT using the Hamiltonian in Eq. (21) [26, 43]:

A0

A2
=

1

2
p
2

✓
1 + 3

g�

g+

◆
. (31)

The measured hierarchy of ⇠ 22 between A0 and A2 must
then be translated into a large ratio of the couplings g±.
Note that for g+ = g� = 1, the expected large-Nc result
is recovered, A0/A2 =

p
2. Large 1/Nc corrections in the

g�/g+ ratio could therefore be the origin of the �I = 1/2
rule.

We have also derived the ChPT NLO result for the
non-degenerate case in which we send the pion mass to
zero, while keeping the kaon mass at its physical value2.
As we are forced to work in the exact GIM limit, we must

2 See Ref. [44] for similar calculation in Nf = 3 ChPT.
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where Lr
± are the NLO counterterms6. The NLO correc-

tions in Eq. (23) are fully anticorrelated. Extrapolating
the ratios in Eq. (13) to zero pion mass, one can de-
termine the leading low-energy couplings (LECs) of the

6
L
r
± are a combination of standard QCD NLO LECs with those

associated to higher order operators in the chiral weak Hamil-
tonean. See Refs. [44] and [43] for explicit expressions.
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since:

A� +A+

2
= 1 + c̃

1

N2
c

+ d̃
Nf

N3
c

+ . . . ,

A� �A+

2
= �ã

1

Nc
� b̃

Nf

N2
c

+ . . . .

(35)

In the following, we compare the results of the fits to
Eq. (35) in three different scenarios:

1. Quenched results (Nf = 0) at a heavy pion mass
⇠ 570 MeV.

2. Dynamical results (Nf = 4) at a heavy pion mass
⇠ 560 MeV (ensembles A10).

3. Dynamical results (Nf = 4) at a lighter pion mass
⇠ 360 MeV (ensembles A40).

The results for the coefficients ã� d̃ for the three scenar-
ios are presented in Table V and Fig. 4. The coefficients
are all of O(1) and therefore of natural size. Importantly
the sign of the ã and b̃ coefficients is the same and neg-
ative. This implies both terms contribute to reduce the
A+ amplitude and enlarge, in a correlated way, the am-
plitude A�. The fact that b̃, d̃ ⇠ O(1) implies a very large
unquenching effect in the large-Nc scaling, and the ratio
A�/A+, which is however compatible with the expansion
in Eq. (35). Specifically, it is due to b̃ and d̃ being ab-
sent for Nf = 0. The other two coefficients, ã and c̃, are
comparable in size in the quenched and dynamical the-
ories. We note however that uncertainties only include
statistical errors, and relative discretization errors and
the systematics of the perturbative renormalization con-
stants may be significant. Finally, we observe that the
mass dependence for the Nf = 4 results seems to affect
mostly the coefficient ã, which is consistent with the chi-
ral dependence in Eq. (23), and goes also in the direction
of enhancing the ratio A�/A+ towards the chiral limit.

Half-difference
Case M⇡ ã b̃ �

2
/d.o.f.

Nf = 0 570 MeV -1.55(2) — 8.8/6
Nf = 4 560 MeV -1.03(13) -1.44(13) 6.6/2
Nf = 4 360 MeV -1.49(15) -1.32(18) 0.3/2

Half-sum
Case M⇡ c̃ d̃ �

2
/d.o.f.

Nf = 0 570 MeV 2.1(1) — 3.5/6
Nf = 4 560 MeV 1.2(3) 2.2(3) 1.3/2
Nf = 4 360 MeV 2.4(4) 1.6(4) 3.2/2

TABLE V: Summary of results for the 1/Nc fits to the half-
sum and half-difference of the amplitudes A±. Errors are only
statistical.

B. Kaon B-parameter (BK)

The kaon B-parameter, BK , is defined from the matrix
element of the �S = 2 operator that mediates neutral
kaon oscillations at physical kinematics:

hK̄0|O�S=2(µ)|K0i = 8

3
f2
KM2

KB̄K(µ). (36)

It is customary to quote the renormalization group inde-
pendent (RGI) version, labelled as B̂K . Its value at the
physical point has been computed accurately in Nf = 2,
2+ 1, and 2+ 1+ 1 simulations [53, 57–61] (see Ref. [62]
for a review).

In our setup, B̂K coincides with the renormalized ratio
R̄+ up to a normalization. Specifically, we have

B̂K =
3

4
ĉ+(a�1)R̄+ (37)

where ĉ+ can be read off Table I. There are two essential
differences in our setup: all meson masses are degenerate,
in particular MK = M⇡, and we have an active light
charm quark. Both can significantly affect the value of
B̂K .

We show our results in Fig. 5. We observe a very sig-
nificant Nc dependence of B̂K for Nf = 4, and a much
milder one for Nf = 0. For Nc = 3, the quenched result
agrees with the standard value of B̂K , while the Nf = 4
result is about 25% smaller. We have included as bands
the Buras-Bardeen-Gerard (BBG) Dual QCD prediction
from Ref. [18], using inputs on meson masses from our
own simulations in both cases — quenched and dynami-
cal. We find that our results are reasonably compatible
with the BBG prediction, in particular regarding the sup-
pression of B̂K in the presence of a light charm.

To conclude this subsection, we can use the scaling
in Nc to infer a value of B̂K with three active flavours
and quasi-physical kinematics. For this, we use the co-
efficients ã � d̃ in Table V for the case of Nf = 4 and
M⇡ = 560 MeV, and so predict the value of A+ with
Nc = 3 and Nf = 3 at the same value of the pion mass,
degenerate with the kaon. We can the get the RGI value
B̂K as in Eq. (37), extracting R̄+ and using the ĉ+(a�1)
for three-flavour QCD 5. We find

B̂K

��
MK=M⇡

= 0.67(2)stat(6)Z+(3)fit , (38)

including statistical error, and a ⇠ 10% error due to the
systematics of the renormalization constants. We also
quote a “fit” error that we estimate by using the Nc scal-
ing derived from a direct fit of the half-sum and difference
of R̄± instead of A±.

5 The required parameters for Nc = 3, Nf = 3 are k
+(MW ) =

1.038, U
+(a�1

,MW ) = 0.851, and ĉ
+(a�1) = 0.841. In the

evaluation of ĉ
�(a�1) we have used ⇤MS = 341 MeV from Ref.

[41].
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since:

A� +A+

2
= 1 + c̃

1

N2
c

+ d̃
Nf

N3
c

+ . . . ,

A� �A+

2
= �ã

1

Nc
� b̃

Nf

N2
c

+ . . . .

(35)

In the following, we compare the results of the fits to
Eq. (35) in three different scenarios:

1. Quenched results (Nf = 0) at a heavy pion mass
⇠ 570 MeV.

2. Dynamical results (Nf = 4) at a heavy pion mass
⇠ 560 MeV (ensembles A10).

3. Dynamical results (Nf = 4) at a lighter pion mass
⇠ 360 MeV (ensembles A40).

The results for the coefficients ã� d̃ for the three scenar-
ios are presented in Table V and Fig. 4. The coefficients
are all of O(1) and therefore of natural size. Importantly
the sign of the ã and b̃ coefficients is the same and neg-
ative. This implies both terms contribute to reduce the
A+ amplitude and enlarge, in a correlated way, the am-
plitude A�. The fact that b̃, d̃ ⇠ O(1) implies a very large
unquenching effect in the large-Nc scaling, and the ratio
A�/A+, which is however compatible with the expansion
in Eq. (35). Specifically, it is due to b̃ and d̃ being ab-
sent for Nf = 0. The other two coefficients, ã and c̃, are
comparable in size in the quenched and dynamical the-
ories. We note however that uncertainties only include
statistical errors, and relative discretization errors and
the systematics of the perturbative renormalization con-
stants may be significant. Finally, we observe that the
mass dependence for the Nf = 4 results seems to affect
mostly the coefficient ã, which is consistent with the chi-
ral dependence in Eq. (23), and goes also in the direction
of enhancing the ratio A�/A+ towards the chiral limit.

Half-difference
Case M⇡ ã b̃ �

2
/d.o.f.

Nf = 0 570 MeV -1.55(2) — 8.8/6
Nf = 4 560 MeV -1.03(13) -1.44(13) 6.6/2
Nf = 4 360 MeV -1.49(15) -1.32(18) 0.3/2

Half-sum
Case M⇡ c̃ d̃ �

2
/d.o.f.

Nf = 0 570 MeV 2.1(1) — 3.5/6
Nf = 4 560 MeV 1.2(3) 2.2(3) 1.3/2
Nf = 4 360 MeV 2.4(4) 1.6(4) 3.2/2

TABLE V: Summary of results for the 1/Nc fits to the half-
sum and half-difference of the amplitudes A±. Errors are only
statistical.

B. Kaon B-parameter (BK)

The kaon B-parameter, BK , is defined from the matrix
element of the �S = 2 operator that mediates neutral
kaon oscillations at physical kinematics:

hK̄0|O�S=2(µ)|K0i = 8

3
f2
KM2

KB̄K(µ). (36)

It is customary to quote the renormalization group inde-
pendent (RGI) version, labelled as B̂K . Its value at the
physical point has been computed accurately in Nf = 2,
2+ 1, and 2+ 1+ 1 simulations [53, 57–61] (see Ref. [62]
for a review).

In our setup, B̂K coincides with the renormalized ratio
R̄+ up to a normalization. Specifically, we have

B̂K =
3

4
ĉ+(a�1)R̄+ (37)

where ĉ+ can be read off Table I. There are two essential
differences in our setup: all meson masses are degenerate,
in particular MK = M⇡, and we have an active light
charm quark. Both can significantly affect the value of
B̂K .

We show our results in Fig. 5. We observe a very sig-
nificant Nc dependence of B̂K for Nf = 4, and a much
milder one for Nf = 0. For Nc = 3, the quenched result
agrees with the standard value of B̂K , while the Nf = 4
result is about 25% smaller. We have included as bands
the Buras-Bardeen-Gerard (BBG) Dual QCD prediction
from Ref. [18], using inputs on meson masses from our
own simulations in both cases — quenched and dynami-
cal. We find that our results are reasonably compatible
with the BBG prediction, in particular regarding the sup-
pression of B̂K in the presence of a light charm.

To conclude this subsection, we can use the scaling
in Nc to infer a value of B̂K with three active flavours
and quasi-physical kinematics. For this, we use the co-
efficients ã � d̃ in Table V for the case of Nf = 4 and
M⇡ = 560 MeV, and so predict the value of A+ with
Nc = 3 and Nf = 3 at the same value of the pion mass,
degenerate with the kaon. We can the get the RGI value
B̂K as in Eq. (37), extracting R̄+ and using the ĉ+(a�1)
for three-flavour QCD 5. We find

B̂K

��
MK=M⇡

= 0.67(2)stat(6)Z+(3)fit , (38)

including statistical error, and a ⇠ 10% error due to the
systematics of the renormalization constants. We also
quote a “fit” error that we estimate by using the Nc scal-
ing derived from a direct fit of the half-sum and difference
of R̄± instead of A±.

5 The required parameters for Nc = 3, Nf = 3 are k
+(MW ) =

1.038, U
+(a�1

,MW ) = 0.851, and ĉ
+(a�1) = 0.841. In the

evaluation of ĉ
�(a�1) we have used ⇤MS = 341 MeV from Ref.

[41].

scaling with Nc confirms expectations, with natural O(1) coefficients 
dynamical quarks enhance effect 
lighter quark masses enhance effect
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FIG. 4: Half-sum and half-difference of the amplitudes A
± as a function of N�1

c for three different cases: (i) quenched results
from Ref. [5] in blue, (ii) new dynamical results at a pion similar to the quenched case (red), and (iii) dynamical results at a
lighter pion mass (orange). The fit results are shown in Table V. Error bars include only statistical errors.
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FIG. 5: Lattice results for B̂K , defined in Eq. (37), in the
case of Nf = 0 (see Refs. [5, 6]), and Nf = 4 (this work).
Error bars are only statistical errors. We also include the
predictions from Ref. [18], where the band indicates the values
obtained when varying the involved matching scale M from
600 to 1000 MeV.

We have not found results in the literature for the de-
generate case that we can compare to. On the other
hand, ChPT relates the value of B̂K in the degenerate
case, to the quasi-physical (QP) situation with M⇡ = 0
and MK at its physical value:

B̂QP
K = B̂K

��
MK=M⇡

"
1 +

2

3

✓
MK

4⇡FK

◆2

log
⇤BK
e↵

MK

#
, (39)

where ⇤BK
e↵ labels an unknown scale that parametrizes

the effect of the unknown LECs. For ⇤BK
e↵ > MK , B̂QP

K is
larger than B̂K and could be compatible with the existing
results at the physical point from Nf = 2 + 1, Nc = 3
simulations [53, 57–61].

C. Extraction of the effective couplings g
±

The main goal of this work is to compute the ratio
g�/g+ by extrapolating A± to the chiral limit. For the
required chiral extrapolation, we follow the same strategy
as in Ref. [43]. We extract g+ from a chiral fit to A+,
and the product g+g� from that of the product A+A� .
The ratio can then be evaluated as

g�

g+
⌘

�
g�g+

�
⇥ 1

(g+)2
. (40)

This approach results in a milder chiral extrapolation,
that will hopefully introduce a smaller systematic error.

We have performed two kinds of fits. In Fit 1, we use
all data points with Nc = 3� 6 in a simultaneous chiral
and Nc fit using Eqs. (23) and (27), incorporating the
1/Nc expansion of the couplings as in Eqs. (25,26,29).
In Fit 2, we fit using only the data with Nc = 3, and
extract the effective couplings for this theory. This way,
for Nc = 3 we find:

Fit 1: g+ = 0.187(21), g+g� = 0.91(4),

Fit 2: g+ = 0.190(27), g+g� = 0.80(6).
(41)

The complete results of these fits are shown in Tables VI,
and VII, and also in Fig. 6.

From these results, we obtain for the ratio of couplings
at Nc = 3:

g�

g+

�����
fit 1

= 26(6),
g�

g+

�����
fit 2

= 22(5), (42)

where errors are only statistical, but correlations are
taken into account.
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We have not found results in the literature for the de-
generate case that we can compare to. On the other
hand, ChPT relates the value of B̂K in the degenerate
case, to the quasi-physical (QP) situation with M⇡ = 0
and MK at its physical value:

B̂QP
K = B̂K

��
MK=M⇡

"
1 +

2

3

✓
MK

4⇡FK

◆2

log
⇤BK
e↵

MK

#
, (39)

where ⇤BK
e↵ labels an unknown scale that parametrizes

the effect of the unknown LECs. For ⇤BK
e↵ > MK , B̂QP

K is
larger than B̂K and could be compatible with the existing
results at the physical point from Nf = 2 + 1, Nc = 3
simulations [53, 57–61].

C. Extraction of the effective couplings g
±

The main goal of this work is to compute the ratio
g�/g+ by extrapolating A± to the chiral limit. For the
required chiral extrapolation, we follow the same strategy
as in Ref. [43]. We extract g+ from a chiral fit to A+,
and the product g+g� from that of the product A+A� .
The ratio can then be evaluated as

g�

g+
⌘

�
g�g+

�
⇥ 1

(g+)2
. (40)

This approach results in a milder chiral extrapolation,
that will hopefully introduce a smaller systematic error.

We have performed two kinds of fits. In Fit 1, we use
all data points with Nc = 3� 6 in a simultaneous chiral
and Nc fit using Eqs. (23) and (27), incorporating the
1/Nc expansion of the couplings as in Eqs. (25,26,29).
In Fit 2, we fit using only the data with Nc = 3, and
extract the effective couplings for this theory. This way,
for Nc = 3 we find:

Fit 1: g+ = 0.187(21), g+g� = 0.91(4),

Fit 2: g+ = 0.190(27), g+g� = 0.80(6).
(41)

The complete results of these fits are shown in Tables VI,
and VII, and also in Fig. 6.

From these results, we obtain for the ratio of couplings
at Nc = 3:

g�

g+

�����
fit 1

= 26(6),
g�

g+

�����
fit 2

= 22(5), (42)

where errors are only statistical, but correlations are
taken into account.
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obtained when varying the involved matching scale M from
600 to 1000 MeV.

We have not found results in the literature for the de-
generate case that we can compare to. On the other
hand, ChPT relates the value of B̂K in the degenerate
case, to the quasi-physical (QP) situation with M⇡ = 0
and MK at its physical value:

B̂QP
K = B̂K

��
MK=M⇡

"
1 +

2

3

✓
MK

4⇡FK

◆2

log
⇤BK
e↵

MK

#
, (39)

where ⇤BK
e↵ labels an unknown scale that parametrizes

the effect of the unknown LECs. For ⇤BK
e↵ > MK , B̂QP

K is
larger than B̂K and could be compatible with the existing
results at the physical point from Nf = 2 + 1, Nc = 3
simulations [53, 57–61].

C. Extraction of the effective couplings g
±

The main goal of this work is to compute the ratio
g�/g+ by extrapolating A± to the chiral limit. For the
required chiral extrapolation, we follow the same strategy
as in Ref. [43]. We extract g+ from a chiral fit to A+,
and the product g+g� from that of the product A+A� .
The ratio can then be evaluated as

g�

g+
⌘

�
g�g+

�
⇥ 1

(g+)2
. (40)

This approach results in a milder chiral extrapolation,
that will hopefully introduce a smaller systematic error.

We have performed two kinds of fits. In Fit 1, we use
all data points with Nc = 3� 6 in a simultaneous chiral
and Nc fit using Eqs. (23) and (27), incorporating the
1/Nc expansion of the couplings as in Eqs. (25,26,29).
In Fit 2, we fit using only the data with Nc = 3, and
extract the effective couplings for this theory. This way,
for Nc = 3 we find:

Fit 1: g+ = 0.187(21), g+g� = 0.91(4),

Fit 2: g+ = 0.190(27), g+g� = 0.80(6).
(41)

The complete results of these fits are shown in Tables VI,
and VII, and also in Fig. 6.

From these results, we obtain for the ratio of couplings
at Nc = 3:

g�

g+

�����
fit 1

= 26(6),
g�

g+

�����
fit 2

= 22(5), (42)

where errors are only statistical, but correlations are
taken into account.
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(35)

In the following, we compare the results of the fits to
Eq. (35) in three different scenarios:

1. Quenched results (Nf = 0) at a heavy pion mass
⇠ 570 MeV.

2. Dynamical results (Nf = 4) at a heavy pion mass
⇠ 560 MeV (ensembles A10).

3. Dynamical results (Nf = 4) at a lighter pion mass
⇠ 360 MeV (ensembles A40).

The results for the coefficients ã� d̃ for the three scenar-
ios are presented in Table V and Fig. 4. The coefficients
are all of O(1) and therefore of natural size. Importantly
the sign of the ã and b̃ coefficients is the same and neg-
ative. This implies both terms contribute to reduce the
A+ amplitude and enlarge, in a correlated way, the am-
plitude A�. The fact that b̃, d̃ ⇠ O(1) implies a very large
unquenching effect in the large-Nc scaling, and the ratio
A�/A+, which is however compatible with the expansion
in Eq. (35). Specifically, it is due to b̃ and d̃ being ab-
sent for Nf = 0. The other two coefficients, ã and c̃, are
comparable in size in the quenched and dynamical the-
ories. We note however that uncertainties only include
statistical errors, and relative discretization errors and
the systematics of the perturbative renormalization con-
stants may be significant. Finally, we observe that the
mass dependence for the Nf = 4 results seems to affect
mostly the coefficient ã, which is consistent with the chi-
ral dependence in Eq. (23), and goes also in the direction
of enhancing the ratio A�/A+ towards the chiral limit.

Half-difference
Case M⇡ ã b̃ �

2
/d.o.f.

Nf = 0 570 MeV -1.55(2) — 8.8/6
Nf = 4 560 MeV -1.03(13) -1.44(13) 6.6/2
Nf = 4 360 MeV -1.49(15) -1.32(18) 0.3/2

Half-sum
Case M⇡ c̃ d̃ �

2
/d.o.f.

Nf = 0 570 MeV 2.1(1) — 3.5/6
Nf = 4 560 MeV 1.2(3) 2.2(3) 1.3/2
Nf = 4 360 MeV 2.4(4) 1.6(4) 3.2/2

TABLE V: Summary of results for the 1/Nc fits to the half-
sum and half-difference of the amplitudes A±. Errors are only
statistical.

B. Kaon B-parameter (BK)

The kaon B-parameter, BK , is defined from the matrix
element of the �S = 2 operator that mediates neutral
kaon oscillations at physical kinematics:

hK̄0|O�S=2(µ)|K0i = 8

3
f2
KM2

KB̄K(µ). (36)

It is customary to quote the renormalization group inde-
pendent (RGI) version, labelled as B̂K . Its value at the
physical point has been computed accurately in Nf = 2,
2+ 1, and 2+ 1+ 1 simulations [53, 57–61] (see Ref. [62]
for a review).

In our setup, B̂K coincides with the renormalized ratio
R̄+ up to a normalization. Specifically, we have

B̂K =
3

4
ĉ+(a�1)R̄+ (37)

where ĉ+ can be read off Table I. There are two essential
differences in our setup: all meson masses are degenerate,
in particular MK = M⇡, and we have an active light
charm quark. Both can significantly affect the value of
B̂K .

We show our results in Fig. 5. We observe a very sig-
nificant Nc dependence of B̂K for Nf = 4, and a much
milder one for Nf = 0. For Nc = 3, the quenched result
agrees with the standard value of B̂K , while the Nf = 4
result is about 25% smaller. We have included as bands
the Buras-Bardeen-Gerard (BBG) Dual QCD prediction
from Ref. [18], using inputs on meson masses from our
own simulations in both cases — quenched and dynami-
cal. We find that our results are reasonably compatible
with the BBG prediction, in particular regarding the sup-
pression of B̂K in the presence of a light charm.

To conclude this subsection, we can use the scaling
in Nc to infer a value of B̂K with three active flavours
and quasi-physical kinematics. For this, we use the co-
efficients ã � d̃ in Table V for the case of Nf = 4 and
M⇡ = 560 MeV, and so predict the value of A+ with
Nc = 3 and Nf = 3 at the same value of the pion mass,
degenerate with the kaon. We can the get the RGI value
B̂K as in Eq. (37), extracting R̄+ and using the ĉ+(a�1)
for three-flavour QCD 5. We find

B̂K

��
MK=M⇡

= 0.67(2)stat(6)Z+(3)fit , (38)

including statistical error, and a ⇠ 10% error due to the
systematics of the renormalization constants. We also
quote a “fit” error that we estimate by using the Nc scal-
ing derived from a direct fit of the half-sum and difference
of R̄± instead of A±.

5 The required parameters for Nc = 3, Nf = 3 are k
+(MW ) =

1.038, U
+(a�1

,MW ) = 0.851, and ĉ
+(a�1) = 0.841. In the

evaluation of ĉ
�(a�1) we have used ⇤MS = 341 MeV from Ref.

[41].
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FIG. 6: Chiral extrapolation of A+ and the product A
+
A

�. The data points are also shown in in Table IV. Empty squares
for Nc = 3 indicate a finer lattice spacing. Solid lines indicate a simultaneous chiral and Nc fit as in Eq. (23). Dashed lines
represent the chiral extrapolation of the data points for Nc = 3 following Eqs. (23) and (27). Errors are only statistical.

Fit 1 for A
+

a� Nf b� + c� Nfd� L
(0)

L
(1)
+ �2

/d.o.f.
-2.2(6) -3(4) 7(7) 2.4(8) -11(4) 12.0/11

Fit 1 for A
+
A

�

↵ � L
(1)
� � L

(1)
+ �2

/d.o.f.
1.6(4) -7.2(9) 1.4(4) 26.7/13

TABLE VI: Results for Fit 1: the simultaneous chiral and Nc

fits for A
+ and A

+
A

�. Errors are only statistical.

Fit 2 for A
+

g
+

L
r
+ �2

/d.o.f.
0.190(27) -1.1(7) 4.9/5

Fit 2 for A
+
A

�

g
+
g
�

L
r
� � L

r
+ �2

/d.o.f.
0.80(6) 0.8(2) 6.2/5

TABLE VII: Results for Fit 2: the chiral fit at Nc = 3 for A+

and A
+
A

�. Errors are only statistical.

D. K ! ⇡⇡ amplitudes in ChPT

Using the result for the ratio of couplings in Eq. (42),
and the NLO ChPT prediction in Eq. (32), we can obtain
an indirect result for the ratio of isospin amplitudes in the
K ! ⇡⇡ decay for Nc = 3. In Fig. 7, we show this pre-
diction as a function of an unknown effective scale ⇤e↵ .
This prediction, valid for M⇡ = MD = 0 and physical
MK , shows small NLO effects in a wide range of values
of the effective scale.

We are now in the position to quote a final result for

the ratio of isospin amplitudes:

Re
A0

A2

�����
Nf=4

= 24(5)stat(4)fit(5)Z±(3)NLO. (43)

In the previous equation, the various error sources origi-
nate as follows : (i) statistical error, (ii) systematic error
from the difference between fit 1 and 2 in Eq. (42), (iii) a
20% error from the renormalization constants — see Sec-
tion V B —, and (iv) a 10% error from the NLO effects
— see Fig. 7. Combining all error sources in quadrature
results in a ⇠ 30% uncertainty on the total result, which
is dominated by systematics. We also stress that this is
a result in the theory with a light charm quark. Interest-
ingly, this indirect computation yields a value compatible
with the experimental result for the �I = 1/2 enhance-
ment.

VII. CONCLUSIONS

We have presented the first non-perturbative study of
the scaling of �S = 1 weak amplitudes with the number
of colours, Nc = 3 � 6, in a theory with four degenerate
light flavours Nf = 4. These results have been obtained
from dynamical simulations with clover Wilson fermions,
at a ' 0.075 fm and a ' 0.065 fm and pion masses in
the range 360 � 570 MeV. We have analysed the K !
⇡ amplitudes A±, mediated by the two current-current
operators Q± of the �S = 1 weak Hamiltonian in Eq. (1).

The diagrammatic analysis of the large-Nc scaling of
these observables presented in Sect. III allows to classify
the subleading Nc corrections, and demonstrates the an-
ticorrelation of the leading O(1/Nc) and O(Nf/N2

c ) con-
tributions in the A± amplitudes. Our numerical results
confirm this expectation and show that these corrections
are naturally large in the Veneziano scaling limit, i.e.,
the coefficients of both corrections are O(1). They can
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anatomy of ΔI=1/2: conclusions
• BK displays a large Nf (in GIM limit), chiral dependence 

• ratio of decay amplitudes in GIM limit comes very 
close to the physical value (!) 

• handle on Nf dependence in principle allows us to make 
connection with other physical kinematics, but we are 
still missing a direct analysis of the mc dependence 

• “mechanism budget”:
short-distance 
physics at “intrinsic” QCD scale  
physics at charm scale (penguins) 
final state interactions

⇠ ⇤QCD

x 3 
x 4 [gluons] x 2 [quarks] (Nf ????) 
x O(1) (???) 
small?
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since:

A� +A+

2
= 1 + c̃

1

N2
c

+ d̃
Nf

N3
c

+ . . . ,

A� �A+

2
= �ã

1

Nc
� b̃

Nf

N2
c

+ . . . .

(35)

In the following, we compare the results of the fits to
Eq. (35) in three different scenarios:

1. Quenched results (Nf = 0) at a heavy pion mass
⇠ 570 MeV.

2. Dynamical results (Nf = 4) at a heavy pion mass
⇠ 560 MeV (ensembles A10).

3. Dynamical results (Nf = 4) at a lighter pion mass
⇠ 360 MeV (ensembles A40).

The results for the coefficients ã� d̃ for the three scenar-
ios are presented in Table V and Fig. 4. The coefficients
are all of O(1) and therefore of natural size. Importantly
the sign of the ã and b̃ coefficients is the same and neg-
ative. This implies both terms contribute to reduce the
A+ amplitude and enlarge, in a correlated way, the am-
plitude A�. The fact that b̃, d̃ ⇠ O(1) implies a very large
unquenching effect in the large-Nc scaling, and the ratio
A�/A+, which is however compatible with the expansion
in Eq. (35). Specifically, it is due to b̃ and d̃ being ab-
sent for Nf = 0. The other two coefficients, ã and c̃, are
comparable in size in the quenched and dynamical the-
ories. We note however that uncertainties only include
statistical errors, and relative discretization errors and
the systematics of the perturbative renormalization con-
stants may be significant. Finally, we observe that the
mass dependence for the Nf = 4 results seems to affect
mostly the coefficient ã, which is consistent with the chi-
ral dependence in Eq. (23), and goes also in the direction
of enhancing the ratio A�/A+ towards the chiral limit.

Half-difference
Case M⇡ ã b̃ �

2
/d.o.f.

Nf = 0 570 MeV -1.55(2) — 8.8/6
Nf = 4 560 MeV -1.03(13) -1.44(13) 6.6/2
Nf = 4 360 MeV -1.49(15) -1.32(18) 0.3/2

Half-sum
Case M⇡ c̃ d̃ �

2
/d.o.f.

Nf = 0 570 MeV 2.1(1) — 3.5/6
Nf = 4 560 MeV 1.2(3) 2.2(3) 1.3/2
Nf = 4 360 MeV 2.4(4) 1.6(4) 3.2/2

TABLE V: Summary of results for the 1/Nc fits to the half-
sum and half-difference of the amplitudes A±. Errors are only
statistical.

B. Kaon B-parameter (BK)

The kaon B-parameter, BK , is defined from the matrix
element of the �S = 2 operator that mediates neutral
kaon oscillations at physical kinematics:

hK̄0|O�S=2(µ)|K0i = 8

3
f2
KM2

KB̄K(µ). (36)

It is customary to quote the renormalization group inde-
pendent (RGI) version, labelled as B̂K . Its value at the
physical point has been computed accurately in Nf = 2,
2+ 1, and 2+ 1+ 1 simulations [53, 57–61] (see Ref. [62]
for a review).

In our setup, B̂K coincides with the renormalized ratio
R̄+ up to a normalization. Specifically, we have

B̂K =
3

4
ĉ+(a�1)R̄+ (37)

where ĉ+ can be read off Table I. There are two essential
differences in our setup: all meson masses are degenerate,
in particular MK = M⇡, and we have an active light
charm quark. Both can significantly affect the value of
B̂K .

We show our results in Fig. 5. We observe a very sig-
nificant Nc dependence of B̂K for Nf = 4, and a much
milder one for Nf = 0. For Nc = 3, the quenched result
agrees with the standard value of B̂K , while the Nf = 4
result is about 25% smaller. We have included as bands
the Buras-Bardeen-Gerard (BBG) Dual QCD prediction
from Ref. [18], using inputs on meson masses from our
own simulations in both cases — quenched and dynami-
cal. We find that our results are reasonably compatible
with the BBG prediction, in particular regarding the sup-
pression of B̂K in the presence of a light charm.

To conclude this subsection, we can use the scaling
in Nc to infer a value of B̂K with three active flavours
and quasi-physical kinematics. For this, we use the co-
efficients ã � d̃ in Table V for the case of Nf = 4 and
M⇡ = 560 MeV, and so predict the value of A+ with
Nc = 3 and Nf = 3 at the same value of the pion mass,
degenerate with the kaon. We can the get the RGI value
B̂K as in Eq. (37), extracting R̄+ and using the ĉ+(a�1)
for three-flavour QCD 5. We find

B̂K

��
MK=M⇡

= 0.67(2)stat(6)Z+(3)fit , (38)

including statistical error, and a ⇠ 10% error due to the
systematics of the renormalization constants. We also
quote a “fit” error that we estimate by using the Nc scal-
ing derived from a direct fit of the half-sum and difference
of R̄± instead of A±.

5 The required parameters for Nc = 3, Nf = 3 are k
+(MW ) =

1.038, U
+(a�1

,MW ) = 0.851, and ĉ
+(a�1) = 0.841. In the

evaluation of ĉ
�(a�1) we have used ⇤MS = 341 MeV from Ref.

[41].

Nf = 3
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FIG. 6: Chiral extrapolation of A+ and the product A
+
A

�. The data points are also shown in in Table IV. Empty squares
for Nc = 3 indicate a finer lattice spacing. Solid lines indicate a simultaneous chiral and Nc fit as in Eq. (23). Dashed lines
represent the chiral extrapolation of the data points for Nc = 3 following Eqs. (23) and (27). Errors are only statistical.

Fit 1 for A
+

a� Nf b� + c� Nfd� L
(0)

L
(1)
+ �2

/d.o.f.
-2.2(6) -3(4) 7(7) 2.4(8) -11(4) 12.0/11

Fit 1 for A
+
A

�

↵ � L
(1)
� � L

(1)
+ �2

/d.o.f.
1.6(4) -7.2(9) 1.4(4) 26.7/13

TABLE VI: Results for Fit 1: the simultaneous chiral and Nc

fits for A
+ and A

+
A

�. Errors are only statistical.

Fit 2 for A
+

g
+

L
r
+ �2

/d.o.f.
0.190(27) -1.1(7) 4.9/5

Fit 2 for A
+
A

�

g
+
g
�

L
r
� � L

r
+ �2

/d.o.f.
0.80(6) 0.8(2) 6.2/5

TABLE VII: Results for Fit 2: the chiral fit at Nc = 3 for A+

and A
+
A

�. Errors are only statistical.

D. K ! ⇡⇡ amplitudes in ChPT

Using the result for the ratio of couplings in Eq. (42),
and the NLO ChPT prediction in Eq. (32), we can obtain
an indirect result for the ratio of isospin amplitudes in the
K ! ⇡⇡ decay for Nc = 3. In Fig. 7, we show this pre-
diction as a function of an unknown effective scale ⇤e↵ .
This prediction, valid for M⇡ = MD = 0 and physical
MK , shows small NLO effects in a wide range of values
of the effective scale.

We are now in the position to quote a final result for

the ratio of isospin amplitudes:

Re
A0

A2

�����
Nf=4

= 24(5)stat(4)fit(5)Z±(3)NLO. (43)

In the previous equation, the various error sources origi-
nate as follows : (i) statistical error, (ii) systematic error
from the difference between fit 1 and 2 in Eq. (42), (iii) a
20% error from the renormalization constants — see Sec-
tion V B —, and (iv) a 10% error from the NLO effects
— see Fig. 7. Combining all error sources in quadrature
results in a ⇠ 30% uncertainty on the total result, which
is dominated by systematics. We also stress that this is
a result in the theory with a light charm quark. Interest-
ingly, this indirect computation yields a value compatible
with the experimental result for the �I = 1/2 enhance-
ment.

VII. CONCLUSIONS

We have presented the first non-perturbative study of
the scaling of �S = 1 weak amplitudes with the number
of colours, Nc = 3 � 6, in a theory with four degenerate
light flavours Nf = 4. These results have been obtained
from dynamical simulations with clover Wilson fermions,
at a ' 0.075 fm and a ' 0.065 fm and pion masses in
the range 360 � 570 MeV. We have analysed the K !
⇡ amplitudes A±, mediated by the two current-current
operators Q± of the �S = 1 weak Hamiltonian in Eq. (1).

The diagrammatic analysis of the large-Nc scaling of
these observables presented in Sect. III allows to classify
the subleading Nc corrections, and demonstrates the an-
ticorrelation of the leading O(1/Nc) and O(Nf/N2

c ) con-
tributions in the A± amplitudes. Our numerical results
confirm this expectation and show that these corrections
are naturally large in the Veneziano scaling limit, i.e.,
the coefficients of both corrections are O(1). They can
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conclusions & outlook
• non-leptonic kaon decay remains an open problem… and a fertile ground to learn about 

strong interaction physics 

- indirect CP violation well under control 

- direct CP violation, isospin enhancement still witness claims of new physics 

• lattice toolbox making steady progress 

- controlled quantitative predictions for amplitudes are at hand 

- the anatomy of the effect is ever better understood, pure “low-energy” dynamics seems to play 
major role in enhancement 

• interesting spinoffs: qualitative understanding of meson interactions at low energies 

• a theorist’s paradise: field-theory, phenomenology, and computational physics all 
simultaneously at play!
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’t Hooft’s large Nc limit of QCD: [’t Hooft 1974]

QCD @ large Nc

Nc ! 1|�=g2Nc=fixed

[Veneziano 1979]
[also: Witten 1979]

Motivation

Meson decay constants:

preserves asymptotic freedom 

captures most non-perturbative properties 
(confinement, chiral SSB, …) 

leads to some quantitative non-perturbative 
predictions!

à la ’t Hooft proper:                                            chiral symmetry
Nf

Nc
! 0 ) m2

⌘0 = m2
⇡ , U(Nf )

à la Veneziano:                                                    chiral symmetry
Nf

Nc
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⇡ , SU(Nf )
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Nc ! 1|�=g2Nc=fixed

[Veneziano 1979]
[also: Witten 1979]

preserves asymptotic freedom 

captures most non-perturbative properties 
(confinement, chiral SSB, …) 

leads to some quantitative non-perturbative 
predictions!

Motivation

Quark condensate:

à la ’t Hooft proper:                                            chiral symmetry
Nf

Nc
! 0 ) m2

⌘0 = m2
⇡ , U(Nf )

à la Veneziano:                                                    chiral symmetry
Nf

Nc
= const ) m2
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lattice setup

4

where P ab(x) =  ̄a(x)�5 b(x), and Aab
0 (x) = ZA ̄a(x)�0�5 b(x). The renormalised ratios R̂± have been computed

in SU(Nc) for Nc = 3� 7 and in the quenched approximation. Note that the latter does not modify the leading large
Nc result, but it can modify the first subleading 1/Nc corrections. We have implemented the required correlation
functions in the source code first developed in [30] and further optimized in [31]. The number of colours and the lattice
size are given in the first two columns of Table I. The spatial volume, L/a = 16, is kept fixed in all simulations. On
the other hand, T/a = 48 for Nc = 3, 4, 5 and T/a = 32 for Nc = 6, 7. Following [32] the bare coupling, � = 2Nc/g20 ,
is tuned with Nc in such a way that the string tension remains constant a

p
� ' 0.2093; this results in a ' 0.093 fm

with � = 1 GeV/fm. The bare ’t Hooft coupling � is found to be well described by the following scaling

� = Ncg
2
0 = 2.775(3) +

1.90(3)

N2
c

. (17)

The coupling � as a function of Nc is given in the third column of Table I. In order to preserve the multiplicative
renormalisation of Q±, while avoiding the high computational cost of a simulation with exactly chiral lattice fermions,
we use a Wilson twisted-mass fermion regularisation [33]. (For the gauge sector we employ the standard plaquette
action.) This allows to devise a formulation of valence quarks that not only preserves good renormalisation properties,
but also prevents the appearance of linear cuto↵ e↵ects in a [34]. The full-twist condition amounts to having a vanishing
current quark mass mPCAC from the axial Takahashi-Ward identity in so-called twisted quark field variables. The
value of amPCAC in our simulations is given in the fourth column of Table I, where we can see that the full-twist
condition amPCAC = 0, expected from an accurate tuning of the Wilson critical mass (which we again take from [32]),
is satisfied to a varying degree of accuracy; the deviations present are however irrelevant within the precision of our
results. The bare quark mass is chosen to provide a pseudoscalar mass not far from the physical kaon mass in all
cases (see the fifth column of Table I). Eventually, our results for the bare ratios R± defined in eq. (16), computed in
the SU(3) limit, are shown in the last two columns of the table.

Nc T/a � amPCAC amPS R+
bare R�

bare

3 48 6.0175 -0.002(14) 0.2718(61) 0.774(21) 1.218(31)
4 48 11.028 -0.0015(11) 0.2637(39) 0.783(15) 1.198(19)
5 48 17.535 0.0028(9) 0.2655(31) 0.839(8) 1.145(12)
6 32 25.452 0.0013(7) 0.2676(28) 0.871(6) 1.125(7)
7 32 34.8343 -0.0034(6) 0.2819(19) 0.880(5) 1.122(5)

TABLE I: Lattice simulation results. Lattice sizes are (L/a)3 ⇥ (T/a), with L/a = 16 throughout. The twisted bare mass
is fixed to aµ = 0.02. The lattice spacing is fixed by the string tension through a

p
� ' 0.2093 [32]. mPCAC is the current

mass obtained from the axial Takahashi-Ward identity in twisted quark field variables. mPS is the kaon and pion mass in our
mu = md = ms limit. R± are our results for the bare ratios given in eq. (16).

In Table II we show the various renormalisation constants and RG running factors needed to compute the renor-
malised amplitudes B̂K and A± as a function of the number of colours. First of all, in order to get the renormalised
ratios R̂± from the bare ones computed on the lattice, we have used the known one-loop lattice renormalisation con-
stants in the RI scheme of ref. [35]. Note that, due to the breaking of chiral symmetry in the adopted regularisation,
the axial current requires a finite, Nc-dependent, renormalisation constant ZA, that has to be included in the factors
Z±
R in eq. (10). This has also been taken from ref. [35]. The values of Z±(a�1) are given in the rightmost column of

Table II. The values of the normalisation coe�cients ĉ±(a�1) and of the running of the renormalised operators from
the scale of lattice computations, µ = a�1, to the scale of the e↵ective theory, MW , computed using perturbative
results at two-loops in the RI scheme [22], are given in the fifth and fourth columns of Table II, respectively. In the
evaluation of the ĉ�(µ) factors we have used the large Nc scaling of the ⇤ parameter found in ref. [36],

⇤MS
p
�

= 0.503(2)(40) +
0.33(3)(3)

N2
c

. (18)

Eventually, the Wilson coe�cients k±(MW ), also computed following ref. [22], are given in the third column of
Table II, while their RGI counterparts k̂±, defined in eq. (8), are given in the second column.

Our results for B̂K as a function of 1/Nc are shown in Fig. 1 together with a linear fit to the data, represented by
a solid black line. The grey band shows the 1� error on the fit. We compare our results with our own evaluation of
the predictions of the phenomenological analysis in ref. [5], represented by a light red band for Nf = 3 and by a blue
band for Nf = 0. For Nf = 3 we use in the latter the same values for hadronic masses and decay constants as in [5],
and obtained the decay constant for Nc 6= 3 by rescaling FK = FK(Nc = 3)

p
Nc/3. For Nf = 0 we use as input

quenched simulations in 163 lattices at 
(roughly) constant PS mass [Wilson+Wilson] 

renormalisation (RI scheme) at scale around 2 
GeV performed using one-loop P.T.

[Constantinou et al. 2011]
[Alexandrou et al. 2012]

perturbative two-loop RG running in RI to 
connect to RGIs

[Ciuchini et al. 1998]
[Buras et al. 2000]

dynamical simulations at varying PS mass 
and constant t0 [Iwasaki+Clover]
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also send the charm quark mass to zero with the up quark
mass. The calculation for ms > mu = md = mc = 0
yields:

Re
A0

A2

���
M⇡,MD!0,Mphys

K

=
1

2
p
2

✓
1 + 3

g�

g+

◆

+
17

12
p
2

✓
1 +

1

17

g�

g+

◆
M2

K

(4⇡FK)2
log

⇤2
e↵

M2
K

,

(32)

where ⇤e↵ is an unknown scale that contains information
of the NLO LECs of the effective Chiral Lagrangian and
the effective weak Hamiltonian. We note that the NLO
effect tends to enhance (reduce) the ratio for ⇤e↵ > MK

(⇤e↵ < MK).

V. LATTICE SETUP

Ensemble Nc � csw T ⇥ L am
s
0

3A10

3 1.778 1.69

36⇥ 20 -0.4040
3A11 48⇥ 24 -0.4040
3A20 48⇥ 24 -0.4060
3A30 48⇥ 24 -0.4070
3A40 60⇥ 32 -0.4080
3B10 3 1.820 1.66 48⇥ 24 -0.3915
3B20 60⇥ 32 -0.3946
4A10

4 3.570 1.69
36⇥ 20 -0.3725

4A30 48⇥ 24 -0.3760
4A40 60⇥ 32 -0.3780
5A10

5 5.969 1.69
36⇥ 20 -0.3458

5A30 48⇥ 24 -0.3500
5A40 60⇥ 32 -0.3530
6A10

6 8.974 1.69
36⇥ 20 -0.3260

6A30 48⇥ 24 -0.3311
6A40 60⇥ 32 -0.3340

TABLE III: Summary of the simulation parameters of the
various ensembles used in this work.

A. Simulation and matching of sea and valence
sectors

Our lattice setup is the same as the one presented in
Ref. [25], and we refer to it for details on the simula-
tions and scale setting. We use ensembles with Nf = 4
dynamical fermions for an SU(Nc) gauge theory, with
Nc = 3� 6. They have been generated using the HiRep
code [45, 46]. We have chosen the Iwasaki gauge action
(following previous experience with 2+1+1 simulations
[47]) and clover Wilson fermions for the sea quarks, with
the plaquette-boosted one-loop value of csw. The sim-
ulation parameters are shown in Table III. The lattice
spacing is found to be a ⇠ 0.075 fm for all values of Nc

(see also Ref. [25]). In addition, we have produced two
ensembles with a finer lattice spacing, a ⇠ 0.065 fm, to
estimate discretization effects.

In order to achieve automatic O(a) improvement3
[50] and avoid the mixing of different-chirality operators
for weak decays, we employ maximally twisted valence
quarks [51], i.e., the mixed-action setup [52] previously
used in Refs. [48, 49]. Working in twisted quark field vari-
ables, maximal twist is ensured by tuning the untwisted
bare valence mass mv to the critical value for which the
valence PCAC mass is zero:

lim
mv!mcr

mv
pcac ⌘ lim

mv!mcr

@0 hAij
0 (x)P

ji(y)i
2 hP ij(x)P ji(y)i = 0. (33)

The bare twisted mass parameter µ0 is tuned such that
the pion mass in the sea and valence sectors coincide,
Mv

⇡ = Ms
⇡.

Since twisted mass already provides O(a) improve-
ment, the clover improvement parameter csw can be cho-
sen to be an arbitrary value in the valence sector. We
choose csw = 0 in the valence sector4 for this work, our
main motivation being that this minimizes the isospin
breaking effects coming from the twisted-mass action.
In addition, this will allow for a partial crosscheck of
the systematics due to the use of perturbative renormal-
ization constants, by comparing the latter to the non-
perturbative determination in Ref. [53] for Nc = 3 (see
below). Finally, we also observe that csw = 0 leads to
smaller statistical errors.

In Table IV we present our measurements for the en-
sembles used in this work. We have achieved good tuning
to maximal twist, with the PCAC mass being zero within
1 or 2�. In addition, the valence and sea pion masses are
matched also within 1 or 2�. The bare results for the
ratios are also presented in the same table, together with
the chiral parameter ⇠ = M2

⇡/(4⇡F⇡)2, that will be used
for the chiral extrapolations

We conclude the discussion of the simulation setup by
mentioning that we will compare the new results with
dynamical fermions to the ones in Refs. [5, 6]. Those
results used quenched simulations, with plaquette gauge
action and twisted mass fermions. The lattice spacing
was a ⇠ 0.093 fm and the the pion mass was fixed at
around M⇡ = 550 � 590 MeV for Nc = 3 � 8 and 17.
In this work, we perform a reanalysis of these quenched
data.

3 As discussed in [48, 49], there are residual O(a) cutoff effects
from virtual sea quarks, which are proportional to am

s and carry
coefficients that are O(↵2

s ) in perturbation theory. These effects
are expected to be numerically very small and thus irrelevant for
the discussion below. It is also worth stressing that using the
one-loop value of csw will also lead to residual effects of O(a↵2

s ).
4 This differs from Ref. [25], where we picked csw = 1.69. This

value matches the one in the sea sector.

+ extra quenched points (Nc=8,17)
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The measured hierarchy of ⇠ 22 between A0 and A2 must
then be translated into a large ratio of the couplings g±.
Note that for g+ = g� = 1, the expected large-Nc result
is recovered, A0/A2 =

p
2. Large 1/Nc corrections in the

g�/g+ ratio could therefore be the origin of the �I = 1/2
rule.

We have also derived the ChPT NLO result for the
non-degenerate case in which we send the pion mass to
zero, while keeping the kaon mass at its physical value7.
As we are forced to work in the exact GIM limit, we must
also send the charm quark mass to zero with the up quark
mass. The calculation for ms > mu = md = mc = 0
yields:

Re
A0

A2

���
M⇡,MD!0,Mphys

K

=
1

2
p
2

✓
1 + 3

g�

g+

◆

+
17

12
p
2

✓
1 +

1

17

g�

g+

◆
M2

K

(4⇡FK)2
log

⇤2
e↵

M2
K

,

(32)

where ⇤e↵ is an unknown scale that contains information
of the NLO LECs of the effective Chiral Lagrangian and
the effective weak Hamiltonian. We note that the NLO
effect tends to enhance (reduce) the ratio for ⇤e↵ > MK

(⇤e↵ < MK).

V. LATTICE SETUP

Ensemble Nc � csw T ⇥ L am
s
0 # configs

3A10

3 1.778 1.69

36⇥ 20 -0.4040 195
3A11 48⇥ 24 -0.4040 81
3A20 48⇥ 24 -0.4060 155
3A30 48⇥ 24 -0.4070 149
3A40 60⇥ 32 -0.4080 94
3B10 3 1.820 1.66 48⇥ 24 -0.3915 182
3B20 60⇥ 32 -0.3946 164
4A10

4 3.570 1.69
36⇥ 20 -0.3725 82

4A30 48⇥ 24 -0.3760 153
4A40 60⇥ 32 -0.3780 55
5A10

5 5.969 1.69
36⇥ 20 -0.3458 52

5A30 48⇥ 24 -0.3500 39
5A40 60⇥ 32 -0.3530 36
6A10

6 8.974 1.69
36⇥ 20 -0.3260 35

6A30 48⇥ 24 -0.3311 30
6A40 60⇥ 32 -0.3340 40

TABLE III: Summary of the simulation parameters of the
various ensembles used in this work.

7 See Ref. [46] for similar calculation in Nf = 3 ChPT.

A. Simulation and matching of sea and valence
sectors

Our lattice setup is the same as the one presented in
Ref. [26], and we refer to it for details on the simula-
tions and scale setting. We use ensembles with Nf = 4
dynamical fermions for an SU(Nc) gauge theory, with
Nc = 3� 6. They have been generated using the HiRep
code [47, 48]. We have chosen the Iwasaki gauge action
(following previous experience with 2+1+1 simulations
[49]) and clover Wilson fermions for the sea quarks, with
the plaquette-boosted one-loop value of csw. The simu-
lation parameters are shown in Table III. We find that
a separation of � 10 units of Montecarlo time produces
no autocorrelation in the ratios. The lattice spacing is
found to be a ⇠ 0.075 fm for all values of Nc (see also
Ref. [26]). In addition, we have produced two ensembles
with a finer lattice spacing, a ⇠ 0.065 fm, to estimate
discretization effects.

In order to achieve automatic O(a) improvement8
[52] and avoid the mixing of different-chirality operators
for weak decays, we employ maximally twisted valence
quarks [53], i.e., the mixed-action setup [54] previously
used in Refs. [50, 51]. Working in twisted quark field vari-
ables, maximal twist is ensured by tuning the untwisted
bare valence mass mv to the critical value for which the
valence PCAC mass is zero:

lim
mv!mcr

mv
pcac ⌘ lim

mv!mcr

@0 hAij
0 (x)P

ji(y)i
2 hP ij(x)P ji(y)i = 0. (33)

The bare twisted mass parameter µ0 is tuned such that
the pion mass in the sea and valence sectors coincide,
Mv

⇡ = Ms
⇡.

Since twisted mass already provides O(a) improve-
ment, the clover improvement parameter csw can be cho-
sen to be an arbitrary value in the valence sector. We
choose csw = 0 in the valence sector9 for this work, our
main motivation being that this minimizes the isospin
breaking effects coming from the twisted-mass action.
In addition, this will allow for a partial crosscheck of
the systematics due to the use of perturbative renormal-
ization constants, by comparing the latter to the non-
perturbative determination in Ref. [55] for Nc = 3 (see
below). Finally, we also observe that csw = 0 leads to
smaller statistical errors.

In Table IV we present our measurements for the en-
sembles used in this work. We have achieved good tuning
to maximal twist, with the PCAC mass being zero within

8 As discussed in [50, 51], there are residual O(a) cutoff effects
from virtual sea quarks, which are proportional to am

s and carry
coefficients that are O(↵2

s ) in perturbation theory. These effects
are expected to be numerically very small and thus irrelevant for
the discussion below. It is also worth stressing that using the
one-loop value of csw will also lead to residual effects of O(a↵2

s ).
9 This differs from Ref. [26], where we picked csw = 1.69. This

value matches the one in the sea sector.

[extension to Nf=4 framework of 
Golterman, Leung PRD 56 (1997) 2950]
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FIG. 6: Chiral extrapolation of A
+ and the product A

+
A

�. The data points are also shown in Table IV. Empty squares
for Nc = 3 indicate a finer lattice spacing. Solid lines indicate a simultaneous chiral and Nc fit as in Eq. (23). Dashed lines
represent the chiral extrapolation of the data points for Nc = 3 following Eqs. (23) and (27). Errors are only statistical.

The complete results of these fits are shown in Tables VI,
and VII, and also in Fig. 6.

From these results, we obtain for the ratio of couplings
at Nc = 3:

g�

g+

�����
fit 1

= 26(6),
g�

g+

�����
fit 2

= 22(5), (42)

where errors are only statistical, but correlations are
taken into account.

Fit 1 for A
+

a� Nf b� + c� Nfd� L
(0)

L
(1)
+ �

2
/d.o.f.

-2.2(6) -3(4) 7(7) 2.4(8) -11(4) 12.0/11

Fit 1 for A
+
A

�

↵ � L
(1)
� � L

(1)
+ �

2
/d.o.f.

1.6(4) -7.2(9) 1.4(4) 26.7/13

TABLE VI: Results for Fit 1: the simultaneous chiral and Nc

fits for A
+ and A

+
A

�. Errors are only statistical.

Fit 2 for A
+

g
+

L
r
+ �

2
/d.o.f.

0.190(27) -1.1(7) 4.9/5

Fit 2 for A
+
A

�

g
+
g
�

L
r
� � L

r
+ �

2
/d.o.f.

0.80(6) 0.8(2) 6.2/5

TABLE VII: Results for Fit 2: the chiral fit at Nc = 3 for A+

and A
+
A

�. Errors are only statistical.

D. K ! ⇡⇡ amplitudes in ChPT

Using the result for the ratio of couplings in Eq. (42),
and the NLO ChPT prediction in Eq. (32), we can obtain
an indirect result for the ratio of isospin amplitudes in the
K ! ⇡⇡ decay for Nc = 3. In Fig. 7, we show this pre-
diction as a function of an unknown effective scale ⇤e↵ .
This prediction, valid for M⇡ = MD = 0 and physical
MK , shows small NLO effects in a wide range of values
of the effective scale.

We are now in the position to quote a final result for
the ratio of isospin amplitudes:

Re
A0

A2

�����
Nf=4

= 24(5)stat(4)fit(5)Z±(3)NLO, (43)

where the central value comes from the fit 2 result in Eq.
(42). In the previous equation, the various error sources
originate as follows : (i) statistical error, (ii) systematic
error from the difference between fit 1 and 2 in Eq. (42),
(iii) a 20% error from the renormalization constants —
see Section VB —, and (iv) a 10% error from the NLO ef-
fects — see Fig. 7. Combining all error sources in quadra-
ture results in a ⇠ 30% uncertainty on the total result,
which is dominated by systematics. We also stress that
this is a result in the theory with a light charm quark. In-
terestingly, this indirect computation yields a value com-
patible with the experimental result for the �I = 1/2
enhancement.

VII. CONCLUSIONS

We have presented the first non-perturbative study of
the scaling of �S = 1 weak amplitudes with the number
of colours, Nc = 3 � 6, in a theory with four degenerate
light flavours Nf = 4. These results have been obtained
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FIG. 4: Half-sum and half-difference of the amplitudes A
± as a function of N�1

c for three different cases: (i) quenched results
from Ref. [6] in blue, (ii) new dynamical results at a pion similar to the quenched case (red), and (iii) dynamical results at a
lighter pion mass (orange). The fit results are shown in Table V. Error bars include only statistical errors.
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FIG. 5: Lattice results for B̂K , defined in Eq. (37), in the
case of Nf = 0 (see Refs. [6, 7]), and Nf = 4 (this work).
Error bars are only statistical errors. We also include the
predictions from Ref. [19], where the band indicates the values
obtained when varying the involved matching scale M from
600 to 1000 MeV.

for three-flavour QCD 10. We find

B̂K

��
MK=M⇡

= 0.67(2)stat(6)Z+(3)fit , (38)

including statistical error, and a ⇠ 10% error due to the
systematics of the renormalization constants. We also
quote a “fit” error that we estimate by using the Nc scal-
ing derived from a direct fit of the half-sum and difference
of R̄± instead of A±.

We have not found results in the literature for the de-
generate case that we can compare to. On the other

10 The required parameters for Nc = 3, Nf = 3 are k
+(MW ) =

1.038, U
+(a�1

,MW ) = 0.851, and ĉ
+(a�1) = 0.841. In the

evaluation of ĉ
�(a�1) we have used ⇤MS = 341 MeV from Ref.

[42].

hand, ChPT relates the value of B̂K in the degenerate
case, to the quasi-physical (QP) situation with M⇡ = 0
and MK at its physical value:

B̂QP
K = B̂K

��
MK=M⇡

"
1 +

2

3

✓
MK

4⇡FK

◆2

log
⇤BK
e↵

MK

#
, (39)

where ⇤BK
e↵ labels an unknown scale that parametrizes

the effect of the unknown LECs. For ⇤BK
e↵ > MK , B̂QP

K is
larger than B̂K and could be compatible with the existing
results at the physical point from Nf = 2 + 1, Nc = 3
simulations [55, 59–63].

C. Extraction of the effective couplings g
±

The main goal of this work is to compute the ratio
g�/g+ by extrapolating A± to the chiral limit. For the
required chiral extrapolation, we follow the same strategy
as in Ref. [45]. We extract g+ from a chiral fit to A+,
and the product g+g� from that of the product A+A� .
The ratio can then be evaluated as

g�

g+
⌘

�
g�g+

�
⇥ 1

(g+)2
. (40)

This approach results in a milder chiral extrapolation,
that will hopefully introduce a smaller systematic error.

We have performed two kinds of fits. In Fit 1, we use
all data points with Nc = 3� 6 in a simultaneous chiral
and Nc fit using Eqs. (23) and (27), incorporating the
1/Nc expansion of the couplings as in Eqs. (25,26,29).
In Fit 2, we fit using only the data with Nc = 3, and
extract the effective couplings for this theory. This way,
for Nc = 3 we find:

Fit 1: g+ = 0.187(21), g+g� = 0.91(4),

Fit 2: g+ = 0.190(27), g+g� = 0.80(6).
(41)
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1 or 2�. In addition, the valence and sea pion masses are
matched also within 1 or 2�. The bare results for the
ratios are also presented in the same table, together with
the chiral parameter ⇠ = M2

⇡/(4⇡F⇡)2, that will be used
for the chiral extrapolations.

We conclude the discussion of the simulation setup by
mentioning that we will compare the new results with
dynamical fermions to the ones in Refs. [6, 7]. Those
results used quenched simulations, with plaquette gauge
action and twisted mass fermions. The lattice spacing
was a ⇠ 0.093 fm and the the pion mass was fixed at
around M⇡ = 550 � 590 MeV for Nc = 3 � 8 and 17.
In this work, we perform a reanalysis of these quenched
data.

B. Comments on systematics

We conclude this section by discussing the systematic
errors that can affect our results.

We start with finite-volume effects. Our ensembles
have M⇡L > 3.8 in all cases so we expect finite-volume
effects to be small, and suppressed as 1/Nc. Still, we find
that for the observable ⇠ they can be of O(1%) and thus
we correct for them, as explained in Ref. [26], following
Refs. [56, 57].

Since BK and R̄+ differ by a volume-independent pro-
portionality factor, we can use the results in Ref. [58],
where the finite-volume effects of BK have been calcu-
lated. In addition, it is known that the finite-volume and
chiral corrections of R̄+ and R̄� are fully anticorrelated
[43]. Thus, we find:

R̄±(L) = R̄±

1± 6

p
2⇡⇠

e�M⇡L

(M⇡L)3/2
(M⇡L� 4)

�
. (34)

The correction for these quantities is numerically negli-
gible for our ensembles. While additional finite-volume
effects could be present (see Ref. [57]) we observe that a
factor of two increase or decrease of these finite-volume
corrections alters our results well within the statistical
precision.

Concerning discretization effects, we have included the
results from two ensembles with a finer lattice spacing at
Nc = 3. Assuming O(a) improvement, we expect that the
finer lattice spacing should reduce by ⇠ 30% the O(a2)
discretization effects. We observe no significant differ-
ence for these data points in Fig. 6, so we see no sign of
sizeable discretization errors within our statistical uncer-
tainty. We stress however that a more extensive study is
needed for a robust estimate of the discretization error.

The largest systematic error that we have found is re-
lated to the renormalization constants, which we have
estimated by one-loop perturbation theory. We have
first compared the non-perturbative renormalization con-
stants of Ref. [55] to the one-loop perturbation theory
results in their setup (they used csw = 0). The differ-
ence is roughly ⇠ 5% for Nc = 3. On the other hand,

we have computed the ratios using csw = 1.69 in the va-
lence sector for the 3A10 ensemble. Using the perturba-
tive renormalization constants for this new value of csw
we get a result that differs from our csw = 0 result by
roughly 20% in the ratio. Since it is unlikely that this
effect can be accounted for by discretization effects, given
the tests in a finer lattice mentioned above, we conclude
that there must be significant non-perturbative effects on
renormalization constants for the larger csw (the pertur-
bative one-loop corrections are also significantly larger
for the larger value of csw). This is a large error, and
probably a conservative estimate, but it is comparable to
the statistical error we achieve, as it will be seen later.

VI. RESULTS

A. Nc scaling of K ! ⇡ amplitudes

The physical amplitudes A± can be obtained, as ex-
plained in Eq. (16), from the bare ratios in Table IV,
and the renormalization coefficients in Tables I and II.
As explained above, a rigorous way to isolate the (anti-
)correlated contributions to the ratios consists on taking
the half-sum and half-difference of the ratios. By do-
ing so, the two contributions can be fitted independently
since:

A� +A+

2
= 1 + c̃

1

N2
c

+ d̃
Nf

N3
c

+ . . . ,

A� �A+

2
= �ã

1

Nc
� b̃

Nf

N2
c

+ . . . .

(35)

In the following, we compare the results of the fits to
Eq. (35) in three different scenarios:

1. Quenched results (Nf = 0) at a heavy pion mass
⇠ 570 MeV.

2. Dynamical results (Nf = 4) at a heavy pion mass
⇠ 560 MeV (ensembles A10).

3. Dynamical results (Nf = 4) at a lighter pion mass
⇠ 360 MeV (ensembles A40).

The results for the coefficients ã� d̃ for the three scenar-
ios are presented in Table V and Fig. 4. The coefficients
are all of O(1) and therefore of natural size. Importantly
the sign of the ã and b̃ coefficients is the same and neg-
ative. This implies both terms contribute to reduce the
A+ amplitude and enlarge, in a correlated way, the am-
plitude A�. The fact that b̃, d̃ ⇠ O(1) implies a very large
unquenching effect in the large-Nc scaling, and the ratio
A�/A+, which is however compatible with the expansion
in Eq. (35). Specifically, it is due to b̃ and d̃ being ab-
sent for Nf = 0. The other two coefficients, ã and c̃, are
comparable in size in the quenched and dynamical the-
ories. We note however that uncertainties only include
statistical errors, and relative discretization errors and
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The measured hierarchy of ⇠ 22 between A0 and A2 must
then be translated into a large ratio of the couplings g±.
Note that for g+ = g� = 1, the expected large-Nc result
is recovered, A0/A2 =

p
2. Large 1/Nc corrections in the

g�/g+ ratio could therefore be the origin of the �I = 1/2
rule.

We have also derived the ChPT NLO result for the
non-degenerate case in which we send the pion mass to
zero, while keeping the kaon mass at its physical value7.
As we are forced to work in the exact GIM limit, we must
also send the charm quark mass to zero with the up quark
mass. The calculation for ms > mu = md = mc = 0
yields:

Re
A0

A2

���
M⇡,MD!0,Mphys

K

=
1

2
p
2

✓
1 + 3

g�

g+

◆

+
17

12
p
2

✓
1 +

1

17

g�

g+

◆
M2

K

(4⇡FK)2
log

⇤2
e↵

M2
K

,

(32)

where ⇤e↵ is an unknown scale that contains information
of the NLO LECs of the effective Chiral Lagrangian and
the effective weak Hamiltonian. We note that the NLO
effect tends to enhance (reduce) the ratio for ⇤e↵ > MK

(⇤e↵ < MK).

V. LATTICE SETUP

Ensemble Nc � csw T ⇥ L am
s
0 # configs

3A10

3 1.778 1.69

36⇥ 20 -0.4040 195
3A11 48⇥ 24 -0.4040 81
3A20 48⇥ 24 -0.4060 155
3A30 48⇥ 24 -0.4070 149
3A40 60⇥ 32 -0.4080 94
3B10 3 1.820 1.66 48⇥ 24 -0.3915 182
3B20 60⇥ 32 -0.3946 164
4A10

4 3.570 1.69
36⇥ 20 -0.3725 82

4A30 48⇥ 24 -0.3760 153
4A40 60⇥ 32 -0.3780 55
5A10

5 5.969 1.69
36⇥ 20 -0.3458 52

5A30 48⇥ 24 -0.3500 39
5A40 60⇥ 32 -0.3530 36
6A10

6 8.974 1.69
36⇥ 20 -0.3260 35

6A30 48⇥ 24 -0.3311 30
6A40 60⇥ 32 -0.3340 40

TABLE III: Summary of the simulation parameters of the
various ensembles used in this work.

7 See Ref. [46] for similar calculation in Nf = 3 ChPT.

A. Simulation and matching of sea and valence
sectors

Our lattice setup is the same as the one presented in
Ref. [26], and we refer to it for details on the simula-
tions and scale setting. We use ensembles with Nf = 4
dynamical fermions for an SU(Nc) gauge theory, with
Nc = 3� 6. They have been generated using the HiRep
code [47, 48]. We have chosen the Iwasaki gauge action
(following previous experience with 2+1+1 simulations
[49]) and clover Wilson fermions for the sea quarks, with
the plaquette-boosted one-loop value of csw. The simu-
lation parameters are shown in Table III. We find that
a separation of � 10 units of Montecarlo time produces
no autocorrelation in the ratios. The lattice spacing is
found to be a ⇠ 0.075 fm for all values of Nc (see also
Ref. [26]). In addition, we have produced two ensembles
with a finer lattice spacing, a ⇠ 0.065 fm, to estimate
discretization effects.

In order to achieve automatic O(a) improvement8
[52] and avoid the mixing of different-chirality operators
for weak decays, we employ maximally twisted valence
quarks [53], i.e., the mixed-action setup [54] previously
used in Refs. [50, 51]. Working in twisted quark field vari-
ables, maximal twist is ensured by tuning the untwisted
bare valence mass mv to the critical value for which the
valence PCAC mass is zero:

lim
mv!mcr

mv
pcac ⌘ lim

mv!mcr

@0 hAij
0 (x)P

ji(y)i
2 hP ij(x)P ji(y)i = 0. (33)

The bare twisted mass parameter µ0 is tuned such that
the pion mass in the sea and valence sectors coincide,
Mv

⇡ = Ms
⇡.

Since twisted mass already provides O(a) improve-
ment, the clover improvement parameter csw can be cho-
sen to be an arbitrary value in the valence sector. We
choose csw = 0 in the valence sector9 for this work, our
main motivation being that this minimizes the isospin
breaking effects coming from the twisted-mass action.
In addition, this will allow for a partial crosscheck of
the systematics due to the use of perturbative renormal-
ization constants, by comparing the latter to the non-
perturbative determination in Ref. [55] for Nc = 3 (see
below). Finally, we also observe that csw = 0 leads to
smaller statistical errors.

In Table IV we present our measurements for the en-
sembles used in this work. We have achieved good tuning
to maximal twist, with the PCAC mass being zero within

8 As discussed in [50, 51], there are residual O(a) cutoff effects
from virtual sea quarks, which are proportional to am

s and carry
coefficients that are O(↵2

s ) in perturbation theory. These effects
are expected to be numerically very small and thus irrelevant for
the discussion below. It is also worth stressing that using the
one-loop value of csw will also lead to residual effects of O(a↵2

s ).
9 This differs from Ref. [26], where we picked csw = 1.69. This

value matches the one in the sea sector.

[extension to Nf=4 framework of 
Golterman, Leung PRD 56 (1997) 2950]

[Hernández, Laine 2006]
[Colangelo, Dürr, Haefeli 2005]
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Large Nc ⇡⇡ scattering Summary

Meson observables at large Nc

Long-term goal: understand QCD at large Nc

Resonances ! Stable (� ⇠ 1/Nc)

Exotic states (tetraquarks?)

K ! (⇡⇡)I=0,2

⇢
Intrinsic QCD e↵ects [Donini, et al. 2020]

Final state interactions

This work: ⇡⇡ scattering at large Nc from lattice simulations

Nf = 4 (u, d, s c) ! 7 channels (4 with s-wave)

15 ⌦ 15 = 84 � 45 � 45 � 20 � 15 � 15 � 1

CI=2 = D � C
CAA = D + C

D C
Match to Chiral Perturbation Theory (ChPT) to constrain Low Energy
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⇡⇡ scattering in Large Nc ChPT

Large Nc or U(Nf) ChPT [Kaiser, Leutwyler 2000]:

Leutwyler counting scheme

� ⇠ O(mq) ⇠ O(M2
⇡) ⇠ O(k2

) ⇠ O(N�1
c )
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Nc ! Loop diagrams are NNLO
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p
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We have computed MI=2 and MAA to NNLO in U(Nf) ChPT

N
f
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⇡⇡ scattering in ChPT

⇡⇡ scatering amplitudes for Nf flavours are known to NNLO
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Large Nc

M2
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[Weinberg 1979
Gasser, Leutwyler 1985
Bijnens, Lu 2011]

LI=2 = L(0)Nc + L(1)I=2 + ...

LAA = L(0)Nc + L(1)AA + ...
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Fitting M⇡a0 to ChPT

Use threshold expansion to O(L�5) and do a simultaneous
chiral and Nc fit of M⇡a0
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Large Nc ⇡⇡ scattering Summary

Scattering properties from the lattice

Finite-volume spectrum:
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Scattering properties:
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Lüscher’s formalism [1986] �! k cot �0 =
1

⇡L
Z

✓
Lk

2⇡

◆

Threshold expansion

�E⇡⇡ = �
4⇡a0
M⇡L3

h
1 + c1

⇣a0
L

⌘
+ c2

⇣a0
L

⌘2
+c3

⇣a0
L

⌘3
+

2⇡r0a0
L3

+
⇡a0
M2

⇡L3
| {z }

O(L�6) [Hansen, Sharpe 2017]

+...
i

J. Baeza-Ballesteros Lattice21 - 27th July 2021 7 / 15



Large Nc ⇡⇡ scattering Summary

Fitting M⇡a0 to ChPT

Use threshold expansion to O(L�5) and do a simultaneous
chiral and Nc fit of M⇡a0

I = 2 channel

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
M⇡
F⇡

�0.08

�0.06

�0.04

�0.02

0.00

0.02

0.04

0.06

M
⇡
aI

=
2

0
�

L
O

Nc = 3, a=0.075 fm
Nc = 3, a=0.065 fm
Nc = 3, a=0.059 fm

Nc = 4
Nc = 5
Nc = 6

SU(4)
U(4)

Fit range

SU(4): �2/dof = 1.00
U(4): �2/dof = 0.94

AA channel

SU(4): �2/dof = 2.00
U(4): �2/dof = 1.42

Match to ChPT to constrain LECs

SU(4)
LI=2

Nc
⇥ 10

3
= �0.11(4)�

1.43(16)
Nc

LAA

Nc
⇥ 10

3
= �1.08(13) +

2.2(3)
Nc

U(4)
LI=2

Nc
⇥ 10

3
= �0.10(7)�

1.29(16)
Nc

LAA

Nc
⇥ 10

3
= �0.6(4) +

2.4(3)
Nc

J. Baeza-Ballesteros Lattice21 - 27th July 2021 12 / 15

Large Nc ⇡⇡ scattering Summary

Fitting M⇡a0 to ChPT

Use threshold expansion to O(L�5) and do a simultaneous
chiral and Nc fit of M⇡a0

I = 2 channel

Fit range

SU(4): �2/dof = 1.00
U(4): �2/dof = 0.94

AA channel

2.5 3.0 3.5 4.0 4.5 5.0 5.5
M⇡
F⇡

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
⇡
aA

A
0

�
L
O

Nc = 3, a=0.075 fm
Nc = 3, a=0.065 fm
Nc = 3, a=0.059 fm

Nc = 4
Nc = 5
Nc = 6

SU(4)
U(4)

SU(4): �2/dof = 2.00
U(4): �2/dof = 1.42

Match to ChPT to constrain LECs

SU(4)
LI=2

Nc
⇥ 10

3
= �0.11(4)�

1.43(16)
Nc

LAA

Nc
⇥ 10

3
= �1.08(13) +

2.2(3)
Nc

U(4)
LI=2

Nc
⇥ 10

3
= �0.10(7)�

1.29(16)
Nc

LAA

Nc
⇥ 10

3
= �0.6(4) +

2.4(3)
Nc

J. Baeza-Ballesteros Lattice21 - 27th July 2021 12 / 15

meson scattering

[slides from Jorge Baeza-Ballesteros’ talk @ Lattice 2001]

Large Nc ⇡⇡ scattering Summary

Fitting M⇡a0 to ChPT

Use threshold expansion to O(L�5) and do a simultaneous
chiral and Nc fit of M⇡a0

I = 2 channel

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
M⇡
F⇡

�0.08

�0.06

�0.04

�0.02

0.00

0.02

0.04

0.06

M
⇡
aI

=
2

0
�

L
O

Nc = 3, a=0.075 fm
Nc = 3, a=0.065 fm
Nc = 3, a=0.059 fm

Nc = 4
Nc = 5
Nc = 6

SU(4)
U(4)

Fit range

SU(4): �2/dof = 1.00
U(4): �2/dof = 0.94

AA channel

2.5 3.0 3.5 4.0 4.5 5.0 5.5
M⇡
F⇡

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
⇡
aA

A
0

�
L
O

Nc = 3, a=0.075 fm
Nc = 3, a=0.065 fm
Nc = 3, a=0.059 fm

Nc = 4
Nc = 5
Nc = 6

SU(4)
U(4)

SU(4): �2/dof = 2.00
U(4): �2/dof = 1.42

Match to ChPT to constrain LECs

SU(4)
LI=2

Nc
⇥ 10

3
= �0.11(4)�

1.43(16)
Nc

LAA

Nc
⇥ 10

3
= �1.08(13) +

2.2(3)
Nc

U(4)
LI=2

Nc
⇥ 10

3
= �0.10(7)�

1.29(16)
Nc

LAA

Nc
⇥ 10

3
= �0.6(4) +

2.4(3)
Nc

J. Baeza-Ballesteros Lattice21 - 27th July 2021 12 / 15


