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DETECTING COMPOSITE DARK SECTORS AND NEW PHYSICS: THE TRIAD

UNDERSTAND FIFTH FORCE TO GUIDE EXPERIMENTAL 
DISCOVERY

DARK PHASE TRANSITION GENERATING 
GRAVITATIONAL WAVES

LIGO (Nobel Prize 2017)

DIRECT DETECTION THROUGH 
DARK AND NUCLEAR FORM 

FACTORS

DARK SECTOR PARTICLES 
PRODUCED AT HIGH-ENERGY 
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They can be cosmological

Phase Transitions (PT) are 
everywhere in nature!

Cosmological Aspects of Higgs Vacuum Metastability

Gravitational waves from vacuum first-order phase transitions

https://www.frontiersin.org/articles/10.3389/fspas.2018.00040/full
http://arxiv.org/abs/1802.05712
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Focus on 1st order PTs: the uni- 
verse changes from a metastable high energy 

(symmetric) phase to a stable lower energy 
(broken) phase.

They can be cosmological

Phase Transitions (PT) are 
everywhere in nature!

Cosmological Aspects of Higgs Vacuum Metastability

Gravitational waves from vacuum first-order phase transitions

VEV Vacuum

https://www.frontiersin.org/articles/10.3389/fspas.2018.00040/full
http://arxiv.org/abs/1802.05712
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EARLY UNIVERSE TRANSITIONS

QCD confinement-
deconfinement

Electroweak symmetry breaking

Dark sector transition

crossover…maybe 1st order at finite density…

too weak…maybe enhanced by non-
perturbative effects

maybe strong 1st order if N is large…



Dark sector gravitational wave signatures
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[P. Schwaller, PRL (115) 181101, 2015]

[RHIC]

✦Spectrum of GW from a deconfinement 1st order phase transition in the 
dark sector  

http://link.aps.org/doi/10.1103/PhysRevLett.115.181101


GRAVITATIONAL WAVES SPECTRUM IPTA
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✦ Determined by 3 parameters: 

✦ α → relative energy density in the source (related to latent 
heat at the phase transition) 

✦ β → bubble nucleation rate proportional to inverse time of 
the transition (related to tunneling probability between 
vacua) 

✦ υ → bubble velocity  

✦ Plus we need to know the temperature of the phase 
transition T⋆ ≃ Tc



Phase Transitions in Strongly-coupled Theories

“Columbia” plot

[Laermann, Philipsen, Ann, Rev, Nucl. Part. Sci. 53 (2003) 163-198]
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BUILDING BLOCKS FOR THE PHASE DIAGRAM SU(4)

Nt

α = L/Nt

a ⋅ m {0.05,0.1,0.2,0.4,∞}

{4,6,8,12}

{2,3,4,6,8}

βF

Scan in

with dynamical nHYP smeared 
staggered fermions

∼ 1370 ensembles

https://zenodo.org/record/3921871#.XyjPhi2cY1J


LATTICE OBSERVABLES

RE(t)

f(θ)

|PLW | and χO = L3 (⟨O2⟩ − ⟨O⟩2)

≡
π/4

π/4 − θ [
Nin
Ntot

−
θ

π/4 ]

≡ ⟨ Ess(t)
Esτ(t) ⟩

≈ 1

> 1
→ 0

→ 1
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7 ≲ MP /Tc ≲ 10

END-POINT
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spectrum results we can provide a lower bound for the critical temperature
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“Stealth Dark Matter” model

• The field content of the model 
consists in 8 Weyl fermions 

• Dark fermions interact with the 
SM Higgs and obtain current/
chiral masses 

• Introduce vector-like masses for 
dark fermions that do not break 
EW symmetry 

• Diagonalizing in the mass 
eigenbasis gives 4 Dirac 
fermions  

• Assume custodial SU(2) 
symmetry arising when u ↔ d

3

Field SU(N)D (SU(2)L, Y ) Q

F1 =

 
Fu
1

F d
1

!
N (2, 0)

 
+1/2

�1/2

!

F2 =

 
Fu
2

F d
2

!
N (2, 0)

 
+1/2

�1/2

!

Fu
3 N (1,+1/2) +1/2

F d
3 N (1,�1/2) �1/2

Fu
4 N (1,+1/2) +1/2

F d
4 N (1,�1/2) �1/2

TABLE I. Fermion particle content of the composite dark matter
model. All fields are two-component (Weyl) spinors. SU(2)L
refers to the standard model electroweak gauge group, and Y is
the hypercharge. The electric charge Q = T3+Y for the fermion
components is shown for completeness.

yet have the ability to simulate on the lattice. Naive di-
mensional analysis applied to the annihilation rate suggests
the dark matter mass scale should be >⇠ 10-100 TeV, but a
more precise estimate is not possible at this time. In any
case, for dark matter with mass below this value, there is
an underproduction of dark matter through the symmet-
ric thermal relic mechanism, and so this does not restrict
consideration of dark matter mass scales between the elec-
troweak scale up to this thermal abundance bound.

CONSTRUCTING A VIABLE MODEL

[placeholder for a description of how a viable model
with interactions with the Higgs can be constructed while
satisfying the various (gross) experimental constraints]

We consider a new, strongly-coupled SU(N)D gauge
group with fermionic matter in the vector-like representa-
tions shown in Table I.

This is not the only possible choice for the charges, but
the requirement for the presence of Higgs Yukawa cou-
plings, along with extremely strong bounds on the ex-
istence of stable fractionally-charged particles based on
searches for rare isotopes [? ], greatly constrains the num-
ber of possible models.

DARK FERMION INTERACTIONS AND MASSES

The fermions F
u,d
i transform under a global U(4) ⇥

U(4) flavor symmetry that is broken to [SU(2) ⇥ U(1)]4
by the weak gauging of the electroweak symmetry. From
this large global symmetry, one SU(2) (diagonal) sub-
group will be identified with SU(2)L, one U(1) subgroup

will be identified with U(1)Y , and one U(1) will be iden-
tified with dark baryon number. The total fermionic con-
tent of the model is therefore 8 Weyl fermions that pair
up to become 4 Dirac fermions in the fundamental or
anti-fundamental representation of SU(N)D with electric
charges of Q ⌘ T3,L + Y = ±1/2. We use the notation
where the superscript u and d (as in F

u, F
d and later  u,

 
d,  u,  d) to denote a fermion with electric charge of

Q = 1/2 and Q = �1/2 respectively.
The fermion kinetic terms in the Lagrangian are given

by

L =
X

i=1,2

iF
†
i �̄

µ
Di,µFi +

X

i=3,4;j=u,d

iF
j
i

†
�̄

µ
D

j
i,µF

j
i ,

(1)
where the covariant derivatives are

D1,µ ⌘ @µ � igW
a
µ�

a
/2 � igDG

b
µt

b (2)

D2,µ ⌘ @µ � igW
a
µ�

a
/2 + igDG

b
µt

b⇤ (3)

D
j
3,µ ⌘ @µ � ig

0
Y

j
Bµ � igDG

b
µt

b (4)

D
j
4,µ ⌘ @µ � ig

0
Y

j
Bµ + igDG

b
µt

b⇤ (5)

with the interactions among the electroweak group and the
new SU(N)D. Here Y

u = 1/2, Y
d = �1/2 and t

b

are the representation matrices for the fundamental N of
SU(N)D.

The vector-like mass terms allowed by the gauge sym-
metries are
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where ✏12 ⌘ ✏ud = �1 = �✏12 and the relative minus
signs between the mass terms have been chosen for later
convenience. The mass term M12 explicitly breaks the
[SU(2) ⇥ U(1)]2 global symmetry down to the diagonal
SU(2)diag ⇥ U(1) where the SU(2)diag is identified with
SU(2)L. The mass terms M

u,d
34 explicitly break the re-

maining [SU(2)⇥U(1)]2 down to U(1)⇥U(1) where one
of the U(1)’s is identified with U(1)Y . (In the special case
when M

u
34 = M

d
34, the global symmetry is accidentally en-

hanced to SU(2)⇥U(1), where the global SU(2) acts as a
custodial symmetry.) Thus, after weakly gauging the elec-
troweak symmetry and writing arbitrary vector-like mass
terms, the unbroken flavor symmetry is thus U(1)⇥U(1).

Electroweak symmetry breaking mass terms arise from
coupling to the Higgs field H that we take to be in the
(2, +1/2) representation. They are given by
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where again the relative minus signs are chosen for later
convenience. After electroweak symmetry breaking, H =
(0 v/

p
2)T , with v ' 246 GeV. Inserting the vev
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