COMPOSITE DM & GW SIGNATURES

ENRICO RINALDI

University of Michigan & RIKEN (Theoretical Quantum Physics + iTHEMS)

Lattice Strong Dynamics collaboration

Argonne: Jin, Osborn Bern:Gasbarro Boston: Brower, Rebbi

Nvidia: Weinberg

Colorado: Neil, Hasenfratz

Siegen Witzel

Liverpool: Schaich LLNL: Vranas, Howarth UC Davis: Kiskis

Yale: Appelquist, Fleming, Cushman

Oregon: Kribs

RIKEN: ER

Full results on arXiv and submitted to PRD

Preliminary results presented at Lattice 2019

[The Particle **Z**oo] (<u>website</u>)

UNDERSTAND FIFTH FORCE TO GUIDE EXPERIMENTAL DISCOVERY

UNDERSTAND FIFTH FORCE TO GUIDE EXPERIMENTAL DISCOVERY

DARK PHASE TRANSITION GENERATING GRAVITATIONAL WAVES

UNDERSTAND FIFTH FORCE TO GUIDE EXPERIMENTAL DISCOVERY

DARK SECTOR PARTICLES PRODUCED AT HIGH-ENERGY COLLIDERS

DARK PHASE TRANSITION GENERATING GRAVITATIONAL WAVES

Gravitational waves from vacuum first-order phase transitions

 $V(\varphi)$

Cosmological Aspects of Higgs Vacuum Metastability

Phase Transitions (PT) are everywhere in nature!

Gravitational waves from vacuum first-order phase transitions

 $V(\varphi)$

Focus on 1st order PTs: the universe changes from a metastable high energy (symmetric) phase to a stable lower energy (broken) phase.

Cosmological Aspects of Higgs Vacuum Metastability

Gravitational waves from vacuum first-order phase transitions

Cosmological Aspects of Higgs Vacuum Metastability

QCD confinementdeconfinement

QCD confinementdeconfinement

crossover...maybe 1st order at finite density...

QCD confinementdeconfinement

crossover...maybe 1st order at finite density...

Electroweak symmetry breaking

QCD confinementdeconfinement

crossover...maybe 1st order at finite density...

too weak...maybe enhanced by nonperturbative effects Electroweak symmetry breaking

QCD confinementdeconfinement

crossover...maybe 1st order at finite density...

too weak...maybe enhanced by nonperturbative effects

Dark sector transition

Electroweak symmetry breaking

QCD confinementdeconfinement

crossover...maybe 1st order at finite density...

too weak...maybe enhanced by nonperturbative effects

Electroweak symmetry breaking

Dark sector transition

maybe strong 1st order if N is large...

[RHIC]

[P. Schwaller, PRL (115) 181101, 2015]

GRAVITATIONAL WAVES SPECTRUM

Determined by 3 parameters:

- ¬ relative energy density in the source (related to latent heat at the phase transition)
- ◆ β → bubble nucleation rate proportional to inverse time of the transition (related to tunneling probability between vacua)
- $\bullet \cup \rightarrow$ bubble velocity
- + Plus we need to know the temperature of the phase transition $T_{\star} \simeq T_c$

Phase Transitions in Strongly-coupled Theories

QCD

Phase Transitions in Strongly-coupled Theories

Phase Transitions in Strongly-coupled Theories

BUILDING BLOCKS FOR THE PHASE DIAGRAM

$\{0.05, 0.1, 0.2, 0.4, \infty\}$

 $\{4, 6, 8, 12\}$

 $\{2,3,4,6,8\}$

BUILDING BLOCKS FOR THE PHASE DIAGRAM

LATTICE OBSERVABLES

Results: Pure-Gauge system $a \cdot m = \infty$

Results: Pure-Gauge system $a \cdot m = \infty$

Results: Pure-Gauge system $N_t = 8$

- Peak of χ grows with volume
- Deconfinement fraction gets steeper

Results: Pure-Gauge system $N_t = 8$

Results: Pure-Gauge system $N_t = 8$

- Difference from quenched
- Stronger couplings needed at smaller mass
- •Susceptibility scales for $a \cdot m > 0.2$
- •Two-peak histogram
 •Still no continuum limit

- Difference from quenched
- Stronger couplings needed at smaller mass
- •Susceptibility scales for $a \cdot m > 0.2$
- •Two-peak histogram
 •Still no continuum limit

- Difference from quenched
- Stronger couplings needed at smaller mass
- •Susceptibility scales for $a \cdot m > 0.2$
- •Two-peak histogram
 •Still no continuum limit

Conclusions

- Composite Dark Matter provides interesting signals for dark matter searches at colliders and in direct detection experiments
- With a 1st order confinement-deconfinement transition, the dark sector can be discovered and constrained using gravitational waves
- Stealth Dark Matter is a SU(4) dark sector model with 4 heavy fermions
- Our lattice exploration of the phase diagram shows a thermal phase transition of 1st order at sufficiently high masses
- Using current bounds from experimental searches at colliders and our spectrum results we can provide a lower bound for the critical temperature

Conclusions

- Composite Dark Matter provides interesting signals for dark matter searches at colliders and in direct detection experiments
- With a 1st order confinement-deconfinement transition, the dark sector can be discovered and constrained using gravitational waves
- Stealth Dark Matter is a SU(4) dark sector model with 4 heavy fermions
- Our lattice exploration of the phase diagram shows a thermal phase transition of 1st order at sufficiently high masses
- Using current bounds from experimental searches at colliders and our spectrum results we can provide a lower bound for the critical temperature

Conclusions

- Composite Dark Matter provides interesting signals for dark matter searches at colliders and in direct detection experiments
- With a 1st order confinement-deconfinement transition, the dark sector can be discovered and constrained using gravitational waves
- Stealth Dark Matter is a SU(4) dark sector model with 4 heavy fermions
- Our lattice exploration of the phase diagram shows a thermal phase transition of 1st order at sufficiently high masses
- Using current bounds from experimental searches at colliders and our spectrum results we can provide a lower bound for the critical temperature

Backup Slides

"Stealth Dark Matter" model

Lattice results for Composite Dark Matter

Template Models	Spectrum	Higgs	Mag. Dip.	Charge r.	Polariz.
SU(2) N _f =1	\star	\star	[Francis, Hudspith, I	_ewis, Tulin 1809.09117]	
SU(2) N _f =2	\star	\star			\star
SU(3) N _f =2,6	\star		\star		Drach, et al. 1511.04370]
SU(3) N _f =8	$\mathbf{\star}$	\star			
SU(3) N _f =2 (S)	\bigstar	[Fodor, et	al. 1601.03302]		
SU(4) N _f =4	\bigstar	\star			
SO(4) N _f =2 (V)	\star				
SU(N) N _f =0	$\mathbf{\star}$				

Lattice results for Composite Dark Matter

Template Models	Spectrum	Higgs	Mag. Dip.	Charge r.	Polariz.
SU(2) N _f =1		*	[Francis, Hudspith, L	_ewis, Tulin 1809.0911	7]
SU(2) N _f =2	\bigstar	\star	forbidden in pNGB DM		
SU(3) N _f =2,6	\star				[Drach, et al. 1511.04370]
SU(3) N _f =8	\star	\star			
SU(3) N _f =2 (S)	\star	[Fodor, e	t al. 1601.03302]		
SU(4) N _f =4	\bigstar	\star	forbiddon i		
SO(4) N _f =2 (V)	\star		iorbidden ii	n Stearth Divi	
SU(N) Nf=0			forbidden	in SUNonia	