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What do we mean by statistics?

Experiment 
Dataset

Selection

Fitting

Inference

Systematics

• Cut-based 
• MVA-based 
• Simulation 

corrections / 
smearing

Efficiencies

Detector 
Simulation

Most of this seems to come under umbrella of “statistics”

• Background 
subtraction 

• MLE 
• Frequentist / 

Bayesian 
• Limit setting
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What sort of physics are we doing at LHCb?

I Predominantly comes under the umbrella of “heavy-flavour physics”
I But from a statistics point of view it covers a broad spectrum

I Very rare processes
I Limit setting

I Precision measurements
I Large interference effects (e.g. CKM angles γ and β)
I Small interference effects (e.g. charm and φs )

I Amplitude studies
I Often difficulty with models (and model uncertainties)

I Bump hunting / spectroscopy
I Nearly always as intermediate resonance

I Averaging / combinations

I But some very common themes
I Hadron experiment so always need background modelling or background substraction

(which is not always easy to simulate)
I A quite well known sector so often have high statistics control modes / regions

I Lots of overlap with averaging groups: PDG and HFLAV
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A few example analyses

A few example analyses
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Measurement of D0–D0 mixing

I Submitted to PRL - [arXiv:2106.03744]

I Use flavour tagged D0 and D0 decays to K 0
Sπ

+π− to measure charm mixing and CP
violation in charm mixing

I Huge samples - 30.6M signal candidates (only the prompt D∗+ →D0π+ candidates
and only 2016–2018 data)

I Very small mixing effect (even smaller CP violation effect)
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http://arxiv.org/abs/2106.03744


Measurement of B0
s –B0

s mixing

I Submitted to Nature Physics - [arXiv:2104.04421]

I Use relatively large sample of 380K B0
s →D−

s π
+ candidates (2011–2018 data)

I No flavour tagging decay (much weaker tagging power): ε = 80%, ω = 36%
I Large mixing effect (negligible CP violation effect)
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Measurement of RK

I Submitted to Nature Physics - [arXiv:2103.11769]

I Large sample control modes (750K / 2.3M) but small sample rare modes (1640 /
3850)

I Understanding efficiencies is crucial
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Search for the doubly charmed Ω+cc baryon

I Submitted to Sci. China Phys. Mech. Astr. - [arXiv:2105.06841]

I Resonance search using Ω+
cc → Ξ+
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Background subtraction

Background subtraction
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Background subtraction and sWeights

I A key component of almost all LHCb analyses
I In many cases we rely on the use of sWeights

I Particle ID calibration performed on sWeighted control channels.
I Flavour tagging calibration performed on sWeighted control channels.
I Many CP and ampltiude fits rely on sWeighted data samples.
I Quite often our Selection MVAs are trained on sWeighted control channels.

I The sPlot method is a statistical tool for unfolding the signal distribution in some
control variable if you can distinguish it from the background using an independent
discriminating variable

I The sPlot technique is widley used in HEP, based on the M. Pivk and F. Le Diberder
paper [1]

I Actually gets mentioned way before this by R. Barlow but not cited [2] and before
that in a slightly different context by P. Condon and P. Cowell [3]

I Wide discussion within LHCb (and further afield) on this topic (e.g. PHYSTAT-2020
workshop) mainly due to development by M. Schmelling and contributions from MK,
H. Dembinski and C. Langenbruch

I New ideas are being written up for publication, in particular a generalisation of
sWeights dubbed “COWs” (Custom Orthogonal Weight functions)
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Setting up the problem

I In particle physics we often want to extract some properties of an observed signal

I But we typically have a non-neglible background contribution, usually distinguished
using invariant mass

I The properties we want to extract are in some other dimension
I Lifetime: Decay time distribution
I Spin: Angular distributions
I Amplitudes: Dalitz distributions

“Discriminant variable”
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Setting up the problem

So what choices do we have?
I Fit the full nD distribution

I Requires a suitable model description for each component in each dimension
I Sideband subtraction or “slicing”

I Not statistically optimal (must be binned)
I Requires the discriminant and control variables to be independent

I sWeighting
I Essentially “per-event” slicing
I Requires the discriminant and control variables to be independent

I For a total p.d.f. of the form

f (m, t) = zgs(m)hs(t)

Signal

+ (1− z)gb(m)hb(t)

Background

(1)

I Then can project signal and background out with functions (proof in backup),

ws(m) =
αsgs(m) + αbgb(m)

g(m)

Signal

and wb(m) =
βsgs(m) + βbgb(m)

g(m)

Background

, (2)

by solving(
Wss Wsb

Wsb Wbb

)
·
(
αs βs
αb βb

)
=

(
1 0
0 1

)
, where Wxy =

∫
gx(m)gy (m)

g(m)
dm. (3)
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Application to a finite sample

I The original sPlot formalism comes with a few caveats
I All shape parameters are known
I All yields are freely floating and not expressed as fractions
I Can only get weights for the unbinned sample you have fitted

I The advantanges with what Schmelling has found is that you simply need to provide a
description of the p.d.f.s and you get back a weight function for each component
I Shapes and yields can be determined however you want (even with constraints)
I Can perform fit to a different sample to the one you use to extract weights (e.g. wider

fit range)
I Can perform the fit to a binned sample (if there are many events) and still extract a

weight per-event

I There are still some caveats which apply to both
I The description for each component must factorise in the disciminant and control

variables
I Factorisation means independence (which is more than just not-linearly-correlated)
I However this can be circumvented with the use of COWs (although unfortunately I

don’t have time to go into this now but keep an eye on arXiv for more details)
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Fitting and inference

Fitting and inference
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Fitting and inference software packages

I Most analyses in LHCb still make use of RooFit (and a bit of RooStats) a lot,
especially for simple mass fits

I However it seems to be increasing that other tools are in use, especially for complex
fits
I HistFactory and pyhf - template fits (used a lot in semi-leptonics and EW)
I hepstats - Scikit-HEP package with Bayesian block aglo. and LR based tests for

discovrey, limits and intervals
I zfit - a scaleable pythonic fit implementation a bit like RooFit
I Laura++ and many others - amplitude fits
I GammaCombo - combinations and averaging
I And many other custom implementations

I Everything uses Minuit as the backend
I For stand-alone python implementation then iminuit - link

I Other commonly used useful tools
I uncertainties - python package for error propagation and covariance tracking
I boost-histogram - very fast multi-dimensional histogramming (python and C++)
I numba-stats - parallelised pdf computation
I PyTorch - machine learning
I XGBoost - machine learning
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Methods of inference

I MLE and Profile Likelihood
I undoubtedly the most common and implemented by nearly every analysis

I Frequentist - Feldman-Cousins
I often used if the coverage of the above is poor or near a physical boundary
I What is done with the nuisance parameters?

I Plugin / µ̂ - fix to profiled values - most common in LHCb
I Gaussian sampling - sample from profiled value and uncertainty - rare in LHCb
I Berger-Boos - uniform sample in region (1− β) and the correct p → p + β - rare in LHCb
I Cousins-Highland - take the median or expected value at profiled point (requirement of prior as

need to know the nuisance parameter distribution - not used in LHCb
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Methods of inference

I Bayesian
I Occasionally used in LHCb with either simple MC or Markov Chain

I CLs
I Very commonly used for setting limits

I Bootstrapping
I Commonly used for robustness checks and systematics (rarer for interval estimation)

I Something we are trying to improve is use of more than one inference method to
compare these different techniques

I See for example the latest LHCb combination of CKM angle γ and charm mixing
parameters LHCb-CONF-2021-001 17/25



Systematic uncertainties

Systematic uncertainties
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Systematic uncertainties

We use a few core principles based on R. Barlow [4]

I There is a distinction and difference between a “systematic check” and a “systematic
error”

I Systematic errors can be frequentist or Bayesian
I Thus we always, where possible, quote statistical (which have coverage) and systematic

(which don’t necessarily) intervals separately

I When we quote a systematic uncertainty we mean that it contains 68.3% of the
distribution

I We advise against overestimating systematic uncertainties and simply calling this
“conservative”

I Take the RMS of different models or profile using the envelope method [5]
I Do not take the range of results but profile or integrate

I Wherever possible make use of the ensemble - compute systematics with MC

Lots of interest in the concept of “uncertainties on uncertainties” à la G. Cowan [6] but
not yet implemented anywhere in LHCb
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Conclusions

I Gave a very brief overview of some aspects of statistical analysis at LHCb
I In HEP “statistics” seems to cover almost all aspects of data analysis - from ML to

inference
I This is probably right because we are really in the business of appropriately propagating

errors and ensuring they contain X% of the distribution

I Gave a brief overview of some new insights into sWeights

I Discussed principal methods of inference used at LHCb

I Discussed our “mantra” for computation of systematic uncertainties
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A fresh look at sWeights as orthogonal functions

I Require signal and background components both factorise in the discriminant and
control variables

I In other words our total p.d.f. has the form

f (m, t) = zgs(m)hs(t)

Signal

+ (1− z)gb(m)hb(t)

Background

(4)

I We then want to find a weight function, ws(m), which when multiplied by f (m, t)
projects out hs(t)

zhs(t) =

∫
ws(m)f (m, t)dm (5)

=

∫
ws(m) [zgs(m)hs(t) + (1− z)gb(m)hb(t)] dm (6)

= zhs(t)

∫
ws(m)gs(m)dm + (1− z)hb(t)

∫
ws(m)gb(m)dm (7)

I Therefore we require∫
ws(m)gs(m)dm = 1

ws (m) is normal to gs (m)

and

∫
ws(m)gb(m)dm = 0

ws (m) is orthogonal to gb(m)

(8)
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Choosing the orthonomal functions

I There are infinitely many choices for ws(m) but choose the one which minimises the
variance over the discriminating p.d.f. g(m)

I This is a constrained optimisation problem which can be solved with Lagrange
multipliers (calculation is in the back up). The solution is

ws(m) =
αsgs(m) + αbgb(m)

g(m)
, (9)

where the constants αs and αb are obtained by solving(
Wss Wsb

Wsb Wbb

)
·
(
αs

αb

)
=

(
1
0

)
, (10)

where

Wxy =

∫
gx(m)gy (m)

g(m)
dm. (11)

I You can then follow this through for any component and generalise to(
Wss Wsb

Wsb Wbb

)
W

kl

·
(
αs βs
αb βb

)
A
kl

=W−1
kl

=

(
1 0
0 1

)
. (12)
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Application to a finite sample

I The above derivation assumed knowledge of the true p.d.f. to compute the W -matrix
I In practise these are unknown and would be replaced by a sample estimate (typically

obtained from a fit)
I The plugin estimate for W is then simply

Ŵxy =

∫
ĝx(m)ĝy (m)

ĝ(m)
dm

sWeights “integration” method

(13)

I This can also be replaced with a sum over observations (for a large sample) because∫
φ(m)dm =

∫
g(m)

φ(m)

g(m)
dm = 〈φ(m)

g(m)
〉

expectation value

→ 1

N

∑
i

φ(mi )

g(mi )

arithmetic mean

(14)

I So an alternative computation is

Ŵxy =
1

N

∑
i

ĝx(m)ĝy (m)

ĝ(m)2

sWeights “summation” method

(15)

I This also has the nice property that the sum of weights is the number of events i.e.∑
i ŵs(mi ) = Nẑ = N̂s
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Application to a finite sample

I There is then an interesting connection between the result in Eq. 15 and an extended
maximum likelihood fit

I Turns out that the W -matrix is closely related to the covariance matrix of an EML fit
with only yields floating (

α̂s β̂s
α̂b β̂b

)
=

1

N2

(
Css Csb

Csb Cbb

)
sWeights “covariance” method

(16)

I Most of the above (at least the finite sample case) was already shown in the sPlot
paper [1] although it takes a slightly different approach

I They find the link with the correlation matrix in Eq. (16) and name that as the
“sWeight”

I The implementation in TSPlot uses the Minuit / HESSE covariance matrix directly
(numerical inaccuracies)

I The implementation in RooStats::SPlot directly computes Eq. (15)
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