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Objective

QCD allows for a CP-violating term Sy = 260(Q) in the action, with —7 < 6 < 7. A nonvanishing
value of 8 would result in an electric dipole moment d,, of the neutron. The current experimental
upper limit is |d,| < 1.8 X 10~ 13¢e fm, which suggests that 6 is anomalously small. This feature
is referred to as the strong CP problem

It is widely assumed that QCD is in a single (confinement) phase for |0 < 7. The Peccei-Quinn
axion solution, e.g., is realized by the shift symmetry 6 — 6 + ¢

However, it is known from the case of the massive Schwinger model that a 6 term may change the
phase of the system. Callan, Dashen and Gross have claimed that a similar phenomenon will occur
in QCD. The statement is that the color fields produced by quarks and gluons will be screened by
instantons for |#| > 0. 't Hooft has shown that due to the joint presence of gluons and monopoles
a rich phase structure may emerge as a function of 6

In this talk | will investigate the long-distance properties of the theory in the presence of the 6 term,
Sy, and show that CP is naturally conserved in the confining phase



Gradient flow

To reveal the nonperturbative properties of the theory, we are faced with a multi-scale problem, involving
the passage from the short-distance perturbative regime to the long-distance confining regime. The
gradient flow provides a powerful framework for scale setting, and as such is a particular realization of
the coarse-graining step of momentum space RG transformations Lischer, Suzuki et al.

The gradient flow describes the evolution of fields as a function of flow time ¢t. The flow of SU(3)
gauge fields is defined by

J:B,(t,x) = D,G,.(t,x), G, =0,B,—0,B,+ B, B

where B,,(t = 0,z) = A,(x) is the original gauge field of QCD. The renormalization scale p is set
by the flow time, u = 1/+/8t for t > 0.

The expectation value of the energy density E(t,x) = in’W(t, z) G, (t, x) defines a renormalized
coupling

167>
géF(,u‘) — T t2<E(t)> | t:1/8,u2

at flow time t in the gradient flow scheme Luscher



For a start we may restrict our investigations to the Yang-Mills theory. If the strong CP problem is
resolved in the Yang-Mills theory, then it is expected to be resolved in QCD as well. We use the
plaquette action to generate representative ensembles of fundamental gauge fields on three different
volumes
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Confinement

The gradient flow running coupling
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To make contact with phenomenology, it is desirable to transform the gradient flow coupling agr to a
common scheme. A preferred scheme in the Yang-Mills theory is the V' scheme

BV(O‘V) — — ZOév(lu)
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The linear growth of ay (1) with 1/u* is commonly dubbed

infrared slavery. The static quark-antiquark potential can be
described by the exchange of a single dressed gluon Vto Agrs = 0.217(7)
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where o = gA%/, giving the string tension /o = 445(19) MeV arXiv:1905.05147



Phase structure

With increasing flow time the initial gauge field ensemble splits into effectively disconnected topological
sectors of charge @, at ever smaller flow time as (3 is increased Lefschetz thimble

V(E(Q,t))/87% = So ~ |Q|, while the
ensemble average vanishes like 1/t

100 ¢ .
: One is tempted to conclude that the vacuum

is a dilute gas of instantons. However, this
is not the case. We find a negative value
for the 'kurtosis’, K = (Q%)./{(Q?%., on
all lattice volumes, while K = 1 for a dilute
Instanton gas
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Observables consistently show a clear dependence on Q. This is the reason for a nontrivial 6 dependence
when Fourier transformed to the 6 vacuum



Running coupling ay

If the general expectation is correct and the color fields are screened for |#| > 0, we should, in the
first place, find that the running coupling constant is screened in the infrared

From (E(Q,t)) we obtain ay (Q, ) in the individual topological sectors |Q| from bottom to top
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Interestingly, avy(Q, 1) vanishes in the infrared for Q@ = 0, while the ensemble average ay () is

represented by |Q| ~ /2(Q?) /=



The transformation of ay (Q, ) from @ to the 6 vacuum is achieved by the discrete Fourier transform

1 0 i0Q _
v (O:1) =z D¢ OP@av(@p) @ <T@ = (@) 190202299
Q ® Zyanalyticat & =0 Vafa-Witten
Z(0) = Z erP(Q) e Limits set by convergence of the Fourier sum
Q
16" 24* 32*

15‘\\\\\\\\‘\\\/’,,\\\\\\\\‘\\\\‘ 15‘\\\\\\\\‘\\\\\\\\‘\\\\‘\\\\‘ 15‘\\\\\\\\‘\\\\\\\\‘\\\\‘\\\\‘

i | ~ Ya2=100 I ~ Y2=100 _ I ~ Ya=100

~ ta?=80 | L ~ ta?=80 _| L —~ ta?=80 |

— YaP=60 - - M — ta’=60 - - — taf=60 -

— taP= 40 10— /1 — YaP= 40 — 10— — YaP=40

£ ~v#=20 © 5 T N —va=20 © £ T 1

5 —v#=10 | g I | ]

5 I IR | ]

_ _ 5— f\“‘ _

] ] I | ]

1 ‘7 ‘7 07‘ Ll ‘ Ll ‘ (| } 1 \“I (| ‘ [ ‘ [ ‘7

3 3 -3 -2 -1 0 1 2 3

6 6

The color charge is totally screened for |#] 2 0 in the infrared, while it Precision test by com-

becomes gradually independent of 6 as we approach the perturbative regime paring different volumes



Polyakov loop

The Polyakov loop describes the propagation of a single static quark travelling around the periodic
lattice
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(P) = 0 in each sector. That implies center symmetry throughout. P rapidly populates the entire
theoretically allowed region for small values of |Q|, while it stays small for larger values of |Q|



The transformation of the Polyakov loop expectation values to the 6 vacuum is again achieved by the
discrete Fourier transform

_ The the connected part of (|P|?)g is described by
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The Polyakov loop gets totally screened for |#| = 0. The renormalized Polyakov loop susceptibility is
independent of flow time ¢ (even for 8 # 0!)



Mass gap preliminary
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Conclusions

% The numerical work is characterized by high statistics on three different volumes. Effectively it is
a Monte Carlo sampling on Lefschetz thimbles. Comparing results on different volumes enabled us to
control the accuracy of the calculation

% The gradient flow proved a powerful tool for tracing the gauge field over successive length scales
and showed its potential for extracting low-energy quantities. The novel result is that color charges are
screened for |@| > 0 by nonperturbative effects, limiting the vacuum angle to # = 0 at macroscopic
distances, which rules out any strong CP violation at the hadronic level o

% It is tempting to deriving RG flow equations for the inverse of the
running coupling constant, 7/ (60, i), by analogy with the quantum Hall 0s
conductivity IR fixed point?

0.1~

% The nontrivial phase structure of QCD has far-reaching consequences for anomalous chiral
transformations. Our results are incompatible with the axion extension of the SM, as the QCD
vacuum will be unstable under the Peccei-Quinn chiral Upg(1) transformation, realized by the shift
symmetry 6 — 0 + &, which thwarts the axion conjecture



