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1. Introduction

Color confinement problem not yet solved.

Almost half a century history !!!

1. 1963: Quark model (Gell-Mann and Zweig): fractionally charged quarks are searched, but

not observed.

2. 1974-75: Idea of dual superconductor (electric ↔ magnetic) as the color-confinement

mechanism (’tHooft-Mandelstam): Something color magnetic must be condensed.

3. 1981: ’tHooft idea of monopole in QCD: A partial gauge-fixing SU(3) → U(1)× U(1)

and Abelian projection: Monopoles appear as a topological object coming from the singularity

of the gauge-fixing matrix. Numerical data supporting this idea are shown especially on the

basis of maximally Abelian gauge. But this idea has serious problems:(1) gauge dependence,

(2) Abelian charge confinement, not non-Abelian color confinement, (3) asymmetry among

eight gluons (diagonal: photon like and off-diagonal: massive matters), (4) in Polyakov-loop

gauge, monopoles are predicted to run only time-like, but actually space-like monopoles are

important.

The key point is to find
a gauge-independent color magnetic quantity, a magnetic
monopole in QCD
without any additional artificial assumption like a special partial gauge-fixing to a subgroup.
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2. Abelian magnetic monopoles of the Dirac type in QCD

Note the Jacobi identities:

ϵµνρσ[Dν, [Dρ, Dσ]] = 0,

where Dµ ≡ ∂µ − igAµ. Calculate explicitly:

[Dρ, Dσ] = [∂ρ − igAρ, ∂σ − igAσ]

= −ig(∂ρAσ − ∂σAρ − ig[Aρ, Aσ]) + [∂ρ, ∂σ]

= −igGρσ + [∂ρ, ∂σ]

If [∂ρ, ∂σ] is neglected, we get DνG
∗
µν = 0 → Non-Abelian Bianchi identity (NABI):

When define an Abelian-like field strength:

fµν ≡ ∂µAν − ∂νAµ

= (∂µA
a
ν − ∂νA

a
µ)σ

a
/2,

if Aa
µ are regular → ∂νf

∗
µν = 0: Abelian-like Bianchi identity:
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What happens if [∂ρ, ∂σ] is not neglected?

Jacobi identity + [Dν, Gρσ] = DνGρσ

=⇒ DνG
∗
µν =

1

2
ϵµνρσDνGρσ

= −
i

2g
ϵµνρσ[Dν, [∂ρ, ∂σ]]

=
1

2
ϵµνρσ[∂ρ, ∂σ]Aν = ∂νf

∗
µν

Jµ =
1

2
J

a
µσ

a
= DνG

∗
µν = ∂νf

∗
µν =

1

2
k
a
µσ

a
= kµ

ka
µ ̸= 0 → color magnetic Abelian-like monopole: ∂µkµ = 0

Ja
µ ̸= 0 → Violation of NABI

Color magnetic monopoles= Violation of non-Abelian Bianchi
identity (VNABI) :Reference C. Bonati et al,, P.R.D81, 085022 (2010)

[∂ρ, ∂σ]Aν ̸= 0

⇓
Line singularities existing in gauge fields Aµ(x) themselves!!! are
the origin of Abelian monopoles in QCD.
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Since the monopoles defined here comes from the (line)
singularities of the gauge field themselves, they are much the
same as those discussed by Dirac in QED with magnetic
monopoles in 1931.

N2 − 1 monopoles exist in SU(N).

Hence, The Abelian monopoles defined here are completely
different from those discussed by ’tHooft using additional partial
gauge fixing.

Comparison between the ’tHooft Abelian projection studies and the present
work in SU(3) QCD.

The ’tHooft scheme This work.

Origin of kµ Singularity of gauge fixing matrix Singularity in gauge fields.

No. of conserved kµ 2 8

Flux squeezing Only two electric fields Eight electric fields
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3. Lattice studies of the new QCD magnetic monopoles

Are these monopoles of the Dirac type important in
QCD?

Consider one-colored monopole k1(s, µ) among eight (a = 1 ∼ 8 in SU(3)) monopoles

and define them following DeGrand-Toussait in the framework of lattice QCD.

Lattice monopole is not gauge-invariant. But Elitzer’s theorem says that gauge-invariant

contents, if exist, can be extracted by Monte-Carlo average of gauge-variant quantities.

S. Elitzur, P.R. D12 (1975) 3978.

Abelian link fields on lattice without any additional gauge-fixing

Maximize R =
∑

s,µ ReTr eiθ1(s,µ)λ1U†(s, µ)

⇓

θ1(s, µ) = tan
−1U1(s, µ)

U0(s, µ)
, (SU2 : U(s, µ) = U0(s, µ) + iσ⃗ · U⃗(sµ))

= tan
−1Im(U12(s, µ) + U21(s, µ))

Re(U11(s, µ) + U22(s, µ))
, (SU3)
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Abelian monopoles on lattice

Calculate Abelian plaquette variables:

θ1(s, µν) = ∂µθ1(s, ν)− ∂νθ1(s, µ)

= θ̄1(s, µν) + 2πn1(s, µν) (|θ̄1(s, µν)| < π)

Since n1(s, µν) can be regarded as the number of the Dirac

string, Abelian monopoles are defined following

DeGrand-Toussaint:

k1µ(s) = −(1/2)ϵµαβγ∂αθ̄1(s+ µ̂, βγ)

= (1/2)ϵµαβγ∂αn1(s+ µ̂, βγ)

Note ϵµαβγ∂αθ1(s + µ̂, βγ) = 0 trivially.
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let us evaluate each static potential through Polyakov-loop
correlators.

V (R) = −
1

aNt

ln⟨P (0)P
∗
(R)⟩ .

PF = TrΠ
Nt−1
k=0 U(s + k4̂, 4) ,

PA = exp[i

Nt−1∑
k=0

θ1(s + k4̂, 4)] = Pph · Pmon ,

Pph = exp{−i

Nt−1∑
k=0

∑
s′

D(s + k4̂ − s
′
)∂

′
νΘ̄1(s

′
, ν4)} ,

Pmon = exp{−2πi

Nt−1∑
k=0

∑
s′

D(s + k4̂ − s
′
)∂

′
νn1(s

′
, ν4)}
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(1). Perfect Abelian dominance can be proved using the
Lüscher’s multilevel method.

Note that the Abelian Polyakov loop operator without any
additional gauge-fixing can be defined locally!!

Table 2: Simulation parameters for the measurement of static potential using
multilevel method. Nsub is the sublattice size divided and Niup is the number
of internal updates in the multilevel method .

β N3
s × Nt a(β) [fm] Nconf Nsub Niup

5.60 123 × 12 0.2235 6 2 5,000,000

5.60 163 × 16 0.2235 6 2 10,000,000

5.70 123 × 12 0.17016 6 2 5,000,000

5.80 123 × 12 0.13642 6 3 5,000,000
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Figure 1: The static-quark potentials from non-Abelian and Abelian PLCF at
β = 5.6 on 163 × 16 lattice.
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Table 3: Best fitted values of the string tension σa2, the Coulombic coefficient
c, and the constant µa for the potentials VNA, VA.

β = 5.6, 123 × 12 σa2 c µa

VNA 0.2368(1) -0.384(1) 0.8415(7)

VA 0.21(5) -0.6(6) 2.7(4)

β = 5.6, 163 × 16

VNA 0.239(2) -0.39(4) 0.79(2)

VA 0.25(2) -0.3(1) 2.6(1)

β = 5.7, 123 × 12

VNA 0.159(3) -0.272(8) 0.79(1)

VA 0.145(9) -0.32(2) 2.64(3)

β = 5.8, 123 × 12

VNA 0.101(3) -0.28(1) 0.82(1)

VA 0.102(9) -0.27(2) 2.60(3)

Perfect Abelian dominance is proved in pure SU(3) QCD without
any additional assumption in compatible with the theoretical studies done by

Ogilvie and Faber et al.. .
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(2). Perfect monopole dominance:

Pmon = exp{−2πi

Nt−1∑
k=0

∑
s′

D(s + k4̂ − s
′
)∂

′
νn1(s

′
, ν4)}

↑

D(s − s′): a non-local operator.

The Lüscher’s multilevel method does not work.

To evaluate < PmonP
∗
mon >, we need tremendous number of vacuum

configurations. We also perform random gauge-transformation a few thousand
times for each one. Additional random gauge fixings are done to increase S/N
ratio.

Table 4: Simulation parameters for the measurement of the static potential
and the force from PA, Pph and Pmon. NRGT is the number of random gauge
transformations.

β N3
s × Nt a(β) [fm] Nconf NRGT

SU2, 2.20 243 × 4 0.211(7) 6,000 1,000

2.35 243 × 6 0.137(9) 4,000 2,000

2.35 363 × 6 0.137(9) 5,000 1,000

2.43 243 × 8 0.1029(4) 7,000 4,000

SU3, 5.6 243 × 4 0.2235 60,000 4,000
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Table 5: Best fitted values of the string tension σa2, the Coulombic coefficient c, and the

constant µa for the potentials VNA, VA, Vmon and Vph.

SU(2) σa2 c µa FR(R/a) χ2/Ndf

243 × 4 VNA 0.181(8) 0.25(15) 0.54(7) 3.9 - 8.5 1.00

VA 0.183(8) 0.20(15) 0.98(7) 3.9 - 8.2 1.00

Vmon 0.183(6) 0.25(11) 1.31(5) 3.9 - 6.7 0.98

Vph −2(1) × 10−4 0.010(1) 0.48(1) 4.9 - 9.4 1.02

243 × 6 VNA 0.072(3) 0.49(6) 0.53(3) 4.0 - 9.0 0.99

VA 0.073(4) 0.41(7) 1.09(3) 3.7 - 10.9 1.00

Vmon 0.073(4) 0.44(10) 1.41(4) 3.9 - 9.3 1.00

Vph −1.7(3) × 10−4 0.0131(1) 0.4717(3) 5.1 - 9.4 0.99

363 × 6 VNA 0.072(3) 0.48(9) 0.53(3) 4.6 - 12.1 1.03

VA 0.073(2) 0.47(6) 1.10(2) 4.3 - 11.2 1.03

Vmon 0.073(3) 0.46(7) 1.43(3) 4.0 - 11.8 1.01

Vph −1.0(1) × 10−4 0.0132(1) 0.4770(2) 6.4 - 11.5 1.03

243 × 8 VNA 0.0415(9) 0.47(2) 0.46(8) 4.1 - 7.8 0.99

VA 0.041(2) 0.47(6) 1.10(3) 4.5 - 8.5 1.00

Vmon 0.043(3) 0.37(4) 1.39(2) 2.1 - 7.5 0.99

Vph −6.0(3) × 10−5 0.0059(3) 0.46649(6) 7.7 - 11.5 1.02

SU(3) 243 × 4VNA 0.193(4) 0.422(3) 1.146(20) 1 - 10 0.99

VA 0.184(15) 0.458(97) 2.912(80) 1 - 9 1.10

Vmon 0.188(16) 0.453(99) 2.906(82) 1 - 8 0.97

Vph -0.0014(2) 0.073(5) 1.521(3) 1 - 11 1.00

Perfect Abelian and monopole dominance are obtained beautifully.

12



The existence of the perfect Abelian and monopole dominance
suggests that the Abelian dual Meissner effect can be seen
coming from this new-type Abelian monopoles.

The Abelian dual Meissner effect coming from this new-type monopoles in
SU2 QCD, see T. Suzuki et al.,P.R.D80 (2009)054504.

In SU3, see the talk by Dr.Atsuki Hiraguchi in this conference on
August 5.
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4. Existence of the continuum limit

Does the continuum limit of ka(s, µ) exist?

(1). The monopole density in the continuum limit in pure SU2
QCD.

The lattice vacuum is contaminated with large amount of lattice artifact
monopoles. To reduce lattice artifacts, various techniques smoothing the
vacuum are introduced.

1. Tadpole improved action:
484 at β = 3.0 ∼ 3.9 and 244 at β = 3.0 ∼ 3.7

2. Introduction of various smooth gauge-fixings
1) Maximal center gauge(MCG): Maximization of R =

∑
s,µ(TrU(s, µ))2

SU(2) → Z(2)

2) Direct Laplacian center gauge (DLCG)

3) Maximal Abelian Wilson loop gauge (AWL): Maximization of
R =

∑
s,µ̸=ν

∑
a(cos(θ

a
µν(s))

4) Maximal Abelian and U(1) Landau gauge (MAU1):
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3. The blockspin transformation of monopoles

3s s s(n)(n)
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

ex. n=3

2µ µ+ +3s

Figure 2: Blockspin definition of monopoles:
T.L. Ivanenko et al., Phys. Lett. B252, (1990) 631

Monopole is defined on a a3 cube and
the n-blocked monopole is defined on a cube
with a lattice spacing b = na

k(n)µ (sn) =

n−1∑
i,j,l=0

kµ(nsn + (n− 1)µ̂+ iν̂ + jρ̂+ lσ̂)

n = 1, 2, 3, 4, 6, 8, 12 blockings are adopted on 484 lattice.
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Evaluate a gauge-invariant density of the n-blocked monopole:

ρ(a(β), n) =

∑
µ,sn

√∑
a(k

(n)a
µ (sn))2

4
√
3Vnb3

Figure 3: Comparison of the VNABI (Abelian-like monopoles) densities versus b = na(β)

in MCG, AWL, DLCG and MAU1 cases. A uniform curve is obtained for all gauges.
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Summary

1. Clear scaling behaviors are observed up to the 12-step blockspin

transformations for β = 3.0 ∼ 3.9. The density ρ(a(β), n) is a

function of b = na(β) alone, i.e. ρ(b). n → ∞ means

a(β) → 0 for fixed b = na. Existence of the continuum limit!

2. When the vacuum becomes smooth enough shown here in

MCG, DLCG, AWL, MAU1, the same ρ(b) is obtained. Gauge

independence!

This is naturally expected in the continuum limit.
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(2). The infrared effective monopole action in the continuum
limit in pure SU2 QCD.

The effective monopole action is defined as follows:

e−S[k] =

∫
DU(s, µ)e−S(U)

×
∏
a

δ(kaµ(s)−
1

2
ϵµνρσ∂νn

a
ρσ(s+ µ̂)),

where S(U) is the gauge-field action.

The monopole action is written as a linear combination of the interaction
operators between monopole currents:

S[k] =
∑
i

F (i)Si[k],

where F (i) are coupling constants.
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For example,

S1[k] =
∑
s,µ,a

(kaµ(s))
2

S2[k] =
∑
s,µ,a

kaµ(s)k
a
µ(s+ µ)

We determine the monopole action, that is, the set of couplings F (i) from the
monopole current ensemble

{
kaµ(s)

}
with the aid of an inverse Monte-Carlo

method first developed by Swendsen and extended to closed monopole
currents by Shiba and Suzuki.

Techniques:
1. Tadpole improved action on 484 lattice at β = 3.0 ∼ 3.9
2. Smooth gauge-fixings: Direct Maximal center gauge (MCG), Direct
Laplacia center gauge (DLCG), Maximal Abelian Wilson loop gauge (AWL)
and Maximally Abelian gauge+U(1) (MA).
3. Block spin transformation of monopole currents. n = 1, 2, 3, 4, 6, 8, 12
The inverse M-C method determines the coupling constants Fi. In general
they are the function of β and n. Fi(a(β), n)
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Figure 4: The coupling constants of the self and the nearest-neighbor
interactions in the effective monopole action versus b = na(β) in MAU1
and MCG on 484. The sum of each coupling constants with respect to three
color components are shown.
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Summary:

1. F (i) satisfy a beautiful scaling, that is, they are a function of

the product b = na(β) alone for lattice coupling constants

3.0 ≤ β ≤ 3.9 and the steps of blocking 1 ≤ n ≤ 12. The

effective action showing the scaling behavior can be regarded

as an almost perfect action corresponding to the continuum

limit, since a → 0 as n → ∞ for fixed b.

2. The almost perfect action showing the scaling is found to be

independent of the smooth gauges adopted here as naturally

expected from the gauge invariance of the continuum theory.

From the scaling results of the monopole density and the infrared

monopole action, we can say that the new monopoles of the

Dirac type have the continuum limit.
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5. Future outlook

1. To study the new monopoles in the case of string tensions of

higher representations is intersting. In progress.

2. There is in principle no problem concerning the existence of

this new color magnetic monopoles in full QCD. To study these

Abelian new monopoles of the Dirac type in full QCD is

important.

• What is the scaling behavior with respect to monopole dnsity

when small dynamical quarks exist?

• Could they explain all mass generation in QCD such as

hadron masses?

• What is an infrared effective monopole action in full QCD

• Is it rewritten by a kind of the dual Abelian Higgs model?

• Could the monopoles explain also chiral symmetry breaking?
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3. In usual axiomatic field theory, a field operator is regarded as

an operator-valued distribution ϕ̂(f) where f(x) is a regular

function. Since the derivative of the operator is defined by that

of the test function, no singularity is assumed to exist leading

to the violation of non-Abelian Bianchi identity. How to

formulate a field theory containing line singularities

mathematically is not known yet and interesting.
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