Confinement and Chiral Symmetry in the *SU*(3) Instanton-dyon Ensemble

Quark Confinement and the Hadron Spectrum 2021 (Stavanger)

Dallas DeMartini

Stony Brook University Pure *SU*(3): 2102.11321 [hep-ph]; Two-flavor QCD: in progress done in collaboration with E. Shuryak

August 6, 2021

Outline

- Instanton-Dyons in Yang-Mills Theory
- Dyons and holonomy

The Dyon Ensemble

• Dyon Interactions and Partition Function

3 Results: Pure SU(3)

- The Polyakov Loop and Confinement
- Trace-Deformed Yang-Mills Theory

4 Results: $N_f = 2$

- Fermionic Determinant
- Dirac Eigenvalues and the Chiral Condensate

- Instantons are 4D topological solitons related to tunneling between vacua of different N_{CS}
- Instantons generate chiral symmetry breaking, but not confinement; monopoles needed
- Instantons do not interact directly with the holonomy and are charge neutral

- At $\langle P \rangle \neq 0$, the instanton is seen to be made of N_c constituents \rightarrow the dyons
- Dyons have non-zero magnetic charge and non-integer topological charge
- Their action $S_i = \frac{8\pi^2}{g^2}\nu_i$ is ≈ 4 near T_c , making them suitable for using semiclassical methods
- Dyon action sets temperature scale $S_0 = \frac{8\pi^2}{g^2} = \frac{11}{3}N_c \ln(T/\Lambda)$

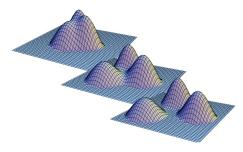
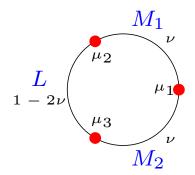


Figure: [Kraan, van Baal (1998)]

Polyakov Loop and Holonomy

- $\langle P \rangle = \frac{1}{3} + \frac{2}{3} \cos(2\pi\nu)$
- $\langle P \rangle = 0$, $\nu = \frac{1}{3} \rightarrow \text{confined}$ phase
- Dyons have individual actions $S_{M1} = S_{M2} = S_0 \nu$, $S_L = S_0 (1 - 2\nu)$
- Antidyons have the same properties with opposite magnetic and topological charges



5/26

$$f = \frac{4\pi^2}{3} (2(\nu(1-\nu))^2 + (2\nu(1-2\nu))^2)$$

$$-4n_M \ln\left[\frac{d_{\nu}e}{n_M}\right] - 2n_L \ln\left[\frac{d_{1-2\nu}e}{n_L}\right] + \frac{\ln(8\pi^3 N_M^2 N_L)}{\tilde{V}_3} + \Delta f$$
(1)
Compute Δf by Monte-Carlo integration

Minimize $f(T, \nu, n_M, n_L)$ to get f(T), $\nu(T)$, $n_M(T)$, $n_L(T)$

Image: A matrix

э

•
$$\Delta S_{class}^{d\bar{d}} = -\frac{S_0 C_{d\bar{d}}}{2\pi} (\frac{1}{rT} - 2.75\pi \sqrt{\nu_i \nu_j} e^{-1.408\pi \sqrt{\nu_i \nu_j} rT})$$

• $C_{d\bar{d}} = 2$ for same kind, -1 for different kinds of dyons

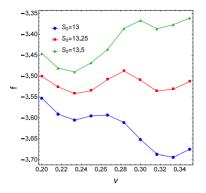
- $\Delta S_{class}^{core} = rac{
 u V_0}{1 + e^{2\pi
 u T(r-r_0)}}$
- Core is used at distances smaller than $x_0 = 2\pi\nu rT$, core radius goes as $1/\nu$
- Diakonov Determinant:

$$G_{im,jn} = \delta_{ij}\delta_{mn}(4\pi\nu_m - \sum_{k\neq i} \frac{2}{T|r_{i,m} - r_{k,m}|} + \sum_k \frac{1}{T|r_{i,m} - r_{k,p\neq m}|}) + \frac{2\delta_{mn}}{T|r_{i,m} - r_{j,n}|} - \frac{\delta_{m\neq n}}{T|r_{i,m} - r_{j,n}|},$$
(2)

- Compute free energy by standard integration over a dummy parameter in 10 steps $\lambda = 0.1, ...1$
- Perform $\mathcal{O}(50000)$ simulations with different inputs
- For each value of S₀(T), fit to find minimizing input parameters
- Simulations run with $N_D = 120$ dyons in a 3D periodic box setup

	min.	max.	step size	no. of steps
S_0	8	21	1	14
u	0.1	0.35	$0.01\overline{6}$	16
n_M	0.15	0.6	0.03	16
N_M/N_L	1.0	30.0	varied	16

- Phase transition at $S_0 = 13.18$
- Jumps from $\langle P \rangle = 0$ to $\langle P \rangle \simeq 0.4$ ($\nu = 1/3$ to $\nu \simeq 0.23$)



The First-Order Transition

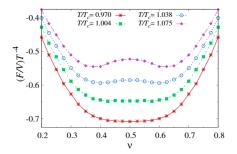
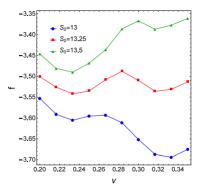


Figure: *SU*(2) [Lopez-Ruiz, Jiang, Liao (2016)]



Polyakov Loop and T_c

- We can now plot all properties in terms of *T*/*T_c*
- Jump in $\langle P \rangle$ nearly identical to lattice
- \$\lambda P \rangle\$ does not continue to grow as quickly as lattice data does

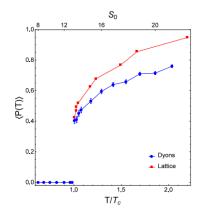
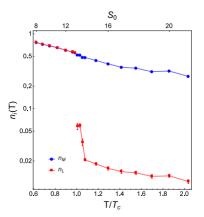


Figure: Lattice data from Kaczmarek et. al. (2002)

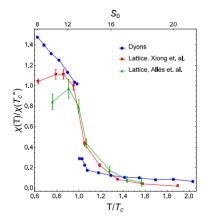
- *M_i* dyons: smaller ν and larger core size have opposite effects, resulting in a nearly continuous density
- L dyons: larger value of $1 2\nu$ suppresses density



- Instantons are topologically nontrivial with $Q=\pm 1$
- Dyons carry non-integer charge, (anti)dyons: $Q_i = (-)\nu_i$
- Topological susceptibility $\xi = \langle Q^2 \rangle / V_4$
- Cut the box in half and measure the distribution of charge in that half

Topological Susceptibility

- Dyon model shows a first-order transition, while lattice data show a smooth crossover
- Our ensemble has \sim 40 instantons, much larger than lattice

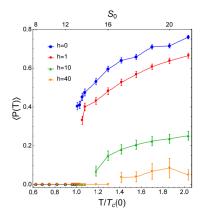


•
$$\Delta S_{def} = h \int d^3 x |P(\vec{x})|^2$$

- Introduced as a way to preserve center symmetry at high temperature
- For a positive h, the deformation term suppresses the value of (P) and favors the confined phase
- No need to run any additional MC simulations, the new term $\Delta f_{def} = h \langle P \rangle^2$ can be added and re-fit.

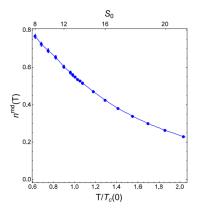
Trace Deformation and the Polyakov Loop

- Increasing *h* reduces the value of $\langle P \rangle$ and increases T_c
- At h ~ 80 the theory is confined at all temperatures we study



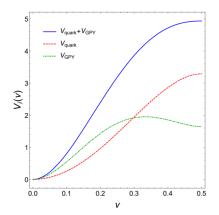
The Maximally-deformed Theory

- All dyon densities remain equal and vary smoothly with temperature
- The system remains confining even at low dyon densities



- We now include $N_f = 2$ flavors of dynamical massless quarks
- \bullet Dynamical \rightarrow we include the fermionic determinant in the partition function
- In physical QCD the deconfinement transition is a smooth crossover, unlike the pure SU(3) theory
- We can study the Dirac eigenvalue spectrum and thus the chiral condensate and chiral symmetry

- Two new terms in our partition function
- Quark perturbative potential $V_{quark} = -N_f \frac{4\pi^2}{3} (2\nu^4 \nu^2)$
- Fermionic determinant $\det(i \not D)^{N_f} \simeq \det(\hat{\mathcal{T}})^{N_f}$
- Consider only the space spanned by the dyons' zero modes



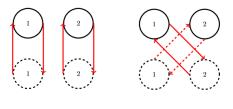
19 / 26

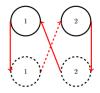
• Quarks can 'hop' from dyon to antidyon with amplitude *T_{ij}*

•
$$\hat{T} = \begin{pmatrix} 0 & T_{ij} \\ -T_{ji} & 0 \end{pmatrix}$$

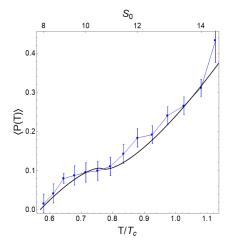
• $T_{ij} = \bar{\nu}c' \exp(-\sqrt{11.2 + (\pi\bar{\nu}rT)^2})$

• det $(\hat{T}) = T_{11}^2 T_{22}^2 + T_{12}^2 T_{21}^2 - 2T_{11}T_{21}T_{22}T_{12}$





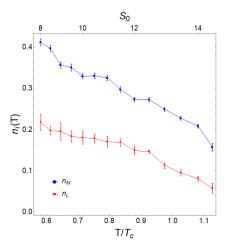
Confinement with Quarks



- No more first-order transition
- Fit to O(4) form gives $S_0(T_{deconf}) = 10.44$

21/26

- Linear zero-mode-induced interaction suppresses L-dyon density
- Broken \mathbb{Z}_3 symmetry \rightarrow dyon densities aren't equal even in the confined phase



Zero-Mode Zone

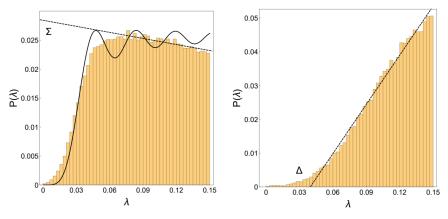


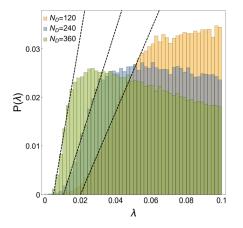
Figure: Left: $S_0 = 8$, Right: $S_0 = 14$

Low T: there is a finite density $\rho(0) \rightarrow$ broken chiral symmetry High T: an eigenvalue gap Δ appears, restored chiral symmetry

Dallas DeMartini (Stony Brook)

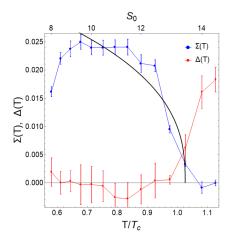
SU(3) Instanton-dyons

Determining the Gap



- Three ensemble sizes
- Fit gaps to a function linear in 1/V to determine the infinite volume limit

Chiral Phase Transition



- The condensate quickly goes to zero at the same time a non-zero eigenvalue gap forms
- From this, we estimate $S_0(T_c) = 13.25$
- Should also belong to O(4) universality class

- The dyon ensemble does possess a first-order deconfinement phase transition to the same value of $\langle P \rangle$ as the lattice for the pure SU(3) theory and is compatible with a second-order transition when $N_f = 2$
- Trace deformation allows for confinement at low dyon density and has interesting phases.
- High dyon density leads to collectivization of zero modes and generates a nonzero chiral condensate at below T_c and finite eigenvalue gap above T_c