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“Hadrons are nonperturbative “Precision bound-state calculations
bound-states of QCD” are essentially nonperturbative”

Bodwin et al, Rev. Mod. Phys. 57 (1985) 723

In which sense are QED atoms nonperturbative? o= 1/137

Need to distinguish between different meanings of “nonperturbative”

QED bound state perturbation theory allows precision calculations of atoms:

Avoep = 203.39169(41) GHz

E.g., Hyperfine splitting in Positronium Avexp = 203.394 + 002 GHz
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Quarkonia are like atoms with confinement
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Lattice QCD agrees with the Cornell potential
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Take the Positronium - Quarkonium analogy seriously

Is it possible in QFT?
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Is it possible in QFT?
Recall how the Schrodinger equation follows from the action Soep

V(r) = —% Classical potential from Gauss’ law

Vir) = V" 4a, Involves dimensionful parameter V": Not in Socp
r)=Vr——-——
3 Can arise from a boundary condition on Gauss’ law.



Take the Positronium - Quarkonium analogy seriously

Is it possible in QFT?
Recall how the Schrodinger equation follows from the action Soep

V(r) = —% Classical potential from Gauss’ law

Vir) = V" 4a, Involves dimensionful parameter V": Not in Socp
r)=Vr——-——
3 Can arise from a boundary condition on Gauss’ law.

But:
QFT bound states are derived using Feynman diagrams

This assumes free field B.C’s: A« =0

Feynman diagrams do not have bound state poles



The Schradinger equation from Feynman diagrams s
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Bound state poles in ete- — e*e- arise only through a Bohr scale Ipl ~ am:
divergence of the perturbative sum propagators « 1/a

Paul Hoyer Stavanger 2021



The Schradinger equation from Feynman diagrams s

ete- — ete
pr p4 pi p14—k P4 pi Pl—k D4
+ h 2
0 € k ‘9064‘6_ ‘
p —> q + k k—q + = 0 - —|_ . oo
. 0 — E+is
P2 p; p2 pzj—k D3 p: P3— k ps

(a) (b)

Bound state poles in ete- — e*e- arise only through a Bohr scale Ipl ~ am:
divergence of the perturbative sum propagators « 1/a

Bound states are at the borderline

For Ipl << am: classical physics dominates: to classical physics

Paul Hoyer Stavanger 2021



The Schradinger equation from Feynman diagrams s
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P2 p; p2 pzj—k D3 p: P3— k ps

(a) (b)

Bound state poles in ete- — e*e- arise only through a Bohr scale Ipl ~ am:
divergence of the perturbative sum propagators « 1/a

Bound states are at the borderline

For Ipl << am: classical physics dominates: to classical physics

QED: Sum of “ladder diagrams” generates the classical field V(r) = — @
-

QCD: V(r) = Vr Confinement probably not generated by Feynman diagrams

— [Need to derive Schrédinger equation with correct boundary conditions
Paul Hoyer Stavanger 2021




Temporal gauge: A9 = O (crucial)

Gauge theories have instantaneous interactions, despite their local action

AY and A do not propagate, they are fixed by the choice of gauge.

Paul Hoyer Stavanger 2021



Temporal gauge: A9 = O (crucial)

Gauge theories have instantaneous interactions, despite their local action

AV and A, do not propagate, they are fixed by the choice of gauge.

Temporal gauge is optimal for bound states defined at an instant of time 7.

® Preserves translation and rotation symmetry

® Canonical quantisation straightforward (unlike in V- A = 0 gauge)
E'(t,x), A(t,y)] = i67(x — y)

® [/; determined by Gauss’ law as a constraint (not an operator identity)
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Temporal gauge: A9 = O (crucial)

Gauge theories have instantaneous interactions, despite their local action

AY and A do not propagate, they are fixed by the choice of gauge.

Temporal gauge is optimal for bound states defined at an instant of time 7.

® Preserves translation and rotation symmetry
® Canonical quantisation straightforward (unlike in V- A = 0 gauge)

[Ei(t, x), A7 (t, y)} = i6Y6(x — y)

® [/; determined by Gauss’ law as a constraint (not an operator identity)

Wip(t, y) [phys)

e
T — Y|
Hy = 4 / dx E7 determines the potential energy of le—(x1) e*(x2)) states,

Hy Do (1)1 (22) |0) = ———— b (21 )b (x2) |0)

QED: FE(t,x)|phys) = -V, / dy 17

1 — @2



Fock state expansion for Positronium in A%=0 gauge

o)
A perturbative expansion in o can start

from the le+e-) Fock state, bound by E;
the classical field E;, of its constituents:
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includes the instantaneous E field.
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Fock state expansion for Positronium in A%=0 gauge

te)
A perturbative expansion in o can start
from the le+e-) Fock state, bound by E;

the classical field E; of its constituents:

‘ ete” 7>
Higher order corrections given by states E:
with transverse photons and e*e- pairs At

Each Fock component of the bound state
includes the instantaneous E field.

This Fock expansion is valid in any frame.

e
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Temporal gauge in QCD: AL =0
Gauss’ constraint determines E , for all hadron Fock states:
0,E} ,(z) |phys) = g[ — fabe AYEL + T (z)] [phys)

In QED we impose the boundary condition: Er(x) — 0 for Ix| —

In QCD E. . (x) = 0 for color singlet Fock states, but it
need not vanish for each color component of the Fock state

B} .(x) [phys) = —0; /dy [m Y+ pp— Ea(Y) [phys)

where  E.,(y) = — fabe AL EL(y) + 1T (y)

The homogeneous solution & % is the only one
that is compatible with Poincaré invariance




Including the k # O homogeneous solution for Ej
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k # K(x,y): this is a homogeneous solution of 0; E'(x) = 0
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The linear dependence on x makes E; independent of x, as required by
translation invariance: The field energy density is spatially constant.



Including the k # O homogeneous solution for Ej

i _ o . 9
£y () [phys) = —0; /dy{m y+4ﬂw_yd5a(y) phys)

where  E4(y) = — farc AL EL(y) + ¢ T ¢(y)
k # K(x,y): this is a homogeneous solution of 0; E'(x) = 0

The linear dependence on x makes E; independent of x, as required by
translation invariance: The field energy density is spatially constant.

The field energy o volume of space is / Prose =52
irrelevant only if it is universal. \ ‘ /
This relates the normalisation % of all — o—
Fock components, leaving an

vy
overall scale A as the single parameter. \/ t b /
r il \

“empty vacuum”  QCD vacuum

Compatible with Socp “Bag model without a bag”



The potential energy #y, =1 / dz Ef-Ef

Hy = /dydz{y-z{%#/daﬂrgﬁ;} + 3 |yofz’}8a(y)5a(z)

Recall: Sa(y) — _fabcAéEg(y) _|_ ¢TTG¢(y)

Gives translation invariant potentials only for (globally) color singlet states
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The potential energy #y, =1 / dz Ef-Ef

Hy = /dydz{y-z{%@/daﬂrgﬁ;} + 3 |ysz] }Sa(y)é’a(z)

Recall: Sa(y) — _fabcAéEg(y) _|_ wTTa¢(y)

Gives translation invariant potentials only for (globally) color singlet states

Meson: |q(x1)q(x2)) = Z@A(ml) wA(f@) 0)
A

& Cornell potential

V.a ro) = A2z — xo| — C

This potential is valid also for relativistic gg Fock states,
in any frame



Baryon Fock state potential

Baryon: [q(x1)q(x2)q(T3)) = Z EABC?ﬂL(wl)@%(@)WC(CBS)|O>
A,B,C

2 1 1 1
Vige(T1, T2, 23) = AQdQQQ(wl’wQ’mS) 3 Oés(|331 — X " |xo — a3 " x5 — 1131|)

1
dgqq(T1, T2, T3) = ﬁ\/(ml — 3)% + (22 — @3)% + (T3 — 21)?

Analogous potentials obtained for any quark and gluon Fock state,
such as ggg .

Paul Hoyer Stavanger 2021



Summary

QED bound states have a 70 year history: Valuable experiences



Summary

QED bound states have a 70 year history: Valuable experiences

“Nonperturbative” bound states are at the borderline to classical physics



Summary

QED bound states have a 70 year history: Valuable experiences
“Nonperturbative” bound states are at the borderline to classical physics
The classical binding potential 1s not present in Feynman diagrams

Temporal gauge (A% = 0) best for bound states defined at an instant of time



Summary

QED bound states have a 70 year history: Valuable experiences
“Nonperturbative” bound states are at the borderline to classical physics
The classical binding potential 1s not present in Feynman diagrams
Temporal gauge (A% = 0) best for bound states defined at an instant of time
Gauss constraint gives classical, instantaneous E;, field for each Fock state

Perturbative expansion around valence Fock states



Summary

QED bound states have a 70 year history: Valuable experiences
“Nonperturbative” bound states are at the borderline to classical physics
The classical binding potential 1s not present in Feynman diagrams
Temporal gauge (A% = 0) best for bound states defined at an instant of time
Gauss constraint gives classical, instantaneous E;, field for each Fock state

Perturbative expansion around valence Fock states

Homogeneous solution of Gauss’ constraint gives confinement in QCD

Many features of hadrons thus obtained look promising & intriguing

Further info in 2101.06721v2 and/or contact me ! paul hoyer@helsinki.fi



