Hadrons as QCD Bound States

Online talk at QCHS, Stavanger August 2021

Paul Hoyer, University of Helsinki

"Hadrons are nonperturbative bound-states of QCD"

"Precision bound-state calculations are essentially nonperturbative"

Bodwin et al, *Rev. Mod. Phys.* **57** (1985) 723

Hadrons as QCD Bound States

Online talk at QCHS, Stavanger August 2021

Paul Hoyer, University of Helsinki

"Hadrons are nonperturbative bound-states of QCD"

"Precision bound-state calculations are essentially nonperturbative"

Bodwin et al, Rev. Mod. Phys. 57 (1985) 723

In which sense are QED atoms nonperturbative? $\alpha = 1/137$

Need to distinguish between different meanings of "nonperturbative"

Hadrons as QCD Bound States

Online talk at QCHS, Stavanger August 2021

Paul Hoyer, University of Helsinki

"Hadrons are nonperturbative bound-states of QCD"

"Precision bound-state calculations are essentially nonperturbative"

Bodwin et al, Rev. Mod. Phys. 57 (1985) 723

In which sense are QED atoms nonperturbative? $\alpha = 1/137$

Need to distinguish between different meanings of "nonperturbative"

QED bound state perturbation theory allows precision calculations of atoms:

$$\Delta v_{\text{QED}} = 203.39169(41) \text{ GHz}$$

 $\Delta v_{\text{EXP}} = 203.394 \pm .002 \text{ GHz}$

Learn from 70 years of QED

Quarkonia are like atoms with confinement

$$V(r) = -\frac{\alpha}{r}$$

$$V(r) = V'r - \frac{4}{3}\frac{\alpha_s}{r} \quad (1980)$$

E. Eichten, S. Godfrey, H. Mahlke and J. L. Rosner, Rev. Mod. Phys. **80** (2008) 1161

"The J/ψ is the Hydrogen atom of QCD"

Lattice QCD agrees with the Cornell potential

Take the Positronium - Quarkonium analogy seriously

Is it possible in QFT?

Take the Positronium - Quarkonium analogy seriously

Is it possible in QFT?

Recall how the Schrödinger equation follows from the action S_{QED}

$$V(r) = -\frac{\alpha}{r}$$

Classical potential from Gauss' law

$$V(r) = V'r - \frac{4}{3} \frac{\alpha_s}{r}$$

Involves dimensionful parameter V': Not in S_{QCD} Can arise from a boundary condition on Gauss' law.

Take the Positronium - Quarkonium analogy seriously

Is it possible in QFT?

Recall how the Schrödinger equation follows from the action S_{OED}

$$V(r) = -\frac{\alpha}{r}$$

Classical potential from Gauss' law

$$V(r) = V'r - \frac{4}{3}\frac{\alpha_s}{r}$$

 $V(r) = V'r - \frac{4}{3} \frac{\alpha_s}{r}$ Involves dimensionful parameter V: Not in S_{QCD} Can arise from a boundary condition on Gauss' law.

But:

QFT bound states are derived using Feynman diagrams This assumes free field B.C's: $A^{\mu} = 0$

Feynman diagrams do not have bound state poles

The Schrödinger equation from Feynman diagrams

$$e^+e^- \rightarrow e^+e^-$$

Bound state poles in $e^+e^- \rightarrow e^+e^-$ arise only through a divergence of the perturbative sum

Bohr scale $|p| \sim \alpha m$: propagators $\propto 1/\alpha$

The Schrödinger equation from Feynman diagrams

$$e^+e^- \rightarrow e^+e^-$$

$$p^{0} \xrightarrow{e^{+}} \qquad + \qquad \sum_{k=q} p_{1} p_{1}-k p_{4} \atop k-q} \qquad + \qquad \sum_{k=q} p_{1} p_{1}-k p_{4} \atop k-q} \qquad + \qquad \sum_{p_{1} p_{1}-k p_{4} \atop k-q} p_{4} \atop k-q} \qquad + \qquad \sum_{p_{2} p_{3}-k p_{3}} p_{4} + \ldots = \frac{|\varphi_{e}+e^{-}|^{2}}{p^{0}-E+i\varepsilon} + \ldots$$

Bound state poles in $e^+e^- \rightarrow e^+e^-$ arise only through a divergence of the perturbative sum

Bohr scale $|p| \sim \alpha m$: propagators $\propto 1/\alpha$

For $|p| \ll \alpha m$: classical physics dominates:

Bound states are at the borderline to classical physics

The Schrödinger equation from Feynman diagrams

$$e^+e^- \rightarrow e^+e^-$$

$$p^{0} \xrightarrow{e^{+}} \qquad + \qquad \sum_{k=q}^{p_{1} p_{4}} \qquad + \qquad \sum_{k=q}^{p_{1} p_{1}-k} p_{4} \qquad + \qquad \sum_{p_{2} p_{2}+k} p_{3} \qquad + \qquad \sum_{p_{2} p_{3}-k} p_{3} \qquad + \qquad \sum_{p_{2}$$

Bound state poles in $e^+e^- \rightarrow e^+e^-$ arise only through a divergence of the perturbative sum

Bohr scale $|p| \sim \alpha m$: propagators $\propto 1/\alpha$

For $|p| \ll \alpha m$: classical physics dominates:

Bound states are at the borderline to classical physics

Sum of "ladder diagrams" generates the classical field $V(r)=-rac{lpha}{r}$

QCD: V(r) = V'r Confinement probably not generated by Feynman diagrams

Need to derive Schrödinger equation with correct boundary conditions

Temporal gauge: $A^0 = 0$ (crucial)

Gauge theories have instantaneous interactions, despite their local action

 A^0 and A_L do not propagate, they are fixed by the choice of gauge.

Temporal gauge: $A^0 = 0$ (crucial)

Gauge theories have instantaneous interactions, despite their local action

 A^0 and A_L do not propagate, they are fixed by the choice of gauge.

Temporal gauge is optimal for bound states defined at an instant of time t.

- Preserves translation and rotation symmetry
- Canonical quantisation straightforward (unlike in $\nabla \cdot \mathbf{A} = 0$ gauge) $\left[E^{i}(t, \mathbf{x}), A^{j}(t, \mathbf{y})\right] = i\delta^{ij}\delta(\mathbf{x} \mathbf{y})$
- E_L determined by Gauss' law as a constraint (not an operator identity)

Temporal gauge: $A^0 = 0$ (crucial)

Gauge theories have instantaneous interactions, despite their local action

 A^0 and A_L do not propagate, they are fixed by the choice of gauge.

Temporal gauge is optimal for bound states defined at an instant of time t.

- Preserves translation and rotation symmetry
- Canonical quantisation straightforward (unlike in $\nabla \cdot \mathbf{A} = 0$ gauge) $\left[E^{i}(t, \mathbf{x}), A^{j}(t, \mathbf{y})\right] = i\delta^{ij}\delta(\mathbf{x} \mathbf{y})$
- E_L determined by Gauss' law as a constraint (not an operator identity)

QED:
$$m{E}_L(t,m{x})\ket{phys} = -m{\nabla}_x\int dm{y} \frac{e}{4\pi |m{x}-m{y}|} \psi^\dagger \psi(t,m{y})\ket{phys}$$
 $\mathcal{H}_V \equiv \frac{1}{2}\int dm{x} \, m{E}_L^2 \;\; ext{determines the potential energy of } \ket{e^-(m{x}_1)} \, e^+(m{x}_2) \rangle \; ext{states},$ $\mathcal{H}_V \; ar{\psi}_\alpha(m{x}_1)\psi_\beta(m{x}_2)\ket{0} = -\frac{\alpha}{|m{x}_1-m{x}_2|} ar{\psi}_\alpha(m{x}_1)\psi_\beta(m{x}_2)\ket{0}$ Paul Hoyer Stavanger 2021

Fock state expansion for Positronium in $A^0=0$ gauge

A perturbative expansion in α can start from the $|e^+e^-\rangle$ Fock state, bound by the classical field E_L of its constituents:

Fock state expansion for Positronium in $A^0=0$ gauge

A perturbative expansion in α can start from the $|e^+e^-\rangle$ Fock state, bound by the classical field E_L of its constituents:

 $|e^+e^angle$ E_L e^+

Higher order corrections given by states with transverse photons and e^+e^- pairs

$$\begin{vmatrix} e^+e^-\gamma
angle \\ A_T
angle E_L \ e^+ \end{vmatrix}$$

Each Fock component of the bound state includes the instantaneous E_L field.

Fock state expansion for Positronium in $A^0=0$ gauge

A perturbative expansion in α can start from the $|e^+e^-\rangle$ Fock state, bound by the classical field E_L of its constituents:

 $|e^+e^angle \ E_L \ e^+$

Higher order corrections given by states with transverse photons and e^+e^- pairs

$$\begin{vmatrix} e^+e^-\gamma \rangle \\ A_T & E_L \\ e^+ \end{vmatrix}$$

Each Fock component of the bound state includes the instantaneous E_L field.

This Fock expansion is valid in any frame.

Temporal gauge in QCD: $A_a^0 = 0$

Gauss' constraint determines $E_{L,a}$ for all hadron Fock states:

$$\partial_i E_{L,a}^i(\boldsymbol{x}) | phys \rangle = g \left[-f_{abc} A_b^i E_c^i + \psi^{\dagger} T^a \psi(\boldsymbol{x}) \right] | phys \rangle$$

Temporal gauge in QCD: $A_a^0 = 0$

Gauss' constraint determines $E_{L,a}$ for all hadron Fock states:

$$\partial_i E_{L,a}^i(\boldsymbol{x}) | phys \rangle = g \left[-f_{abc} A_b^i E_c^i + \psi^{\dagger} T^a \psi(\boldsymbol{x}) \right] | phys \rangle$$

In QED we impose the boundary condition: $E_L(x) \rightarrow 0$ for $|x| \rightarrow \infty$

In QCD $E_{L,a}(x) \equiv 0$ for color singlet Fock states, but it need not vanish for each color component of the Fock state

Temporal gauge in QCD: $A_a^0 = 0$

Gauss' constraint determines $E_{L,a}$ for all hadron Fock states:

$$\partial_i E_{L,a}^i(\boldsymbol{x}) | phys \rangle = g \left[-f_{abc} A_b^i E_c^i + \psi^{\dagger} T^a \psi(\boldsymbol{x}) \right] | phys \rangle$$

In QED we impose the boundary condition: $E_L(x) \rightarrow 0$ for $|x| \rightarrow \infty$

In QCD $E_{L,a}(x) \equiv 0$ for color singlet Fock states, but it need not vanish for each color component of the Fock state

$$E_{L,a}^{i}(\boldsymbol{x})|phys\rangle = -\partial_{i}^{x}\int d\boldsymbol{y}\Big[\kappa\,\boldsymbol{x}\cdot\boldsymbol{y} + \frac{g}{4\pi|\boldsymbol{x}-\boldsymbol{y}|}\Big]\mathcal{E}_{a}(\boldsymbol{y})|phys\rangle$$

where
$$\mathcal{E}_a(\boldsymbol{y}) = -f_{abc}A_b^i E_c^i(\boldsymbol{y}) + \psi^{\dagger} T^a \psi(\boldsymbol{y})$$

The homogeneous solution $\propto \varkappa$ is the only one that is compatible with Poincaré invariance

Including the $\kappa \neq 0$ homogeneous solution for $E_{L,a}^i$

$$E_{L,a}^{i}(\boldsymbol{x})|phys\rangle = -\partial_{i}^{x}\int d\boldsymbol{y}\Big[\kappa\,\boldsymbol{x}\cdot\boldsymbol{y} + \frac{g}{4\pi|\boldsymbol{x}-\boldsymbol{y}|}\Big]\mathcal{E}_{a}(\boldsymbol{y})|phys\rangle$$

where
$$\mathcal{E}_a(\boldsymbol{y}) = -f_{abc}A_b^i E_c^i(\boldsymbol{y}) + \psi^{\dagger} T^a \psi(\boldsymbol{y})$$

 $\kappa \neq \kappa(\boldsymbol{x}, \boldsymbol{y})$: this is a homogeneous solution of $\partial_i \boldsymbol{E}^i(\boldsymbol{x}) = 0$

Including the $\kappa \neq 0$ homogeneous solution for $E_{L,a}^i$

$$E_{L,a}^{i}(\boldsymbol{x})|phys\rangle = -\partial_{i}^{x}\int d\boldsymbol{y}\Big[\kappa\,\boldsymbol{x}\cdot\boldsymbol{y} + \frac{g}{4\pi|\boldsymbol{x}-\boldsymbol{y}|}\Big]\mathcal{E}_{a}(\boldsymbol{y})|phys\rangle$$

where
$$\mathcal{E}_a(\boldsymbol{y}) = -f_{abc}A_b^i E_c^i(\boldsymbol{y}) + \psi^{\dagger} T^a \psi(\boldsymbol{y})$$

 $\kappa \neq \kappa(\boldsymbol{x}, \boldsymbol{y})$: this is a homogeneous solution of $\partial_i \boldsymbol{E}^i(\boldsymbol{x}) = 0$

The linear dependence on x makes E_L independent of x, as required by translation invariance: The field energy density is spatially constant.

Including the $\kappa \neq 0$ homogeneous solution for $E_{L,a}^i$

$$E_{L,a}^{i}(\boldsymbol{x})|phys\rangle = -\partial_{i}^{x}\int d\boldsymbol{y}\Big[\kappa\,\boldsymbol{x}\cdot\boldsymbol{y} + \frac{g}{4\pi|\boldsymbol{x}-\boldsymbol{y}|}\Big]\mathcal{E}_{a}(\boldsymbol{y})|phys\rangle$$

where
$$\mathcal{E}_a(\boldsymbol{y}) = -f_{abc}A_b^i E_c^i(\boldsymbol{y}) + \psi^{\dagger} T^a \psi(\boldsymbol{y})$$

$$\kappa \neq \kappa(\boldsymbol{x}, \boldsymbol{y})$$
: this is a homogeneous solution of $\partial_i \boldsymbol{E}^i(\boldsymbol{x}) = 0$

The linear dependence on x makes E_L independent of x, as required by translation invariance: The field energy density is spatially constant.

The field energy ∝ volume of space is irrelevant only if it is universal.

This relates the normalisation \varkappa of all Fock components, leaving an overall scale Λ as the single parameter.

Compatible with S_{QCD}

"Bag model without a bag"

The potential energy
$$\mathcal{H}_V \equiv \frac{1}{2} \int dm{x} \sum_a m{E}_L^a \cdot m{E}_L^a$$

$$H_V = \int d\boldsymbol{y} d\boldsymbol{z} \left\{ \boldsymbol{y} \cdot \boldsymbol{z} \left[\frac{1}{2} \kappa^2 \int d\boldsymbol{x} + g \kappa \right] + \frac{1}{2} \frac{\alpha_s}{|\boldsymbol{y} - \boldsymbol{z}|} \right\} \mathcal{E}_a(\boldsymbol{y}) \mathcal{E}_a(\boldsymbol{z})$$

Recall:
$$\mathcal{E}_a(\boldsymbol{y}) = -f_{abc}A_b^i E_c^i(\boldsymbol{y}) + \psi^{\dagger} T^a \psi(\boldsymbol{y})$$

Gives translation invariant potentials only for (globally) color singlet states

The potential energy
$$\mathcal{H}_V \equiv \frac{1}{2} \int dm{x} \sum_a m{E}_L^a \cdot m{E}_L^a$$

$$H_V = \int d\boldsymbol{y} d\boldsymbol{z} \left\{ \boldsymbol{y} \cdot \boldsymbol{z} \left[\frac{1}{2} \kappa^2 \int d\boldsymbol{x} + g \kappa \right] + \frac{1}{2} \frac{\alpha_s}{|\boldsymbol{y} - \boldsymbol{z}|} \right\} \mathcal{E}_a(\boldsymbol{y}) \mathcal{E}_a(\boldsymbol{z})$$

Recall:
$$\mathcal{E}_a(\boldsymbol{y}) = -f_{abc}A_b^i E_c^i(\boldsymbol{y}) + \psi^{\dagger} T^a \psi(\boldsymbol{y})$$

Gives translation invariant potentials only for (globally) color singlet states

Meson:
$$|q(\boldsymbol{x}_1)\bar{q}(\boldsymbol{x}_2)\rangle \equiv \sum_{A} \bar{\psi}^A(\boldsymbol{x}_1) \, \psi^A(\boldsymbol{x}_2) \, |0\rangle$$

$$V_{q\bar{q}}(\boldsymbol{x}_1,\boldsymbol{x}_2) = \Lambda^2 |\boldsymbol{x}_1 - \boldsymbol{x}_2| - C_F \frac{\alpha_s}{|\boldsymbol{x}_1 - \boldsymbol{x}_2|}$$
 Cornell potential

This potential is valid also for relativistic $q\bar{q}$ Fock states, in any frame

Baryon Fock state potential

Baryon:
$$|q(\boldsymbol{x}_1)q(\boldsymbol{x}_2)q(\boldsymbol{x}_3)\rangle \equiv \sum_{A,B,C} \epsilon_{ABC} \psi_A^{\dagger}(\boldsymbol{x}_1) \psi_B^{\dagger}(\boldsymbol{x}_2) \psi_C^{\dagger}(\boldsymbol{x}_3) |0\rangle$$

$$V_{qqq}(\boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}_3) = \Lambda^2 d_{qqq}(\boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}_3) - \frac{2}{3} \alpha_s \left(\frac{1}{|\boldsymbol{x}_1 - \boldsymbol{x}_2|} + \frac{1}{|\boldsymbol{x}_2 - \boldsymbol{x}_3|} + \frac{1}{|\boldsymbol{x}_3 - \boldsymbol{x}_1|} \right)$$

$$d_{qqq}(\boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}_3) \equiv \frac{1}{\sqrt{2}} \sqrt{(\boldsymbol{x}_1 - \boldsymbol{x}_2)^2 + (\boldsymbol{x}_2 - \boldsymbol{x}_3)^2 + (\boldsymbol{x}_3 - \boldsymbol{x}_1)^2}$$

Analogous potentials obtained for any quark and gluon Fock state, such as $q\bar{q}g$.

QED bound states have a 70 year history: Valuable experiences

QED bound states have a 70 year history: Valuable experiences

"Nonperturbative" bound states are at the borderline to classical physics

QED bound states have a 70 year history: Valuable experiences

"Nonperturbative" bound states are at the borderline to classical physics

The classical binding potential is not present in Feynman diagrams

Temporal gauge ($A^0 = 0$) best for bound states defined at an instant of time

QED bound states have a 70 year history: Valuable experiences

"Nonperturbative" bound states are at the borderline to classical physics

The classical binding potential is not present in Feynman diagrams

Temporal gauge ($A^0 = 0$) best for bound states defined at an instant of time

Gauss constraint gives classical, instantaneous E_L field for each Fock state

Perturbative expansion around valence Fock states

QED bound states have a 70 year history: Valuable experiences

"Nonperturbative" bound states are at the borderline to classical physics

The classical binding potential is not present in Feynman diagrams

Temporal gauge ($A^0 = 0$) best for bound states defined at an instant of time

Gauss constraint gives classical, instantaneous E_L field for each Fock state

Perturbative expansion around valence Fock states

Homogeneous solution of Gauss' constraint gives confinement in QCD

Many features of hadrons thus obtained look promising & intriguing

Further info in 2101.06721v2 and/or contact me!

paul.hoyer@helsinki.fi