Center-vortex ensembles and the asymptotic Casimir law

Luis E. Oxman
IF-UFF
vConf2021

The asymptotic properties of pure YM

- N-ality
- Center-vortex condensates: 't Hooft (1978), Mack \& Petkova (1979), Nielsen \& Olesen (1979), Cornwall (1979)...
- Center dominance: Del Debbio, Faber, Greensite \& Olejnik (1997), Langfeld, Reinhardt \& Tennert (1998), de Forcrand \& D'Elia (1999) ...
- Center-vortex models with stiffness: Engelhardt \& Reinhardt (2000), Engelhardt, Quandt \& Reinhardt (2004)

$$
S_{\mathrm{latt}}(\omega)=\mu \mathcal{A}(\omega)+c N_{p}
$$

The asymptotic properties of pure YM

- N-ality
- Center-vortex condensates: 't Hooft (1978), Mack \& Petkova (1979), Nielsen \& Olesen (1979), Cornwall (1979)...
- Center dominance: Del Debbio, Faber, Greensite \& Olejnik (1997), Langfeld, Reinhardt \& Tennert (1998), de Forcrand \& D'Elia (1999) ...
- Center-vortex models with stiffness: Engelhardt \& Reinhardt (2000), Engelhardt, Quandt \& Reinhardt (2004)

$$
S_{\mathrm{latt}}(\omega)=\mu \mathcal{A}(\omega)+c N_{p}
$$

- Lüscher term $V_{\mathrm{D}}(R) \sim \sigma_{k} R-\frac{\pi(d-2)}{24 R}$: Lüscher \& Weisz 2002

The asymptotic properties of pure YM

- N-ality
- Center-vortex condensates: 't Hooft (1978), Mack \& Petkova (1979), Nielsen \& Olesen (1979), Cornwall (1979)...
- Center dominance: Del Debbio, Faber, Greensite \& Olejnik (1997), Langfeld, Reinhardt \& Tennert (1998), de Forcrand \& D'Elia (1999) ...
- Center-vortex models with stiffness: Engelhardt \& Reinhardt (2000), Engelhardt, Quandt \& Reinhardt (2004)

$$
S_{\mathrm{latt}}(\omega)=\mu \mathcal{A}(\omega)+c N_{p}
$$

- Lüscher term $V_{\mathrm{D}}(R) \sim \sigma_{k} R-\frac{\pi(d-2)}{24 R}$: Lüscher \& Weisz 2002
- Casimir law in 3d: If D has N-ality $k, \sigma_{\mathrm{D}}=\frac{k(N-k)}{N-1} \sigma_{\mathrm{F}}$: Lucini \& Teper, 2001
\propto lowest quadratic Casimir among irreps with N-ality k (the k-antisymmetric). In 4d the Casimir law competes with the sine law

The asymptotic properties of pure YM

- N-ality
- Center-vortex condensates: 't Hooft (1978), Mack \& Petkova (1979), Nielsen \& Olesen (1979), Cornwall (1979)...
- Center dominance: Del Debbio, Faber, Greensite \& Olejnik (1997), Langfeld, Reinhardt \& Tennert (1998), de Forcrand \& D'Elia (1999) ...
- Center-vortex models with stiffness: Engelhardt \& Reinhardt (2000), Engelhardt, Quandt \& Reinhardt (2004)

$$
S_{\mathrm{latt}}(\omega)=\mu \mathcal{A}(\omega)+c N_{p}
$$

- Lüscher term $V_{\mathrm{D}}(R) \sim \sigma_{k} R-\frac{\pi(d-2)}{24 R}$: Lüscher \& Weisz 2002
- Casimir law in 3d: If D has N-ality $k, \sigma_{\mathrm{D}}=\frac{k(N-k)}{N-1} \sigma_{\mathrm{F}}$: Lucini \& Teper, 2001
\propto lowest quadratic Casimir among irreps with N-ality k (the k-antisymmetric). In $4 d$ the Casimir law competes with the sine law
- Abelian Nielsen-Olesen profiles in 4d: Cea, Cosmai, Cuteria \& Papa (2017), Yanagihara, R.; Iritani, T.; Kitazawa, M.; Asakawa, M.; Hatsuda, 2019, Yanagihara, R.; Kitazawa, 2019

Simplest center-vortex ensembles in 3d

$$
\mathcal{W}_{\mathrm{D}}[\mathcal{A}]=\frac{1}{\mathcal{D}} \operatorname{Tr} \mathrm{D}\left(P\left\{e^{i \oint_{\mathcal{C}_{\mathrm{e}}} d x_{\mu} A_{\mu}(x)}\right\}\right)
$$

$$
\mathcal{W}_{\mathrm{D}}\left(\mathcal{C}_{\mathrm{e}}\right)=\mathcal{Z}_{\mathrm{D}}\left(\mathcal{C}_{\mathrm{e}}\right)=\frac{1}{\mathcal{D}} \operatorname{Tr}\left[\mathrm{D}\left(e^{i \frac{2 \pi}{N}} /\right)\right]^{\mathrm{L}\left(\omega, \mathcal{C}_{\mathrm{e}}\right)}
$$

Models for the Wilson loop average at asymptotic distances:

$$
\left\langle\mathcal{Z}_{\mathrm{D}}\left(\mathcal{C}_{e}\right)\right\rangle=\mathcal{N} \sum_{\omega} e^{-S(\omega)} \frac{1}{\mathcal{D}} \operatorname{Tr}\left[\mathrm{D}\left(e^{i \frac{2 \pi}{N}} I\right)\right]^{\mathrm{L}\left(\omega, \mathcal{C}_{\mathrm{e}}\right)}
$$

- Diluted gas of closed worldlines: LEO \& H. Reinhardt, 2018 $S(\omega)$ contains center-vortex tension (μ) and stiffness $(1 / \kappa)$ terms

3d percolating center vortices

For fundamental quarks,

$$
\mathcal{Z}_{\mathrm{F}}\left(\mathcal{C}_{\mathrm{e}}\right)=\left[e^{i \frac{2 \pi}{N}}\right]^{\mathrm{L}\left(\omega, \mathcal{C}_{\mathrm{e}}\right)}
$$

Small positive stiffness and repulsive contact interactions lead to

$$
\begin{gathered}
\left\langle\mathcal{Z}_{\mathrm{F}}\left(\mathcal{C}_{\mathrm{e}}\right)\right\rangle=\mathcal{N} \int[\mathcal{D} V][\mathcal{D} \bar{V}] e^{-\int d^{3} \times\left[\frac{1}{3 \kappa} \overline{D_{\mu} V} D_{\mu} v+\frac{1}{2 \zeta}\left(\bar{V} v-v^{2}\right)^{2}\right]} \\
v^{2} \propto-\mu \kappa>0 \quad, \quad D_{\mu}=\partial_{\mu}-i \frac{2 \pi}{N} s_{\mu} \quad, \quad s_{\mu} \text { is localized on } S\left(\mathcal{C}_{\mathrm{e}}\right)
\end{gathered}
$$

- Percolation $(\mu<0)$ implies $v^{2}>0 \rightarrow$ the dynamics can be approximated by soft degrees of freedom (Goldstone modes $\gamma, V=v e^{i \gamma}$)

3d percolating center vortices

Frustrated 3d XY

$$
S_{\text {latt }}^{(3)}=\beta \sum_{x, \mu} \operatorname{Re}\left[1-e^{-i \alpha_{\mu}(x)} e^{i \gamma(x+\hat{\mu})} e^{-i \gamma(x)}\right]
$$

- $e^{i \alpha \mu(\mathrm{x})}=e^{i \frac{2 \pi}{N}}$, if $S\left(\mathcal{C}_{\mathrm{e}}\right)$ is crossed by the link and is trivial otherwise
- $\prod_{x} \int_{-\pi}^{\pi} d \gamma(x)$ keeps the contribution of $e^{i \gamma(x+\hat{\mu})} e^{-i \gamma(x)}$ on links that form closed loops $\Rightarrow \mathcal{Z}_{\mathrm{F}}\left(\mathcal{C}_{\mathrm{e}}\right)$

- $\beta_{\mathrm{c}} \approx 0.454 \Rightarrow$
- large loops are favored
- in detriment of multiple small
- multiple links are disfavored
(negative tension)
(positive stiffness)
(excluded volume effects)

Extended ensembles

(David R. Junior, LEO \& Gustavo M. Simões (JHEP, 2020))
Additional labels: For oriented center vortices, A_{μ} can be characterized by

$$
S_{0}=e^{-i \chi \beta \cdot T} \quad,\left.\quad \beta \cdot T \equiv \beta\right|_{q} T_{q}
$$

- For elementary vortices, β is one of the magnetic fundamental weights β_{i}
- χ changes by 2π when going around ω
- $T_{q}, q=1, \ldots, N-1$ are the Cartan generators

$$
\mathcal{Z}_{\mathrm{D}}\left(\mathcal{C}_{\mathrm{e}}\right)=\frac{1}{\mathcal{D}} \operatorname{Tr}\left[\mathrm{D}\left(e^{i \frac{2 \pi}{N}} /\right)\right]^{\mathrm{L}\left(\omega, \mathcal{C}_{\mathrm{e}}\right)}=\frac{1}{N} \operatorname{Tr}\left[e^{i \int_{\omega} d x_{\mu} b_{\mu}}\right]
$$

- $b_{\mu}=2 \pi \beta_{e} \cdot T s_{\mu}$
- β_{e} is a magnetic weight of D

Extended ensembles: effective description

$$
\left\langle\mathcal{Z}_{\mathrm{D}}\left(\mathcal{C}_{\mathrm{e}}\right)\right\rangle=\left(e^{\int_{0}^{\infty} \frac{d L}{L} \int d x \int d u \operatorname{Tr} Q(x, u, x, u, L)}\right)^{N}
$$

- $Q\left(x, u ; x_{0}, u_{0}\right)$ satisfies a difusion equation in (x, u)-space
- small stiffness limit

$$
\begin{gathered}
Q\left(x, u, x_{0}, u_{0}, L\right) \approx\langle x| e^{-L O}\left|x_{0}\right\rangle \quad, \quad O=-\frac{1}{3 \kappa} D_{\mu} D_{\mu}+\mu I_{N} \quad, \quad D_{\mu}=\partial_{\mu}-i b_{\mu} \\
\int\left[D \Phi^{\dagger}\right][D \Phi] e^{-\int d^{3} x\left[\frac{1}{3 \kappa} \operatorname{Tr}\left(\left(D_{\mu} \Phi\right)^{\dagger} D_{\mu} \Phi\right)+\mu \operatorname{Tr}\left(\Phi^{\dagger} \phi\right)\right]}
\end{gathered}
$$

- Φ is a complex $N \times N$ matrix, $\Phi_{i j}=\left.\phi_{j}\right|_{i}$
- ϕ_{i} is a set of N emergent complex scalar fields in the fundamental irrep

Matching rules

Center-vortex matching:

$$
S_{0}=e^{-i \chi_{1} \beta_{1} \cdot T} \ldots e^{-i \chi_{N-1} \beta_{N-1} \cdot T}
$$

$\sum_{i} \beta_{i}=0 \rightarrow N$ center-vortex guiding centers with different weights β_{i} can be matched

$$
\mathcal{Z}_{\mathrm{D}}\left(\mathcal{C}_{\mathrm{e}}\right)=\left.\left.\frac{1}{N!} \epsilon_{i_{1} \ldots i_{N}} \epsilon_{i_{1}^{\prime} \ldots i_{N}^{\prime}} \Gamma_{\gamma_{1}}\left[b_{\mu}\right]\right|_{i_{1} i_{1}^{\prime}} \ldots \Gamma_{\gamma_{N}}\left[b_{\mu}\right]\right|_{i_{N} i_{N}^{\prime}} \quad, \quad \Gamma_{\gamma}\left[b_{\mu}\right]=e^{i \int_{\omega} d x_{\mu} b_{\mu}}
$$

Matching rules: effective description

Weighting with $e^{-E\left(\gamma_{i}\right)}$, integrating over γ_{i} with fixed endpoints, and then over L_{i}, x_{0} and x, we obtained

$$
\begin{gathered}
\mathcal{Z}_{\mathrm{D}}\left(\mathcal{C}_{\mathrm{e}}\right) \rightarrow \int d^{3} x d^{3} x_{0} \epsilon_{i_{1} \ldots i_{N}} \epsilon_{j_{1} \ldots j_{N}} G\left(x, x_{0}\right)_{i_{1} j_{1}} \ldots G\left(x, x_{0}\right)_{i_{N} j_{N}} \\
O G\left(x, x_{0}\right)=\delta\left(x-x_{0}\right) I_{N}
\end{gathered}
$$

- a vertex $\operatorname{det} \Phi+$ c.c.

$$
\begin{aligned}
& \left\langle\mathcal{Z}_{\mathrm{D}}\left(\mathcal{C}_{\mathrm{e}}\right)\right\rangle \approx \mathcal{N} \int\left[D \Phi^{\dagger}\right][D \Phi] \times \\
& \times e^{-\int d^{3} \times\left[\frac{1}{3 \kappa} \operatorname{Tr}\left(\left(D_{\mu} \Phi\right)^{\dagger} D_{\mu} \Phi\right)+\mu \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)+\frac{\lambda_{0}}{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)^{2}-\xi_{0}\left(\operatorname{det} \Phi+\operatorname{det} \Phi^{\dagger}\right)\right]} \\
& \Phi \rightarrow S_{c}(x) \Phi \quad, \quad b_{\mu} \rightarrow S_{c}(x) b_{\mu} S_{c}^{-1}(x)+i S_{c}(x) \partial_{\mu} S_{c}^{-1}(x) \\
& \Phi \rightarrow \Phi S_{f} \quad, \quad S_{f}, S_{c}(x) \in S U(N)
\end{aligned}
$$

Matching rules in the lattice

- $\mu<0, \xi_{0}=0 \rightarrow \frac{\lambda}{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi-a^{2} I_{N}\right)^{2} \rightarrow \mathcal{M}=U(N)$

Matching rules in the lattice

- $\mu<0, \xi_{0}=0 \rightarrow \frac{\lambda}{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi-a^{2} I_{N}\right)^{2} \rightarrow \mathcal{M}=U(N)$
- $\xi_{0}>0$: $\operatorname{det} \Phi$-interaction $\rightarrow \mathcal{M}=S U(N)$

Matching rules in the lattice

- $\mu<0, \xi_{0}=0 \rightarrow \frac{\lambda}{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi-a^{2} I_{N}\right)^{2} \rightarrow \mathcal{M}=U(N)$
- $\xi_{0}>0$: $\operatorname{det} \Phi$-interaction $\rightarrow \mathcal{M}=S U(N)$
- Goldstone modes $V(x) \in S U(N)$ in the lattice

$$
\left.S_{\mathrm{latt}}^{(3)}\left(b_{\mu}\right)=\beta \sum_{x, \mu} \operatorname{Re}\left[\mathbb{I}-U_{\mu}^{\dagger} V(x+\hat{\mu}) V^{\dagger}(x)\right)\right]
$$

$U_{\mu}(x)=e^{i 2 \pi \beta_{\mathrm{e}} \cdot T} \in Z(N)$, , if $S\left(\mathcal{C}_{\mathrm{e}}\right)$ is crossed by the link and is trivial otherwise $\Rightarrow \mathcal{Z}_{\mathrm{F}}\left(\mathcal{C}_{\mathrm{e}}\right)$

Matching rules in the lattice

- $\mu<0, \xi_{0}=0 \rightarrow \frac{\lambda}{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi-a^{2} I_{N}\right)^{2} \rightarrow \mathcal{M}=U(N)$
- $\xi_{0}>0$: $\operatorname{det} \Phi$-interaction $\rightarrow \mathcal{M}=S U(N)$
- Goldstone modes $V(x) \in S U(N)$ in the lattice

$$
\left.S_{\mathrm{latt}}^{(3)}\left(b_{\mu}\right)=\beta \sum_{x, \mu} \operatorname{Re}\left[\mathbb{I}-U_{\mu}^{\dagger} V(x+\hat{\mu}) V^{\dagger}(x)\right)\right]
$$

$U_{\mu}(x)=e^{i 2 \pi \beta_{\mathrm{e}} \cdot T} \in Z(N)$, , if $S\left(\mathcal{C}_{\mathrm{e}}\right)$ is crossed by the link and is trivial otherwise $\Rightarrow \mathcal{Z}_{\mathrm{F}}\left(\mathcal{C}_{\mathrm{e}}\right)$

- contribution of $V(x+\hat{\mu}) V^{\dagger}(x)$ on links that form loops: singlets in $N \otimes \bar{N}$

Matching rules in the lattice

- $\mu<0, \xi_{0}=0 \rightarrow \frac{\lambda}{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi-a^{2} I_{N}\right)^{2} \rightarrow \mathcal{M}=U(N)$
- $\xi_{0}>0$: $\operatorname{det} \Phi$-interaction $\rightarrow \mathcal{M}=S U(N)$
- Goldstone modes $V(x) \in S U(N)$ in the lattice

$$
\left.S_{\mathrm{latt}}^{(3)}\left(b_{\mu}\right)=\beta \sum_{x, \mu} \operatorname{Re}\left[\mathbb{I}-U_{\mu}^{\dagger} V(x+\hat{\mu}) V^{\dagger}(x)\right)\right]
$$

$U_{\mu}(x)=e^{i 2 \pi \beta_{\mathrm{e}} \cdot T} \in Z(N)$, , if $S\left(\mathcal{C}_{\mathrm{e}}\right)$ is crossed by the link and is trivial otherwise $\Rightarrow \mathcal{Z}_{\mathrm{F}}\left(\mathcal{C}_{\mathrm{e}}\right)$

- contribution of $V(x+\hat{\mu}) V^{\dagger}(x)$ on links that form loops:
singlets in $N \otimes \bar{N}$
- these composites can also be distributed on lines that start or end at a common site x :
singlets in the products of $N V(x)$ or $V^{\dagger}(x)$

Matching rules in the lattice

- $\mu<0, \xi_{0}=0 \rightarrow \frac{\lambda}{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi-a^{2} I_{N}\right)^{2} \rightarrow \mathcal{M}=U(N)$
- $\xi_{0}>0$: $\operatorname{det} \Phi$-interaction $\rightarrow \mathcal{M}=S U(N)$
- Goldstone modes $V(x) \in S U(N)$ in the lattice

$$
\left.S_{\mathrm{latt}}^{(3)}\left(b_{\mu}\right)=\beta \sum_{x, \mu} \operatorname{Re}\left[\mathbb{I}-U_{\mu}^{\dagger} V(x+\hat{\mu}) V^{\dagger}(x)\right)\right]
$$

$U_{\mu}(x)=e^{i 2 \pi \beta_{\mathrm{e}} \cdot T} \in Z(N)$, , if $S\left(\mathcal{C}_{\mathrm{e}}\right)$ is crossed by the link and is trivial otherwise $\Rightarrow \mathcal{Z}_{\mathrm{F}}\left(\mathcal{C}_{\mathrm{e}}\right)$

- contribution of $V(x+\hat{\mu}) V^{\dagger}(x)$ on links that form loops:
singlets in $N \otimes \bar{N}$
- these composites can also be distributed on lines that start or end at a common site x :
singlets in the products of $N V(x)$ or $V^{\dagger}(x)$
- Up to this point, there is a continuum set of classical vacua $\mathcal{M}=S U(N)$ which precludes the formation of the stable domain wall

Including nonoriented center vortices

- In 4d, chains $\rightarrow 97 \%$ of the cases: Ambjorn, Giedt \& Greensite (2000)

Nonoriented center vortices

- In the continuum, the Lie algebra flux orientation of center vortices in 4d changes at the monopole worldlines: Reinhardt, 2002
- In 3d the change is at the instantons

$$
S_{0}=e^{-i \varphi \beta \cdot T} W(\theta) \quad, \quad W(\theta)=e^{i \theta \sqrt{N} T_{\alpha}}
$$

Center-vortex components with different weights β, β^{\prime} are interpolated by instantons that carry adjoint weight $\beta^{\prime}-\beta$

Nonoriented component: effective description

$$
\begin{aligned}
& S_{\mathrm{eff}}\left(\Phi, b_{\mu}\right)=\int d^{3} \times\left(\operatorname{Tr}\left(D_{\mu} \Phi\right)^{\dagger} D_{\mu} \Phi+V\left(\Phi, \Phi^{\dagger}\right)\right) \\
& V\left(\Phi, \Phi^{\dagger}\right)=\frac{\lambda}{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi-a^{2} I_{N}\right)^{2}-\xi\left(\operatorname{det} \Phi+\operatorname{det} \Phi^{\dagger}\right)-\vartheta \operatorname{Tr}\left(\Phi^{\dagger} T_{A} \Phi T_{A}\right)
\end{aligned}
$$

- For small $\vartheta \rightarrow$ soft modes in the lattice $(V(x) \in \operatorname{SU}(\mathrm{N}))$:

$$
\left.S_{\text {latt }}^{(3)}\left(b_{\mu}\right) \rightarrow \beta \sum_{x, \mu} \operatorname{Re}\left[\mathbb{I}-U_{\mu}^{\dagger} V(x+\hat{\mu}) V^{\dagger}(x)\right)\right]+ \text { const. } \sum_{x} \operatorname{Tr}(\operatorname{Ad}(V(x))
$$

New contribution from the singlet formed with $V(x), V^{\dagger}(x)$, and $\operatorname{Tr}(\operatorname{Ad}(V(x)) \rightarrow$ nonoriented center vortices

- The new term is also generated from a weighted nonoriented component

Domain wall

- For $\lambda, \xi, \vartheta>0$

$$
\mathcal{M}=\left\{\Phi_{n}=v e^{i \frac{2 \pi n}{N}} I_{N}, ; n=0,1, \ldots, N-1\right\}
$$

$\lim _{x_{1} \rightarrow-\infty} \Phi\left(x_{1}, x_{2}, x_{3}\right)=v l_{N} \quad, \quad \lim _{x_{1} \rightarrow \infty} \Phi\left(x_{1}, x_{2}, x_{3}\right)=v e^{i 2 \pi \beta_{e} \cdot T} \quad, \quad\left(0, x_{2}, x_{3}\right) \in S\left(\mathcal{C}_{\mathrm{e}}\right)$

- For large Wilson loops, and for any weight of an antisymmetric irrep, we computed the soliton with the ansatz

$$
\Phi=\left(\eta I_{N}+\eta_{0} \beta_{e} \cdot T\right) e^{i \theta \beta_{e} \cdot T} e^{i \alpha}
$$

- This closes the eqs. for any N-ality k
- Due to the relation $e^{i 2 \pi \beta_{e} \cdot T}=e^{-i \frac{2 k \pi}{N}}$
- α varies with $\theta \approx$ const. (closely related to the 't Hooft model (1978)) $\Phi=V I_{N}, V=\eta e^{i \alpha}$

$$
\mathcal{L}=\partial^{\mu} \bar{V} \partial_{\mu} V+m^{2} \bar{V} V+\frac{\lambda}{2}(\bar{V} V)^{2}+\xi\left(V^{N}+\bar{V}^{N}\right)
$$

However, there is no dynamical reason for the path-integral to favor this type of restricted configuration

- θ varies with $\alpha \approx$ const.
- For $\lambda a^{2}, \xi v^{N-2} \gg \vartheta \rightarrow$ second case, only θ is not frozen

$$
\partial_{x_{1}}^{2} \theta=\frac{3 \vartheta}{2} \sin (\theta)
$$

- We obtained the asymptotic Casimir Law

$$
\epsilon_{k}=\frac{k(N-k)}{N-1} \epsilon_{1}
$$

- Collective transverse fluctuations of the domain wall \rightarrow Lüscher term

4d Ensemble measure in the lattice

LEO (2018)

$$
Z_{\operatorname{mix} x}^{\text {latt }\left[s_{\mu \nu}\right]}=\int\left[\mathcal{D} V_{\mu}\right] e^{-S_{\text {latt }}^{(4)} \times}
$$

$+\ldots+$

Emergent Yang-Mills-Higgs description

$$
\begin{gathered}
V_{\mu}(x)=e^{i \Lambda_{\mu}(x)} \quad, \quad \Lambda_{\mu} \in \mathfrak{s u}(N) \\
Z_{\text {mix }}\left[s_{\mu \nu}\right]=\int\left[\mathcal{D} \Lambda_{\mu}\right] e^{-\int d^{4} x \frac{1}{4 g^{2}}\left(F_{\mu \nu}(\Lambda)-2 \pi s_{\mu \nu} \beta_{\mathrm{e}} \cdot T\right)^{2}} \times
\end{gathered}
$$

$Z_{\text {mix }}\left[s_{\mu \nu}\right]=\int\left[\mathcal{D} \Lambda_{\mu}\right][\mathcal{D} \psi] e^{-\int d^{4} x\left[\frac{1}{4 \varepsilon^{2}}\left(F_{\mu \nu}(\Lambda)-2 \pi s_{\mu \nu} \beta_{\mathrm{e}} \cdot T\right)^{2}+\frac{1}{2}\left(D_{\mu} \psi_{l}, D_{\mu} \psi_{l}\right)+V_{\mathrm{H}}(\psi)\right]}$

- The system can easily undergo $S U(N) \rightarrow Z(N)$ SSB

Abelian profiles, N-ality and the Casmir law

Figure: D. Leinweber simulation, University of Adelaide - Interpolation of the longitudinal chromoelectric field with an Abelian-like model vs. the transverse distance in SU(3), Cea, Cosmai, Cuteria \& Papa (2017)

- Abelianization for all N and Casimir law, LEO \& G. M. Simões (2019)
- BPS point: Completing the proof of Casimir law: D. R. Junior, LEO \& G. M. Simões (2020)

Conclusions

We followed a road that leads from 3d/4d ensembles with

- percolating center-vortex worldlines/worldsurfaces
- attached instantons/monopole worldlines with fusion
to confining asymptotic properties
- domain wall/flux tube with N-ality
- Lüscher term
- Casimir law
- Sine-Gordon/Nielsen-Olesen profiles
- The new term is also generated from a weighted nonoriented component

$$
\begin{aligned}
& \left.\mathcal{W}_{\mathrm{D}}\left(\mathcal{C}_{\mathrm{e}}\right)\right|_{\text {loop }} \propto \int d \mu(g)\langle g, \omega| \Gamma_{/}\left[b_{\mu}\right]|g, \omega\rangle \quad, \quad|g, \omega\rangle=g|\omega\rangle \quad, \quad g \in S U(N) \\
& \left.\mathcal{W}_{\mathrm{D}}\left(\mathcal{C}_{\mathrm{e}}\right)\right|_{N-\text { lines }} \propto \int d \mu(g) d \mu\left(g_{0}\right)\left\langle g, \omega_{1}\right| \Gamma_{\gamma_{1}}\left[b_{\mu}\right]\left|g_{0}, \omega_{1}\right\rangle \ldots\left\langle g, \omega_{N}\right| \Gamma_{\gamma_{N}}\left[b_{\mu}\right]\left|g_{0}, \omega_{N}\right\rangle \\
& C_{4}=\int d \mu\left(g_{1}\right) \cdots \int d \mu\left(g_{4}\right) \operatorname{Tr}\left(\left|g_{1}, \omega^{\prime}\right\rangle\left\langle g_{1}, \omega\right|\left|g_{2}, \omega\right\rangle\left\langle g_{2}, \omega^{\prime}\right| \ldots\left|g_{4}, \omega\right\rangle\left\langle g_{4}, \omega^{\prime}\right|\right) \times \\
& \times\left\langle g_{1}, \omega^{\prime}\right| \Gamma_{\gamma_{n}}\left[b_{\mu}\right]\left|g_{4}, \omega^{\prime}\right\rangle \ldots\left\langle g_{3}, \omega^{\prime}\right| \Gamma_{\gamma_{2}}\left[b_{\mu}\right]\left|g_{2}, \omega^{\prime}\right\rangle\left\langle g_{2}, \omega\right| \Gamma_{\gamma_{1}}\left[b_{\mu}\right]\left|g_{1}, \omega\right\rangle .
\end{aligned}
$$

