Two Schrodinger-like equations for hadrons

Ruben Sandapen

A virtual tribute to Quark Confinement and the Hadron Spectrum

University of Stavanger, Stavanger, Norway

August 2nd-6th, 2021

Based on work in progress with M. Ahmady, S. Kaur, S. Lee Mackay and C. Mondal

- Allows for fully relativistic Schrodinger-like equations
- Makes contact with quark model

Brodsky, Pinsky, Pauli, Phys. Rep. (1997)

Meson masses in light-front QCD

$$M^{2} = \int dx d^{2} \mathbf{b}_{\perp} \Psi^{*}(x, \mathbf{b}_{\perp}) \left[-\frac{\nabla_{b_{\perp}}^{2}}{x(1-x)} + \frac{m_{q}^{2}}{x} + \frac{m_{\bar{q}}^{2}}{1-x} \right] \Psi(x, \mathbf{b}_{\perp}) + \text{interactions}$$

Complicated QCD bound state dynamics

Light-front momentum fraction carried by quarkTransverse quark-antiquark separation at equal light-front time

Brodsky, de Teramond, Dosch, Erlich, Phys. Rep. 584, 1 (2015) (review with original references)

Light-front factorization

$$\Psi(x,\zeta,\varphi) = \frac{\phi(\zeta)}{\sqrt{2\pi\zeta}} e^{iL\varphi} X(x) \qquad X(x) = \sqrt{x(1-x)}\chi(x)$$

$$L = |L_z^{max}| \qquad M_{\perp}^2 = \int d^2 \zeta \phi^*(\zeta) \left[-\frac{d^2}{d\zeta^2} + \frac{4L^2 - 1}{4\zeta^2} + U_{\perp}(\zeta) \right] \phi(\zeta) .$$

LF orbital angular momentum

$$M_{\parallel}^2 = \int \mathrm{d}x \chi^*(x) \left[\frac{m_q^2}{x} + \frac{m_{\bar{q}}^2}{1-x} + U_{\parallel}(x) \right] \chi(x)$$

$$M^2 = M_\perp^2 + M_\parallel^2$$

Exact derivation of confining potentials in QCD: open question

Holographic Schrodinger Equation

Neglecting quark masses and longitudinal confinement

$$\left(-\frac{d^2}{d\zeta^2} + \frac{4L^2 - 1}{4\zeta^2} + U_{\perp}^{\text{LFH}}(\zeta)\right)\phi(\zeta) = M_{\perp}^2\phi(\zeta)$$

Holographic mapping to AdS₅

$$U_{\perp}^{\rm LFH}(\zeta) = \kappa^4 \zeta^2 + 2\kappa^2 (J-1)$$

Underlying conformal symmetry

$$M_{\perp,M}^2 = 4\kappa^2 \left(n_\perp + L_M + \frac{S_M}{2} \right)$$

Massless pion as expected in chiral QCD

Governs transverse dynamics

Light-front holographic dictionary

Confinement potential

Confinement in physical spacetime⇔ dilaton field in AdS

Quadratic dilaton/potential is required by underlying conformal symmetry

Supersymmetric light-front holography

Brodsky, de Teramond, Dosch, Lorce, Phys. Lett. B 759 (2016) Dosch, de Teramond, Brodsky, Phys. Rev. D 95 034016 (2017) Neilson, Brodsky, Phys. Rev. D 97 114001 (2018)

$$H\left|\phi\right\rangle = M_{\perp}^{2}\left|\phi
ight
angle$$

$$U_M(\zeta) = \kappa^4 \zeta^2 + 2\kappa^2 (L_M + S_M - 1)$$
$$U_B(\zeta) = \kappa^4 \zeta^2 + 2\kappa^2 (L_B + S_D)$$

quark-antiquark

quark-diquark

quark-diquark

diquark-antidiquark

$$M_{\perp,M}^{2} = 4\kappa^{2} \left(n_{\perp} + L_{M} + \frac{S_{M}}{2} \right) \qquad \qquad M_{\perp,B}^{2} = 4\kappa^{2} \left(n_{\perp} + L_{B} + \frac{S_{D}}{2} + 1 \right) \qquad \qquad M_{\perp,T}^{2} = 4\kappa^{2} \left(n_{\perp} + L_{T} + \frac{S_{T}}{2} + 1 \right)$$

Each baryon has two supersymmetric partners: a meson and a tetraquark

The `t Hooft Equation

`t Hooft, Nucl. Phys. B 75 461 (1974)

$$\left(\frac{m_q^2}{x} + \frac{m_{\bar{q}}^2}{1-x}\right)\chi(x) + \frac{g^2}{\pi}\mathcal{P}\int \mathrm{d}y \frac{|\chi(x) - \chi(y)|}{(x-y)^2} = M_{\parallel}^2\chi(x)$$

- (1+1)-dim QCD Lagrangian
- Large N_c limit: only planar diagrams contribution
- g is the `t Hooft coupling with mass dimensions

Other models for longitudinal confinement: de Teramond, Brodsky, arXiv: 2103.10930 [hep-ph] Yang Li, Vary. arXiv: 2103.09993 [hep-ph]

`t Hooft and light-front holographic potentials

Consistent and complementary

 $U_{\parallel}^{\text{tHooft}}(x) = \frac{g^2}{\pi} \mathcal{P} \int dy \frac{|\chi(x) - \chi(y)|}{(x - y)^2} \qquad \qquad U_{\perp}^{\text{LFH}}(\zeta) = \kappa^4 \zeta^2 + 2\kappa^2 (J - 1) .$

• Chiral limit: together they predict the Gell-Mann-Oakes-Renner (GMOR) relation

$$M_{\pi}^{2} = M_{\parallel}^{2} + M_{\perp}^{2} \qquad 0$$
$$M_{\pi}^{2} = g \sqrt{\frac{\pi}{3}} (m_{u} + m_{d}) + \mathcal{O}(m_{u} + m_{d})^{2}$$

• Heavy quark limit: together, with $g = \kappa$, they imply a rotationally symmetric linear instant form potential

Ahmady, Dahiya, Kaur, Mondal, Sharma, Sandapen: arXiv: 2105.01018 [hep-ph]

Computing the hadron spectrum

$$Holographic SE \quad `t Hooft$$
• Light hadrons: $M_{\perp}^2 \gg M_{\parallel}^2$
expect for ground state pseudoscalars
 $M_{\perp}^2 = 0$
• Heavy hadrons: $M_{\parallel}^2 \gg M_{\perp}^2$
 $M_{\perp}^2 = \begin{pmatrix} M_{\perp,M}^2(n_{\perp}, L_M, S_M; \kappa) \\ M_{\perp,B}^2(n_{\perp}, L_B, S_D; \kappa) \\ M_{\perp,B}^2(n_{\perp}, L_T, S_T; \kappa) \\ M_{\parallel,R}^2(n_{\parallel}; m_{[\bar{q}\bar{q}]}, m_{[\bar{q}\bar{q}]}, g) \end{pmatrix}$
 $P = (-1)^{L_M+1} = (-1)^{L_B} = (-1)^{L_T}$.
 $C = (-1)^{n_{\parallel}+L_M+S_M} = (-1)^{n_{\parallel}+L_T+S_T-1}$
 $n_{\parallel} \ge n_{\perp} + L$

A radial and/or orbital transverse excitation \Leftrightarrow a longitudinal excitation

Parameters

Hadron	g	$m_{u/d}$	m_s	m_c	m_b
Light	0.128	0.046	0.357	-	-
Heavy-light	0.410	0.330	0.500	1.370	4.640
Heavy-heavy	0.523	-		1.370	4.640

In GeV

 $\kappa = 0.523 \text{ GeV}$ Universal

 $g = \kappa$ as expected in non-relativistic limit

Light hadrons

Blue: mesons Red: baryons Brown: tetraquarks

Precise location and slope of Regge trajectory sensitive to both g and κ

Heavy-light hadrons

Heavy-heavy hadrons

of Regge trajectory sensitive to both g and κ

Universality of κ across full spectrum non-trivial

Conclusions and Acknowledgements

• The holographic Schrodinger Equation and the `t Hooft Equation are consistent and complementary

• Together, they provide a good description of hadron spectroscopy, especially for mesons and baryons

• This research is supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada

