Fermion & gluon spectral functions far from equilibrium

Kirill Boguslavski

A Virtual Tribute to Quark Confinement and the Hadron Spectrum 2021, August 02, 2021

Talk mainly based on:

KB, Lappi, Mace, Schlichting, 2106.11319

Further literature (gluon spectral functions): KB, Kurkela, Lappi, Peuron, 1804.01966; 2101.02715

Kirill Boguslavski (TU Wien)

Fermion spectral functions

Motivation

- 2 Method & setup
- 3 Nonperturbatively computed fermion spectral functions
- 4 Comparing to gluonic spectral functions

5 Conclusion

Highly occupied systems

Longitudinally expanding quark-gluon plasmas

Relativistic scalar systems

• Nonperturbatively strong bosonic fields can be encountered in

- * Heavy-ion collisions at early times
- * From instabilities during cosmological reheating
- * IR sector of gluons and scalars
- Understanding interactions with fermions important Some applications in heavy-ion collisions:
 - ★ jets (energy loss, jet quenching)
 - \star electromagnetic observables

For microscopic description of observables and dynamics

Spectral function $\rho(\omega, p)$ of fermions encodes interactions

- Our approach: far from equilibrium
 - \star Highly occupied gluon plasma ($A \sim 1/g$), weak coupling ($g^2 \ll 1$)
 - ⇒ Then nonperturbative and perturbative methods available!
- Classical-statistical lattice simulations vs. HTL, kinetic theory
- More generally, gluon & fermion spectral functions needed for
 - $\star\,$ Heavy-ion collisions at early times
 - * Comparison to thermal properties (general features?)
 - \star Nonperturbative extensions of kinetic theory, anisotropic HTL

< 回 > < 回 > < 回 >

1 Motivation

2 Method & setup

3 Nonperturbatively computed fermion spectral functions

Omparing to gluonic spectral functions

5 Conclusion

• SU(N_c) gauge theory (simulations: $N_c = 2$, $U_j \approx \exp(ig a_s A_j)$)

$$H_{YM} = \frac{1}{g^2 a_s} \sum_{\vec{x},i} \text{Tr}[E_i(t',\vec{x})^2] + \frac{1}{2} \sum_j \text{ReTr}[1 - U_{ij}(t',\vec{x})]$$

$$\hat{H}_W = \frac{1}{2} \sum_{\vec{x}} \left[\hat{\psi}^{\dagger}(t',\vec{x}), \gamma^0 \left(-i \mathcal{D}_s[U] + m \right) \hat{\psi}(t',\vec{x}) \right]$$

• $-i D\!\!\!\!/_s [U] \hat{\psi}$ tree-level improved Wilson Dirac operator

- Neglect fermionic backreaction (suppressed), temporal gauge $A_0 = 0$
- Mode exp. $\hat{\psi}(t', \vec{x}) = \frac{1}{\sqrt{V}} \sum_{\lambda, \vec{p}} \hat{b}_{\lambda, \vec{p}}(t) \phi^{u}_{\lambda, \vec{p}}(t', \vec{x}) + \hat{d}^{\dagger}_{\lambda, \vec{p}}(t) \phi^{v}_{\lambda, \vec{p}}(t', \vec{x})$
- At reference time *t*:
 - \star Creation/annih. operators \hat{b} , \hat{d} satisfy anti-commut. relations
 - * Plane waves $\phi^{u}_{\lambda,\vec{p}}(t',\vec{x})\Big|_{t'=t} = u_{\lambda}(\vec{p})e^{+i\vec{p}\cdot\vec{x}}, \phi^{v}_{\lambda,\vec{p}}(t',\vec{x})\Big|_{t'=t} = v_{\lambda}(\vec{p})e^{-i\vec{p}\cdot\vec{x}}$

See also: Aarts, Smit (1999); Kasper, Hebenstreit, Berges (2014); Mace, Mueller, Schlichting, Sharma (2016); ...

Classical-statistical lattice simulations, algorithm

- Set initial conditions for gluons at t' = 0, generating a configuration with $\langle E_T^*(t=0,\vec{p})E_T(t=0,\vec{q})\rangle \propto p f(t=0,p) \delta_{jk}(2\pi)^3 \delta(\vec{p}-\vec{q})$
- Solve classical EOMs of gluonic part for t' ≤ t, set Coulomb-type gauge ∂^jA_j|_t = 0 at t' = t
- So For each momentum mode \vec{p} initialize $\phi_{\lambda,\vec{p}}^{u/v}$, evolve for t' > t
- Use leap-frog scheme to solve classical EOMs

$$\begin{aligned} U_{j}(t',\vec{x}) &= e^{ia_{t}/a_{s}E^{j}(t'-a_{t}/2,\vec{x})}U_{j}(t'-a_{t},\vec{x}) \\ E^{j}(t'+a_{t}/2,\vec{x}) - E^{j}(t'-a_{t}/2,\vec{x}) &= -\frac{a_{t}}{a_{s}}\sum_{j\neq i}\left[U_{ij}(t',\vec{x}) + U_{i(-j)}(t',\vec{x})\right]_{\mathrm{ah}} \\ \phi^{u/v}_{\lambda\vec{p}}(t'+a_{t},\vec{x}) - \phi^{u/v}_{\lambda\vec{p}}(t'-a_{t},\vec{x}) &= -2ia_{t}\gamma^{0}\left(-i\gamma^{j}D^{s}_{W,j}[U] + m\right)\phi^{u/v}_{\lambda\vec{p}}(t',\vec{x}) \end{aligned}$$

Solution Calculate fermionic spectral function $\rho(t', t, \vec{p})$ for each \vec{p} mode

Calculating fermion spectral function nonperturbatively

- Definition $\rho^{\alpha\beta}(x,y) = \left\langle \left\{ \hat{\psi}^{\alpha}(t',\vec{x}), \hat{\psi}^{\beta}(t,\vec{y}) \right\} \right\rangle$
- Plug in mode exp., Fourier transform, use plane waves at t' = t

$$\begin{split} &\rho^{\alpha\beta}(t',t,\vec{p}) \\ &= \frac{1}{V} \sum_{\lambda,\vec{q}} \left\langle \tilde{\phi}^{u,\alpha}_{\lambda,\vec{q}}(t',\vec{p}) \left(\tilde{\phi}^{u,\gamma}_{\lambda,\vec{q}}(t,\vec{p}) \right)^* + \tilde{\phi}^{v,\alpha}_{\lambda,\vec{q}}(t',\vec{p}) \left(\tilde{\phi}^{v,\gamma}_{\lambda,\vec{q}}(t,\vec{p}) \right)^* \right\rangle \gamma_0^{\gamma\beta} \\ &= \frac{1}{V} \sum_{\lambda} \left\langle \tilde{\phi}^{u,\alpha}_{\lambda,\vec{p}}(t',\vec{p}) u^{\dagger,\gamma}_{\lambda}(\vec{p}) + \tilde{\phi}^{v,\alpha}_{\lambda,-\vec{p}}(t',\vec{p}) v^{\dagger,\gamma}_{\lambda}(-\vec{p}) \right\rangle \gamma_0^{\gamma\beta} \end{split}$$

- Huge simplification due to $ilde{\phi}_{\lambda,ec{q}}(t,ec{p})\propto\delta^{(3)}(ec{p}-ec{q})$
- Classical-statistical average over gluonic configurations

Benchmark for free fermions

• Analytically: $\rho^{\text{free}}(\Delta t, \vec{p}) = \gamma^0 \cos(E_{\vec{p}} \Delta t) + i \left(\gamma^j \frac{\hat{p}^j}{E_{\vec{p}}} - \frac{m_{\vec{p}}}{E_{\vec{p}}}\right) \sin(E_{\vec{p}} \Delta t)$

• Our method: set gauge fields to $U^{i}(t', \vec{x}) = 1$, $E^{i}(t', \vec{y}) = 0$

• Extract
$$\rho_V^0 = \frac{1}{4} \operatorname{Tr}(\rho \gamma^0)$$
, $\rho_V = -\frac{E_{\vec{\rho}} \rho^j}{4 \rho^2} \operatorname{Tr}(\rho \gamma^j)$, $\rho_S = \frac{1}{4} \operatorname{Tr}(\rho)$

Nice agreement!

all other components of ho at machine prec. $\sim 10^{-16}$

Kirill Boguslavski (TU Wien)

1 Motivation

2 Method & setup

Onperturbatively computed fermion spectral functions

4 Comparing to gluonic spectral functions

5 Conclusion

Non-equilibrium state: self-similar turbulent attractor

• Universal exponents insensitive to details of initial conditions

- \checkmark 2+1D: $eta=-1/5,\ lpha=3eta$, KB, Kurkela, Lappi, Peuron (2019)
- \checkmark 3+1D: eta=-1/7, lpha=4eta, Berges, Scheffler, Sexty (2009); Kurkela, Moore (2011,

2012); Berges, Schlichting, Sexty (2012); Schlichting (2012); Berges, KB, Schlichting, Venugopalan (2014); ...

• We extract $ho^{lphaeta}(t,\omega,p)$ at such a typical state in 3+1D

Kirill Boguslavski (TU Wien)

ConfXIV, 02.08.2021 11 / 22

Fermion ρ in 3+1D: non-trivial evolution

- Spectral function $ho^{lphaeta}(t{+}\Delta t,t,p)$
- Lattice 256³, Qa_s = 0.75, m = 0.003125 Q, Qt = 1500
- Non-trivial $\rho_V^0 = \frac{1}{4} \operatorname{Tr}(\rho \gamma^0)$, $\rho_V = -\frac{E_{\vec{p}} \rho^j}{4 \rho^2} \operatorname{Tr}(\rho \gamma^j)$

$$\begin{aligned} \mathsf{Re}\rho_V^0 &\approx e^{-\gamma(t,p)\Delta t}\cos(\omega(t,p)\Delta t)\\ \mathsf{Im}\rho_V &\approx -e^{-\gamma(t,p)\Delta t}\sin(\omega(t,p)\Delta t) \end{aligned}$$

• All other components expected to vanish from symmetries; numerically suppressed by at least $\sim 10^{-2}$

- E

Fermion ρ in 3+1D: Comparison with HTL

$$\rho_+(t,\omega,p) \equiv \rho_V^0 + \rho_V$$

• HTL: Landau cut + q.p. peaks:

Braaten, Pisarski (1992); Rebhan (1992); Mrowczynski, Thomas (2000); Blaizot, Iancu (2002); ...

$$\begin{split} \rho_{+}^{\mathrm{HTL}}(\omega,p) &= 2\pi \, \beta_{+}(\omega/p,p) \\ &+ 2\pi \left[Z_{+}(p)\delta(\omega-\omega_{+}(p)) \right. \\ &+ Z_{-}(p)\delta(\omega+\omega_{-}(p)) \right] \end{split}$$

• HTL+ γ extension

$$\begin{split} \rho_{+}^{\text{HTL}}(\omega,p) &= 2\pi \, \beta_{+}(\omega/p,p) \\ &+ \frac{2Z_{+}(p)\gamma_{+}(p)}{(\omega-\omega_{+}(p))^{2}+\gamma_{+}^{2}(p)} \\ &+ \frac{2Z_{-}(p)\gamma_{-}(p)}{(\omega+\omega_{-}(p))^{2}+\gamma_{-}^{2}(p)} \end{split}$$

Very good description;
 ω_±(t, p), Z_±(t, p), γ_±(t, p) fits

ъ.

Fermion ρ in 3+1D: ω_+ , Z₊, γ_+

(top) ω_+ , (bottom) Z_+

Damping rates (width) γ_+

- HTL dispersions and residues agree well with data
- First-principles insight into *p*-dependence of damping rates

• Arrows:
$$m_f = \left[C_F \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \frac{g^2 f_g(p)}{p}\right]^{1/2}$$

E SQA

Summary: fermion ρ_+ in isotropic 3+1D plasmas

KB. Lappi, Mace, Schlichting, arXiv:2106.11319

We find:

- ullet Lorentzian quasiparticle peaks + Landau cut ($\omega < {\it p})$
- very good description by HTL
- full *p*-dependence of $\gamma_+(t, p)$
- (see Backup:) $\gamma_+(t, p=0) \sim m_F(t) \sim Q(Qt)^{-1/7}$ vs. HTL expectation: $\gamma^{\text{HTL}}(t, p=0) \propto g^2 T^*(t) \sim Q(Qt)^{-3/7}$

Kirill Boguslavski (TU Wien)

1 Motivation

- 2 Method & setup
- 3 Nonperturbatively computed fermion spectral functions
- 4 Comparing to gluonic spectral functions

5 Conclusion

Nonperturbative computation of gluonic ρ

Classical-statistical $SU(N_c)$ simulations + linear response theory KB, Kurkela, Lappi, Peuron, *PRD 98, 014006 (2018)*, Editors' suggestion

- Similar algorithm as for fermions
- Split $A(t, \vec{x}) \mapsto A(t, \vec{x}) + \delta A(t, \vec{x})$ at t, perturb with plane wave $j_0(\vec{p}) \delta(t' t)$
- Response $\langle \delta A(t', \vec{p}) \rangle = G_R(t', t, \vec{p}) j_0(\vec{p})$
- Linearized EOM for δA(t, x) such that Gauss law conserved (also in gauge-cov. formulation)
 Kurkela, Lappi, Peuron, EUJC 76 (2016) 688

•
$$\theta(t'-t) \rho(t',t,p) = G_R(t',t,p)$$

Similar methods for scalars:

Aarts (2001); Piñeiro Orioli, Berges (2019); Schlichting, Smith, von Smekal (2020); KB, Piñeiro Orioli (2020); E, Schlichting, Smith, von Smekal (2020); KB, Piñeiro Orioli (2020); E, Schlichting, Smith, von Smekal (2020); KB, Piñeiro Orioli (2020); E, Schlichting, Smith, von Smekal (2020); KB, Piñeiro Orioli (2020); E, Schlichting, Smith, von Smekal (2020); KB, Piñeiro Orioli (2020); E, Schlichting, Smith, von Smekal (2020); KB, Piñeiro Orioli (2020); E, Schlichting, Smith, von Smekal (2020); KB, Piñeiro Orioli (2020); E, Schlichting, Smith, von Smekal (2020); KB, Piñeiro Orioli (2020); E, Schlichting, Smith, von Smekal (2020); KB, Piñeiro Orioli (2020); E, Schlichting, Smith, von Smekal (2020); KB, Piñeiro Orioli (2020); E, Schlichting, Smith, von Smekal (2020); KB, Piñeiro Orioli (2020); E, Schlichting, Smith, von Smekal (2020); KB, Piñeiro Orioli (2020); E, Schlichting, Smith, von Smekal (2020); KB, Piñeiro Orioli (2020); E, Schlichting, Smith, von Smekal (2020); KB, Piñeiro Orioli (2020); E, Schlichting, Smith, von Smekal (2020); KB, Piñeiro Orioli (2020); E, Schlichting, Smith, von Smekal (2020); KB, Piñeiro Orioli (2020); E, Schlichting, Smith, von Smekal (2020); KB, Piñeiro Orioli (2020); E, Schlichting, Smith, von Smekal (2020); KB, Piñeiro Orioli (2020); E, Schlichting, Smith, von Smekal (2020); KB, Piñeiro Orioli (2020); E, Schlichting, Smith, von Smekal (2020); KB, Piñeiro Orioli (2020); E, Schlichting, Smith, von Smekal (2020); KB, Piñeiro Orioli (2020); E, Schlichting, Smith, von Smekal (2020); Schlichting, Smith, von Smith, von Smekal (2020); Schlichting, Smith, von Smith, von

Kirill Boguslavski (TU Wien)

Gluon spectral function in isotropic 3+1D plasmas

- Narrow Lorentzian g.p. peaks (position $\omega(p)$, width $\gamma(p)$)
- HTL at LO (black dashed) describes main features well
- Landau cut ($\omega < p$) and q.p. peak distinguishable

- Peak width $\gamma(t,p) \ll \omega(t,p)$
- Full p dep., $\gamma_T(t, p) \approx \gamma_I(t, p)$
- $\frac{\gamma_T(t,p)}{\omega(t,p=0)} \sim (Qt)^{-2/7}$ decreases

= 200

$3{+}1D \rightarrow 2{+}1D$ plasmas

- Isotropic 3+1D: *f*(*t*, *p*)
- 2+1D: $f(t, p_T, p_z=0)$
- can be regarded as extreme momentum anisotropy

Vs. Gluon spectral function in 2+1D plasmas

KB, Kurkela, Lappi, Peuron, JHEP 05, 225 (2021)

 $\dot{\rho}_T(\omega, p) \approx \omega \rho_T(\omega, p)$

- Broad non-Lorentzian peaks
- HTL curves (green) agree poorly
- Landau cut and q.p. peak not distinguishable

Width $\gamma_T(t, p) / \omega_{\rm pl}(t)$

• Peak width $\gamma(t, p) \sim \omega_{\text{pl}}(t)$ $(\omega_{\text{pl}} \equiv \omega_T(p=0))$

 \Rightarrow no quasiparticles for $p \lesssim \omega_{\rm pl}!$

Kirill Boguslavski (TU Wien)

= 990

1 Motivation

- 2 Method & setup
- 3 Nonperturbatively computed fermion spectral functions
- 4 Comparing to gluonic spectral functions

5 Conclusion

Conclusion

- We have developed tools to extract spectral functions in highly occupied plasmas nonperturbatively
- Applied to classical self-similar attractors: fermionic 3+1D, gluonic 3+1D, gluonic 2+1D
- ρ 's in 3+1D generally well described by HTL, first principles determination of damping rates

Outlook: applications to heavy-ion collisions

- ρ in Bjorken expanding systems or of heavy-flavor quarks
- Anisotropic / expanding kinetic theory, HTL
- Effects on transport coefficients

Some talks with classical-statistical simulations:

- B. S. Kasmaei, We, 17:20 (track C)
- J. Peuron, Th, 10:10 (track C) •
- D. Schuh, Th, 10:55 (track D) ۰

三日 のへの

Thank you for your attention!

Gluonic 2+1D

Spectral function p_

ELE NOR

< ロ > < 同 > < 回 > < 回 > < 回 > <

Backup slides

< E

Image: A matrix

三日 のへの

Universal (classical) attractors

- Rich nonequilibrium dynamics in gauge and scalar systems
- Share similar universal features:

Nonthermal fixed point (NTFP)

- ★ Large initial occupancy ⇒ may approach attractor
- ★ System 'forgets' initial conditions

★ Self-similar dynamics

$$f(t,p) = t^{\alpha} f_{s}(t^{\beta}p)$$

 \star Universal α, β, f_s(p)

NTFP: Micha, Tkachev (2004); Berges, Rothkopf, Schmid (2008)

Universality: Berges, KB, Schlichting, Venugopalan (2015); Piñeiro Orioli, KB, Berges (2015)

Experimental observations: Prüfer et al., Nature 563, 217 (2018); Erne et al., Nature 563, 225 (2018)

三日 のへの

프 제 프 제 프 제 .

Self-similarity of 2+1D theory

Figures: attractor in 2+1D; KB, Kurkela, Lappi, Peuron, PRD 100, 094022 (2019)

Self-similar evolution

$$f(t,p) = (Qt)^{lpha} f_{s}\left((Qt)^{eta} p
ight)$$

• Via energy conservation: $\alpha = (d+1)\beta$

Fermion ρ in 3+1D: Time evolution

KB, Lappi, Mace, Schlichting, arXiv:2106.11319

• $\rho_+(t,\omega,p=0)$ scales with fermion mass $m_f(t) \equiv \omega_{\pm}(t,p=0)$

• Expected from HTL: $\gamma^{\text{HTL}}(t, p=0) \propto g^2 T^*(t) \sim Q(Qt)^{-3/7}$ \Rightarrow observed $\gamma(t, p=0) \sim m_f(t)$ is surprising

Gluon HTL results: perturbative computation

- Hard loop (HTL) framework requires $m_D/\Lambda \ll 1$; in thermal equ. for $g \sim m_D/T \ll 1$, Braaten, Pisarski (1990); Blaizot, Iancu (2002); ...
- In 3+1D $m_D^2 = 4N_c \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \frac{g^2 f(t,p)}{p} \sim g^2 f \Lambda^2 \Rightarrow \text{HTL applicable}$

• In 2+1D soft-soft interactions important

$$m_D^2 pprox d_{
m pol} N_{
m c} \int {{
m d}^2 p \over (2\pi)^2} {g^2 f(t,p) \over \sqrt{m^2 + p^2}} \sim g^2 f \, \Lambda \, \ln \left({\Lambda \over m_D}
ight)$$

 \Rightarrow HTL breaks down already at soft scale $p \sim m_D$

- Comparison to HTL still useful to extract nonperturbative features
- Quasiparticles in $ho^{\mathrm{HTL}}(\omega, p)$ as $\sim \delta(\omega \omega_{lpha}^{\mathrm{HTL}}(p))$
- All expressions depend only on m_D, computed consistently in HTL

(4月) (1日) (日) (日) (00)

- Left: Different ways of computing the Fourier transform are consistent
- *Right:* Peak has non-Lorentzian shape (not Breit-Wigner)

Glasma-like 2+1D, transverse

- Left: Dispersions $\omega_{lpha}(t, p)/\omega_{
 m pl}(t)$
- Right: Peak width $\gamma_{lpha}(t, p) / \omega_{
 m pl}(t)$
- As functions of $p/\omega_{\rm pl}(t)$ time independent $\Rightarrow \gamma(t, p) \sim \omega_{\rm pl}(t)$
- Scalar excitation narrow for $p \lesssim m_D$, but same t dependence

Gluon ρ in 2+1D: Time dependence

- This implies $\gamma_lpha(t,m{
 ho})\sim\omega_{
 m pl}(t)\sim m_D\sim Q(Qt)^{-1/5}$
- No quasiparticles at low p seems to be quite general in 2+1D

Gluon spectral function in 2+1D class. thermal equilibrium

KB, Kurkela, Lappi, Peuron, JHEP 05, 225 (2021)

• Classical thermal equilibrium $f(p) \approx \frac{T}{\omega(p)}$

• $\rho(\omega, p)$ qualitatively similar as far from equilibrium

- \prime Broad gluonic excitations with $\gamma({m
 ho})\sim\omega_{
 m pl}$
- / HTL provides poor description
- ✓ For $\omega \to 0$, $\dot{\rho}_T = \omega \rho_T$ finite at low p

• Interpretion: Features seem generic in 2+1D gauge theories