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Approaches to finite density lattice QCD

In addition to the sign problem, known approaches to finite density QCD

suffer from additional serious problems. E.g.

� Taylor and imaginary µ: analytic continuation problem

� Reweighting and Taylor: overlap problem

� Complex Langevin: convergence issues

� . . .

These problem are just as or even more crippling than the sign problem.

This talk:

→ a method where the only problem is the sign problem

If the sign problem is dealt with by sufficient statistics, the results are

reliable, and errors (on a fixed lattice) are statistical only.
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Reweighting in general

Target theory: Zw Simulated theory: Zr

Zw =

∫
DU w(U) w(U) = detM[U, µ)e−Sg [U] ∈ C

Zr =

∫
DU r(U) r(U) > 0

〈O〉w =

∫
DU w(U)O(U)∫
DU w(U)

=

∫
DU r(U)w(U)

r(U) O(U)∫
DU r(U)w(U)

r(U)

=

〈
w
r O
〉
r〈

w
r

〉
r

Two problems that are exponentially hard in the volume:

�
w
r ∈ C → sign problem

� Tails of ρ(w
r ) long → overlap problem ← The first bottleneck

when reweighting from µ = 0
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Why does reweighting from µ = 0 fail?

The expectation value

of any observable:

〈O〉w =

〈
w
r O
〉
r〈

w
r

〉
r

The weights are the

w/r , to calculate

anything, we need to

have control over this

observable

The sign problem is under control, the overlap problem is not:

Giordano, Kapas, Katz, Nogradi, Pasztor; PRD 102, 034503 (2020)
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Sign reweighting

Z =

∫
DUe−Sg detM =

∫
DUe−SgRe detM

� Beware: the substitution detM → Re detM can be done in Z but

not in generic expectation values.

� Can calculate e.g. ∂n log Z
∂µn

ud
, ∂n log Z

∂mn
ud

and ∂n log Z
∂βn

A new choice of a theory to reweight to and from:

w = e−SgRe detM

r = e−Sg |Re detM|
⇒ w

r
≡ ε = ±1

� The weights are ε = ±1 → No tail, no overlap problem

� 〈±〉r measures the strength of the sign problem

Early mentions of the idea:

de Forcrand, Kim, Takaishi: hep-lat/0209126; Nucl.Ph.B Proc.S. 119 (2003)

Alexandru, Faber, Horvath, Liu: hep-lat/0507020; PRD72 114513
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First test of the new method - unimproved staggered Nτ = 4

Strength of the sign problem at Tc(µ)
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Giordano, Kapas, Katz, Nogradi, Pasztor; JHEP 05 (2020) 088

For simplicity we take µs = 0 and µu = µd = µB/3
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First test of the new method - unimproved staggered Nτ = 4

Finite volume scaling at µB/T = 2.4
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a µ = 0.200        χ2/dof = 2.95

Consistent with Fodor, Katz; JHEP 04 (2004) 050. BUT: to start being

relevant for phenomenology, a much better lattice action has to be used
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Second test - 2stout Nτ = 6 (PRELIMINARY)

〈
ψ̄ψ
〉
R

= (
〈
ψ̄ψ
〉
0,0
−
〈
ψ̄ψ
〉
T ,µ

)
mud

f 4π

 PRELIMINARY

No sign of the transition getting stronger
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Second test - 2stout Nτ = 6 (PRELIMINARY)

〈
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= (
〈
ψ̄ψ
〉
0,0
−
〈
ψ̄ψ
〉
T ,µ

)
mud
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Summary

� Current methods to study finite density QCD are typically not

bottlenecked by the sign problem itself

� In particular reweighting from µ = 0 is bottlenecked by the overlap

problem

� We proposed a new reweighting method that is free from the overlap

problem in the weights and is therefore only bottlenecked by the sign

problem itself

� First test: CEP for unimproved staggered at Nτ = 4, expected to be

dominated by cut-off effects

� Second test: 2stout at Nτ = 6; preliminary

� width of transition at µB/T = 1.5 ≈ width at 0

� so far matches analytic continuation from imaginary µ
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