A novel approach to lattice QCD at finite baryon density

Attila Pásztor

Eötvös University, Budapest
in Collaboration with:
Sz. Borsanyi, Z. Fodor, M. Giordano, K. Kapas, S. Katz, D. Nogradi, C.H. Wong
partially based on JHEP 05 (2020) 088; Giordano, Kapas, Katz, Nogradi, Pasztor

The conjectured phase diagram of QCD

Baryon density / chemical potential / doping

Approaches to finite density lattice QCD

In addition to the sign problem, known approaches to finite density QCD suffer from additional serious problems. E.g.

- Taylor and imaginary μ : analytic continuation problem
- Reweighting and Taylor: overlap problem
- Complex Langevin: convergence issues
- ...

These problem are just as or even more crippling than the sign problem. This talk:
\rightarrow a method where the only problem is the sign problem
If the sign problem is dealt with by sufficient statistics, the results are reliable, and errors (on a fixed lattice) are statistical only.

Reweighting in general

Target theory: Z_{w} Simulated theory: Z_{r}

$$
\begin{aligned}
Z_{w} & =\int \mathcal{D} U w(U) \quad w(U)=\operatorname{det} M[U, \mu) e^{-S_{g}[U]} \in \mathbb{C} \\
Z_{r} & =\int \mathcal{D} U r(U) \quad r(U)>0 \\
\langle O\rangle_{w} & =\frac{\int \mathcal{D} U w(U) O(U)}{\int \mathcal{D} U w(U)}=\frac{\int \mathcal{D} U r(U) \frac{w(U)}{r(U)} O(U)}{\int \mathcal{D} U r(U) \frac{w(U)}{r(U)}}=\frac{\left\langle\frac{w}{r} O\right\rangle_{r}}{\left\langle\frac{w}{r}\right\rangle_{r}}
\end{aligned}
$$

Two problems that are exponentially hard in the volume:

- $\frac{w}{r} \in \mathbb{C} \rightarrow$ sign problem
- Tails of $\rho\left(\frac{w}{r}\right)$ long \rightarrow overlap problem \leftarrow The first bottleneck when reweighting from $\mu=0$

Why does reweighting from $\mu=0$ fail?

The expectation value of any observable:

$$
\langle O\rangle_{w}=\frac{\left\langle\frac{w}{r} O\right\rangle_{r}}{\left\langle\frac{w}{r}\right\rangle_{r}}
$$

The weights are the w / r, to calculate anything, we need to have control over this observable

The sign problem is under control, the overlap problem is not: Giordano, Kapas, Katz, Nogradi, Pasztor; PRD 102, 034503 (2020)

Sign reweighting

$$
Z=\int \mathcal{D} U e^{-S_{g}} \operatorname{det} M=\int \mathcal{D} U e^{-S_{g}} \operatorname{Re} \operatorname{det} \mathrm{M}
$$

- Beware: the substitution $\operatorname{det} M \rightarrow \operatorname{Re} \operatorname{det} M$ can be done in Z but not in generic expectation values.
- Can calculate e.g. $\frac{\partial^{n} \log Z}{\partial \mu_{u d}^{n}}, \frac{\partial^{n} \log Z}{\partial m_{u d}^{n}}$ and $\frac{\partial^{n} \log Z}{\partial \beta^{n}}$

A new choice of a theory to reweight to and from:

$$
\begin{aligned}
& w=e^{-S_{g}} \operatorname{Redet} \mathrm{M} \\
& r=e^{-S_{g}}|\operatorname{Redet} \mathrm{M}|
\end{aligned} \quad \Rightarrow \frac{w}{r} \equiv \epsilon= \pm 1
$$

- The weights are $\epsilon= \pm 1 \rightarrow$ No tail, no overlap problem
- $\langle \pm\rangle_{r}$ measures the strength of the sign problem

Early mentions of the idea:
de Forcrand, Kim, Takaishi: hep-lat/0209126; Nucl.Ph.B Proc.S. 119 (2003)
Alexandru, Faber, Horvath, Liu: hep-lat/0507020; PRD72 114513

First test of the new method - unimproved staggered $N_{T}=4$

Strength of the sign problem at $T_{c}(\mu)$

Giordano, Kapas, Katz, Nogradi, Pasztor; JHEP 05 (2020) 088 For simplicity we take $\mu_{s}=0$ and $\mu_{u}=\mu_{d}=\mu_{B} / 3$

First test of the new method - unimproved staggered $N_{T}=4$

Finite volume scaling at $\mu_{B} / T=2.4$

Consistent with Fodor, Katz; JHEP 04 (2004) 050. BUT: to start being relevant for phenomenology, a much better lattice action has to be used

Second test - 2stout $N_{\tau}=6$ (PRELIMINARY)

$$
\langle\bar{\psi} \psi\rangle_{R}=\left(\langle\bar{\psi} \psi\rangle_{0,0}-\langle\bar{\psi} \psi\rangle_{T, \mu} \frac{m_{u d}}{f_{\pi}^{4}}\right.
$$

No sign of the transition getting stronger

Second test - 2stout $N_{T}=6$ (PRELIMINARY)

$$
\langle\bar{\psi} \psi\rangle_{R}=\left(\langle\bar{\psi} \psi\rangle_{0,0}-\langle\bar{\psi} \psi\rangle_{T, \mu} \frac{m_{u d}}{f_{\pi}^{4}}\right.
$$

Summary

- Current methods to study finite density QCD are typically not bottlenecked by the sign problem itself
- In particular reweighting from $\mu=0$ is bottlenecked by the overlap problem
- We proposed a new reweighting method that is free from the overlap problem in the weights and is therefore only bottlenecked by the sign problem itself
- First test: CEP for unimproved staggered at $N_{\tau}=4$, expected to be dominated by cut-off effects
- Second test: 2stout at $N_{\tau}=6$; preliminary
- width of transition at $\mu_{B} / T=1.5 \approx$ width at 0
- so far matches analytic continuation from imaginary μ

