

News from the strong interactions program of NA61/SHINE

Wojciech Bryliński

for the NA61/SHINE Collaboration *Warsaw University of Technology*

NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) is a multi-purpose spectrometer optimized to study hadron production in different types of collisions: p+p, p+A, A+A.

CERN Prévessin

ALICE

S--INE

SUISSE

ERAN

CMS

NA61/SHINE detector

- coverage of the full forward hemisphere, down to $p_T = 0$
- ion (Be, Ar, Xe, Pb) and hadron (π , K, p) beams

NA61/SHINE heavy-ion program

NA61/SHINE explores the phase diagram of strongly interacting matter by performing a 2D scan in collision energy and system size

S.INE

Sac

Onset of deconfinement and onset of fireball

Wojciech Bryliński (WUT)

${\rm K}^+/\pi^+$ ratio and inverse slope parameter

- No horn-like structure in Ar+Sc
 Be+Be close to p+p in K⁺/π⁺
- $\bullet\,$ Plateau visible in p+p, Be+Be and Ar+Sc

RHIC

 10^{2}

Ar+Sc

Ph+Ph

 10^4 $\sqrt{s_{NN}}$ (GeV)

LHC

• Ar+Sc significantly above Be+Be

$p+p \approx Be+Be \neq Ar+Sc \ll Pb+Pb$

(MeV) 400

200

K⁺

AGS SPS

${\rm K}^+/\pi^+$ and ${\it T}$ vs the system size at 150A GeV/c

dynamical models

statistical models

dynamical models

• None of the models reproduce K^+/π^+ ratio nor $\mathcal T$ for whole $\langle W angle$ range

PHSD: Eur.Phys.J.A 56 (2020) 9, 223, arXiv:1908.00451 and private communication; SMASH: J.Phys.G 47 (2020) 6, 065101 and private communication; UrQMD and HRG: Phys. Rev. C99 (2019) 3, 034909 SMES: Acta Phys. Polon. B46 (2015) 10, 1991 - recalculated

p+p: Eur. Phys. J. C77 (2017) 10, 671 Be+Be: Eur. Phys. J. C81 (2021) 1, 73 Ar+Sc: NA61/SHINE preliminary Pb+Pb: Phys. Rev. C66, 054902 (2002)

K^+/π^+ ratio and inverse slope parameter in p+p

Phys.Rev.C 102 (2020) 1, 011901

- Rates of increase of K^+/π^+ and Tchange sharply in p+p collisions at SPS energies
- Models assuming change from resonances to string production mechanism follow similar trend

→ ▲ 第

Uniqueness of heavy ion results from NA61/SHINE

06.08.2021 9 / 26

Sac

Onset of fireball – measurements after LS3

Wojciech Bryliński (WUT)

SUINE

Search for Critical Point

< 미 > < 問 > < 문 > < 문 > 된 = < 의 < 이 < 이

06.08.2021

11 / 26

Wojciech Bryliński (WUT)

Fluctuations – net-charge

- κ_3/κ_1 : increasing difference between Be+Be and other systems (p+p and Ar+Sc) with collision energy
- No structure indicating critical point

Fluctuations – multiplicity

- κ_2/κ_1 : increasing difference between small systems (p+p and Be+Be) and a heavier system (Ar+Sc) with collision energy
- κ_3/κ_2 and κ_4/κ_2 : consistent values for all measured systems at given collision energy

- 4 回 ト 4 回 ト 4 回

Scaled variance of negatively charged hadrons and the onset of fireball

- NA61/SHINE results on scaled variance of negatively charged hadrons also reveals jump between p+p ≈ Be+Be and Ar+Sc and Pb+Pb
- Dynamical models show steep decrease of κ_2/κ_1 value with the colliding system size, but do not describe Be+Be data
- Statistical model does not describe p+p and Be+Be

Second factorial moment - proton intermittency

- δ size of each of the $M = \frac{\Delta}{\delta}$ subdivision intervals of the p_T
- n_i number of particles in i-th p_T bin
- At the second order phase transition $F_2(M)$ exhibits a power-law dependence on M: $F_2(M) \sim (M^2)^{\varphi_2}$

APPB 19 (1988) 863 PLB 253 (1991) 436 NPB 273 (1986) 703 PRL 97 (2006) 032002

 Analysis of peripheral Ar+Sc collisions at 150A GeV/c reveals a non-trivial scaling effect; however, large uncertainties in F₂(M) and M-bin error correlations prevent an unbiased estimation of φ₂ confidence intervals

Second factorial moment - proton intermittency

using cumulative variables and independent points

NA61/SHINE NA61/SHINE 2.0 2.0 $F_2(M)$ $F_2(M)$ 0-20% Ar+Sc at 150A GeV/c 0-10% Pb+Pb at 30A GeV/c Independent bin analysis using 1.5 1.5 cumulative variables 1.0 1.0 shows no intermittency effect in Ar+Sc at 0.5 0.5 150A GeV/c, as well as in Pb+Pb at 30A0.0 0.0 GeV/c500 1000 500 1000 0 M² M^2

statistical uncertainties only

Exclusion plots for parameters of simple power-law model

• The intermittency index φ_2 for a system freezing out at the QCD critical endpoint is expected to be $\varphi_2 = 5/6$ assuming that the latter belongs to the 3-D Ising universality class.

90

INF

Electromagnetic effects

< □ > < 同 → < Ξ

Wojciech Bryliński (WUT)

315 06.08.2021 18 / 26

Sac

Spectator-induced electromagnetic effects

• Charged pion trajectories can be modified by electromagnetic interactions (repulsion for π^+ and attraction for π^-) with the spectators \rightarrow the effect is sensitive to the space-time evolution the system Phys.Rev.C75 (2007) 054903, Phys.Rev.C102 (2020) 1, 014901

- Spectator-induced EM effects are stronger with rapidity closer to the spectator rapidity and with low p_T
- First time ever observation of the spectator-induced electromagnetic effects in peripheral small systems: Ar+Sc at 40A GeV/c
- Similar effects observed in intermediate centrality Ar+Sc collisions at 150A GeV/c (NA61/SHINE) and peripheral Pb+Pb (NA49) at 158A GeV/c Acta Phys.Polon.B 49 (2018) 711

S..INF

Open charm measurements in NA61/SHINE experiment

Wojciech Bryliński (WUT)

Motivation of the open charm measurements

Three main questions that motivate open charm measurements at the CERN SPS:

- What is the mechanism of open charm production?
- 2 How does the onset of deconfinement impact open charm production?
- **(3)** How does the formation of quark-gluon plasma impact J/ψ production?

To answer these questions mean number of charm quark pairs $\langle c\bar{c} \rangle$ produced in the full phase space in A+A collisions has to be known.

Up to now corresponding experimental data does not exist.

Statistical Model of Early Stage (SMES)

Wojciech Bryliński (WUT)

Small Acceptance Vertex Detector (SAVD)

Small Acceptance Vertex Detector introduced in 2016:

• 16 CMOS MIMOSA-26 sensors located on two horizontally movable arms

Thanks to:

IPHC TRB

• first indication of D^0 and $\bar{D^0}$ signal

NA61/SHINE upgrades

Wojciech Bryliński (WUT)

Uniqueness of NA61/SHINE open charm program

Landscape of present and future heavy ion experiments

NA61/SHINE is the only experiment which is able to measure open charm production in heavy ion collisions in full phase space in the near future.

- LHC and RHIC at high energies: measurement in small phase space due to collider geometry and kinematics
- RHIC BES collider: measurement not possible due to collider geometry and kinematics
- RHIC BES fixed-target: measurement require dedicated setup – not under consideration
- NICA (<80A GeV/c): measurement during stage 2 under consideration
- J-PARC (<20*A* GeV/*c*): maybe possible after 2025
- FAIR (<10A GeV/c): not possible

- NA61/SHINE 2D scan in system size and energy is completed
- Unique NA61/SHINE data delivered rich information related to the onset of deconfinement
- Unexpected system size dependence was revealed onset of fireball
- So far, no convincing indication of the critical point
- \bullet Electromagnetic effects in Ar+Sc at 40A GeV/c were observed for the first time
- NA61/SHINE will measure the open charm production at the SPS energies in 2022-2024

Thank you!

Have a SHINY day!

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 のへで

Backup

Wojciech Bryliński (WUT)

06.08.2021 1/7

Onset of deconfinement observables

Acta Phys.Polon.B 46 (2015) 10, 1991

 K^+/π^+ and $\langle K^+ \rangle / \langle \pi^+ \rangle$:

- No horn-like structure in Ar+Sc
- Be+Be close to p+p
- Jump-like change in the system size dependence of ${\cal K}^+/\pi^+$

Inverse slope parameter:

- Be+Be slightly above p + p
- Ar+Sc significantly above Be+Be

 $p+p \approx Be+Be \neq Ar+Sc \leq Pb+Pb$

$\langle \pi \rangle / \langle W \rangle$ ratio vs the system size at 150A GeV/c

• Model predictions for $\langle \pi \rangle / \langle W \rangle$ approximately agree with the data

• However, they should be complemented with calculations for Pb+Pb

▶ ∢ ⊒

K/π in Be+Be and models

- NA61/SHINE the only world data for Be+Be collisions
- K⁺/π⁺ ratio and inverse slope parameter T - smooth energy dependence Note the limited energy range of data
- None of actual models describe all measured quantities

Eur.Phys.J.C 81 (2021) 1, 73

• • = • • = •

< A

Instead of using p_x and p_y , one can use cumulative quantities:

$$Q_x = \int\limits_{min}^x \rho(x) dx / \int\limits_{min}^{max} \rho(x) dx \qquad \qquad Q_y(x) = \int\limits_{y_{min}}^y P(x,y) dy / P(x)$$

- transform any distribution into uniform one (0,1)
- remove the dependence of F₂ on the shape of the single-particle distribution
- intermittency index of an ideal power-law correlation function system described in two dimensions in momentum space was proven to remain approximately invariant after the transformation

Bialas, Gazdzicki, PLB 252 (1990) 483 Antoniou, Diakonos, https://indico.cern.ch/event/818624/

Simple power-law model

Comparison with simple power-law model

A simple model that generates momentum of particles for a given number of events with a given multiplicity distribution.

It has two main parameters:

- ratio of correlated to uncorrelated particles.
- power-law exponent.

Uncorrelated particles (background) $\rho_{\rm B}(\mathbf{p}_{\rm T}) = \mathbf{p}_{\rm T} \cdot \mathbf{e}^{-6\mathbf{p}_{\rm T}}$

Correlated pairs (signal) $\rho_{\rm S}({\sf p}_{{\sf T},1},{\sf p}_{{\sf T},2}) = \rho_{\rm B}({\sf p}_{{\sf T},1}) \cdot \rho_{\rm B}({\sf p}_{{\sf T},2})$ $\cdot \left[|\Delta \mathsf{p}_{\mathsf{x}}|^{\phi} + \epsilon \right]^{-1} \cdot \left[|\Delta \mathsf{p}_{\mathsf{y}}|^{\phi} + \epsilon \right]^{-1}$ Examples for: $\phi = 0.80$ $\epsilon = 1e^{-5}$ N_R=Poisson(30) $N_{c}=2$

(rd)

P(p)

▲ロ → ▲周 → ▲目 → ▲目 → ▲日 → ▲

0.015

0.010

0.005

0.03

0.02

01

0.03

0.02 0.01

.00

Lots of model data sets generated:

- correlated-to-all ratio: vary from 0.0 to 4.0% (with 0.2 step)
- power-law exponent: vary from 0.00 to 1.00 (with 0.05 step)

and compared with the experimental data

For the construction of exclusion plots, statistical uncertainties were calculated using model with statistics corresponding to the data.

シック 正則 エヨトエヨト 山口・ショー