The multiple-charm hierarchy in the statistical hadronization model

Anton Andronic, Peter Braun-Munzinger, Markus K. Kohler, Aleksas Mazeliauskas, Krzysztof Redlich, Johanna Stachel, V. V., <u>J. High Energ. Phys. 2021, 35 (2021)</u>

All predictions shown in this talk are available on the arXiv page as supplementary material

Statistical Hadronization Model

Very good description of (light-flavour) particle yields over multiple orders of magnitude \Rightarrow Few model paramteters: volume, temperature, baryonic chemical potential

Statistical Hadronization Model

Very good description of (light-flavour) particle yields over multiple orders of magnitude \Rightarrow Few model paramteters: volume, temperature, baryonic chemical potential

Statistical Hadronization Model for charm

• Charm quark mass >> $T_{pc} \approx 156$ MeV, thermal production strongly suppressed

 \Rightarrow c quarks predominantly produced in initial hard scatterings $\Rightarrow J/\psi$ yield 900 times larger w.r.t. thermal!

P. Braun-Munzinger and J. Stachel, Phys. Lett. B 490 (2000) 196–202

L. Grandchamp, R. Rapp, Phys. Lett. B 523 (2001) 60-66

Mark I. Gorenstein et al, J. Phys. G 28 (2002) 2151-2167

A. Andronic, P. Braun-Munzinger, K. Redlich, and J. Stachel, Phys. Lett. B 571 (2003) 36-44 F. Becattini, Phys. Rev. Lett. 95 (2005) 022301

A. Andronic, P. Braun-Munzinger, K. Redlich, and J. Stachel, Nucl. Phys. A 789 (2007) 334–356

A. Andronic, P. Braun-Munzinger, K. Redlich, and J. Stachel, Phys. Lett. B 659 (2008) 149–155

- Charm quarks survive and thermalize in the QGP \Rightarrow Treat charm as "impurities" with yields driven by x-section
 - \Rightarrow Leads to fugacity g_c in the balance equation

Charm balance equation:

- Charm quarks survive and thermalize in the QGP \Rightarrow Treat charm as "impurities" with yields driven by x-section
 - \Rightarrow Leads to fugacity g_c in the balance equation

Charm balance equation:

$$N_{c\bar{c}} = \frac{1}{2} g_c V \sum_{h_{oc,1}^i} n_i^{th} + g_c^2 V \sum_{h_{hc}^j} n_j^{th} + \frac{1}{2} g_c^2$$

 \Rightarrow Volume obtained from SHM fits in light-flavour sector

- Charm quarks survive and thermalize in the QGP \Rightarrow Treat charm as "impurities" with yields driven by x-section
 - \Rightarrow Leads to fugacity g_c in the balance equation

Charm balance equation:

$$N_{c\bar{c}} = \frac{1}{2} g_c V \sum_{h_{oc,1}^i} n_i^{\text{th}} + g_c^2 V \sum_{h_{h_{c}}^j} n_j^{\text{th}} + \frac{1}{2} g_c^2$$

 \Rightarrow Volume obtained from SHM fits in light-flavour sector \Rightarrow Thermal densities n_X^{th} given by T_{CF} , μ_B

 Charm quarks survive and thermalize in the QGP \Rightarrow Treat charm as "impurities" with yields driven by x-section \Rightarrow Leads to fugacity g_c in the balance equation

Charm balance equation:

$$N_{c\bar{c}} = \frac{1}{2} g_c V \sum_{h_{oc,1}^i} n_i^{\text{th}} + g_c^2 V \sum_{h_{hc}^j} n_j^{\text{th}} + \frac{1}{2} g_c^2$$

- \Rightarrow Volume obtained from SHM fits in light-flavour sector \Rightarrow Thermal densities n_X^{th} given by T_{CF} , μ_B
- $\Rightarrow N_{cc}$ from cross section measurements in pp + p-Pb
- \Rightarrow Can calculate g_c

 Charm quarks survive and thermalize in the QGP \Rightarrow Treat charm as "impurities" with yields driven by x-section \Rightarrow Leads to fugacity g_c in the balance equation

Charm balance equation:

$$N_{c\bar{c}} = \frac{1}{2} g_c V \sum_{h_{oc,1}^i} n_i^{\text{th}} + g_c^2 V \sum_{h_{hc}^j} n_j^{\text{th}} + \frac{1}{2} g_c^2$$

- \Rightarrow Volume obtained from SHM fits in light-flavour sector \Rightarrow Thermal densities n_X^{th} given by T_{CF} , μ_B
- $\Rightarrow N_{cc}$ from cross section measurements in pp + p-Pb
- \Rightarrow Can calculate g_c
- \Rightarrow In central Pb—Pb collisions at the LHC and at mid rapidity, $g_c \approx 30$

\Rightarrow Enhancement of single-charmed hadrons by a factor 30 and for double-charmed hadrons by a factor 900!

Constructing transverse momentum spectra

- Using Core-Corona picture
- Core:
- \Rightarrow Bulk particle production in a thermalised and deconfined medium
 - \Rightarrow All charm quarks produced in the core are thermalised \Rightarrow 100% opacity
- \Rightarrow Hydrodynamical expansion of the system modifies particle spectra

Constructing transverse momentum spectra

- Using Core-Corona picture
- Core:
- \Rightarrow Bulk particle production in a thermalised and deconfined medium
 - \Rightarrow All charm quarks produced in the core are thermalised \Rightarrow 100% opacity
- ⇒ Hydrodynamical expansion of the system modifies particle spectra
- Corona:
- \Rightarrow Perturbative "pp-like" scatterings between nucleons in the
- corona of colliding nuclei
- \Rightarrow Estimated using cross section measurements in pp collisions
- $\Rightarrow \langle T_{AA} \rangle$ from Glauber, 10% of central Pb—Pb density
- \Rightarrow Power-like scaling at larger *p*T, not described by hydro
- \Rightarrow For simplicity, here parametrise pp cross section as

$$Cp_{\rm T} \left[1 + (p_{\rm T}/p_0)^2\right]^{-n}$$

s in the

Constructing transverse momentum spectra for the core

Particle spectra for the core computed using blast wave prescription

- Cooper-Frye freeze-out reduced to a one-dim. integral along τ-r plane
- Volume and temperature from SHM fits in light sector
- Freeze-out kernels K_1^{eq} , K_2^{eq} calculated with FastReso code \Rightarrow Already includes feed-down from 72 2-body and 10 3-body decay channels of charmed hadrons!

A. Mazeliauskas, S. Floerchinger, E. Grossi, and D. Teaney, Eur. Phys. J. C 79 no. 3, (2019) 284 A. Mazeliauskas and V. Vislavicius, Phys. Rev. C 101 no. 1, (2020) 014910

$$\frac{\mathrm{d}^2 N}{2\pi p_{\mathrm{T}} dp_{\mathrm{T}} dy} = \frac{2J+1}{(2\pi)^3} \int \mathrm{d}\sigma_{\mu} p^{\mu} f(p)$$
$$= \frac{2J+1}{(2\pi)^3} \int_0^{r_{\mathrm{max}}} \mathrm{d}r\tau(r) r \left[K_1^{\mathrm{eq}} \left(p_{\mathrm{T}}, u^r \right) - \frac{\partial \tau}{\partial r} K_2^{\mathrm{eq}} \left(p_{\mathrm{T}} \right) \right]$$

Constructing transverse momentum spectra for the core

Particle spectra for the core computed using blast wave prescription

- Cooper-Frye freeze-out reduced to a one-dim. integral along τ-r plane
- Volume and temperature from SHM fits in light sector
- Freeze-out kernels K_1^{eq} , K_2^{eq} calculated with FastReso code \Rightarrow Already includes feed-down from 72 2-body and 10 3-body decay channels of charmed hadrons!
- Radial expansion from (3+1)D viscous hydro code: $\beta = \beta_{\max} \left(r/r_{\max} \right)^n$
- No new parameters in the model, only external input from hydro and measurements

- A. Mazeliauskas, S. Floerchinger, E. Grossi, and D. Teaney, Eur. Phys. J. C 79 no. 3, (2019) 284
- A. Mazeliauskas and V. Vislavicius, Phys. Rev. C 101 no. 1, (2020) 014910
- B. Schenke, S. Jeon, and C. Gale, Phys. Rev. C82 (2010) 014903
- B. Schenke, P. Tribedy, and R. Venugopalan, Phys. Rev. Lett. 108 (2012) 252301

SHMc predictions: thermal vs. full

- Decay products populate mostly low pT region, can be as large as 5 times the thermal yield!
- ... but core dominates only up to 3-4 GeV

• Full treatment of decay kinematics for resonance decays (before: thermal spectra times feed-down correction)

SHMc predictions: transverse momentum spectra

- D⁰: good agreement with the data for core, underpredicts the high- p_T tail \Rightarrow Bulk of the yields is below 3 GeV
- No new parameters in the model, only external input!
- Dominant model uncertainties: g_c for core,

pp parametrisation for corona

• $\Lambda_{\rm C}$: measured spectra coming soon, our predictions are available as supplementary material on arXiv (also for other species!)

Pb—Pb data: ALICE Collaboration, JHEP 10 (2018) 174 pp data for corona: ALICE Collaboration, arXiv:2011.06079 [nucl-ex] ALICE Collaboration, Eur. Phys. J. C 79 no. 5, (2019) 388 ALICE Collaboration, arXiv:2102.13601 [nucl-ex]

SHMc predictions: particle ratios

- Very good agreement between model and the data for all particle species!
- No free parameters!
- Peak-like structure for ∧_c:
 hydro → jets
- g_c eliminated, model width
 dominated by the measurement
- Looking forward to measurements down to low p_T values

Pb—Pb data: ALICE Collaboration, JHEP 10 (2018) 174 pp data for corona: ALICE Collaboration, arXiv:2011.06079 [nucl-ex] ALICE Collaboration, Eur. Phys. J. C 79 no. 5, (2019) 388 ALICE Collaboration, arXiv:2102.13601 [nucl-ex]

SHMc predictions: integrated particle yields

Can compute yields for any (multi-)charmed hadrons, including Ω_{ccc} and more speculative states, e.g. c-deuteron

 \Rightarrow For Pb – Pb collisions at LHC and mid rapidity, $g_c \approx 30 \Rightarrow \Omega ccc$ enhanced by a factor of $\sim 2.7 \cdot 10^4$

 \Rightarrow Measurements of Ω_{ccc} possible in the future runs of LHC?

 \Rightarrow Grouping for single-, double-, and triple-charmed hadrons \Rightarrow perfect testing grounds for deconfinement in LHC

for Run 3 and beyond!

(2J+1)10 Pb-Pb $\sqrt{s_{_{NN}}}$ =5.02 TeV 0-10% lyl<0.5 lyl<0.5 dN/dy 10⁻¹ **10**⁻² 10^{-3} 10^{-4} ¹P_c(4320) SHMc, T_{cf} =156.5 MeV 10^{-5} g_c $d\sigma_{c\overline{c}}$ /dy=0.532 ± 0.096 mb 10 4.5 3.5 4.5 2 2.5 3 5 1.5 4 4 Mass (GeV) Mass (GeV)

SHMc predictions: system size dependence

Canonical suppression due to small volume becomes

increasingly more important in small systems:

- $\Rightarrow \Omega ccc$ yield drops by ~4 orders of magnitude,
- \Rightarrow but this can be compensated by increased luminosity

	O-O	Pb-Pb		
$\sigma_{ m inel}(10\%){ m mb}$	140	800		
$T_{ m AA}(0-10\%){ m mb}^{-1}$	0.63	24.3		
$\mathcal{L}(\mathrm{cm}^{-2}\mathrm{s}^{-1})$	$4.5\cdot 10^{31}$	$3.8\cdot 10^{27}$		
	${ m d}\sigma_{ m c\overline{c}}/{ m d}y=0.53{ m mb}$			
$\mathrm{d}N_{\Omega_{ccc}}/\mathrm{d}y$	$8.38\cdot10^{-8}$	$1.25\cdot 10^{-4}$		
Ω_{ccc} Yield	$5.3\cdot 10^5$	$3.80\cdot 10^5$		
	${ m d}\sigma_{ m c\overline{c}}/{ m d}y=0.63{ m mb}$			
$\mathrm{d}N_{\Omega_{ccc}}/\mathrm{d}y$	$1.44 \cdot 10^{-7}$	$2.07\cdot 10^{-4}$		
Ω_{ccc} Yield	$9.2\cdot 10^5$	$6.29\cdot 10^5$		

SHMc predictions: undiscovered states

- Recently, many predictions of undiscovered charmed baryon states (see eg [1])
 Study this by *tripling* the statistical weights of all charmed baryon resonances
- \Rightarrow Mesons affected marginally
- \Rightarrow Baryon yields ~ double
- \Rightarrow Charm production x-section increases by 18%

Summary

- Statistical hadronization model extended to charm sector: \Rightarrow Including the full treatment of resonance decay kinematics
 - \Rightarrow With no parameter tuning, only external input
 - \Rightarrow Predictions for *any* charmed hadron \Rightarrow for LHC Run 3, 4, and ALICE3
- Equivalent treatment of open and hidden charm
- Predicted hierarchy of multi-charm states, very strong enhancement expected \Rightarrow Perfect testing grounds for deconfinement in the future LHC measurements
- All predictions here and more are available as supplementary material at \bullet arXiv: 2104.12754 [hep-ph]

SHMc predictions for Ω_{ccc}

Expected yields of Ω_{ccc} in 10⁶ s LHC run at $\sqrt{s_{NN}} = 5.02$ TeV for different collision

systems in $\Delta y = 1$ at midrapidity

 \Rightarrow Yields in O-O comparable to those in Pb-Pb: larger luminosity, but stronger canonical suppression

	0-0	Ar-Ar	Kr-Kr	Xe-Xe	Pb-Pb
$\sigma_{ m inel}(10\%){ m mb}$	140	260	420	580	800
$T_{\rm AA}(0-10\%){ m mb}^{-1}$	0.63	2.36	6.80	13.0	24.3
$\mathcal{L}(\mathrm{cm}^{-2}\mathrm{s}^{-1})$	$4.5\cdot 10^{31}$	$2.4\cdot 10^{30}$	$1.7\cdot 10^{29}$	$3.0\cdot 10^{28}$	$3.8\cdot 10^{27}$
			${ m d}\sigma_{ m car c}/{ m d}y=0.53{ m mb}$		
$\mathrm{d}N_{\Omega_{ccc}}/\mathrm{d}y$	$8.38\cdot10^{-8}$	$1.29\cdot 10^{-6}$	$1.23\cdot 10^{-5}$	$4.17\cdot 10^{-5}$	$1.25\cdot 10^{-4}$
Ω_{ccc} Yield	$5.3\cdot 10^5$	$8.05\cdot 10^5$	$8.78\cdot 10^5$	$7.26\cdot 10^5$	$3.80\cdot 10^5$
			${ m d}\sigma_{ m c\overline{c}}/{ m d}y=0.63{ m mb}$		
$\mathrm{d}N_{\Omega_{ccc}}/\mathrm{d}y$	$1.44\cdot 10^{-7}$	$2.33\cdot 10^{-6}$	$2.14\cdot 10^{-5}$	$7.03\cdot 10^{-5}$	$2.07\cdot 10^{-4}$
Ω_{ccc} Yield	$9.2\cdot 10^5$	$1.45\cdot 10^6$	$1.53\cdot 10^6$	$1.22\cdot 10^6$	$6.29\cdot 10^5$

Charm fugacity g_c

- $g_c \propto A^{1/3}$ in large systems (grand-canonical), $\propto A^{-1/3}$ in O–O (canonical)
- In central Pb Pb, enhancement of around 30 for single-charm, 900 for double-charm, $2.6 \cdot 10^4$ for triple charm!

• Obtained by numerically solving $N_{c\bar{c}} = \frac{1}{2}g_c N_{oc}^{th} \frac{I_1(g_c N_{oc}^{th})}{I_0(g_c N_{oc}^{th})} + g_c^2 N_{c\bar{c}}^{th}$ for ALICE (mid. rap.) and LHCb (FW)

Canonical suppression in different collision systems

- Largest suppression for triple-charm in O—O
- In Pb Pb, suppression for triple-charm hadrons ≈ 0.84 \Rightarrow If realised in the nature, then even the heaviest (charm) hadrons could be accessible experimentally!

Constructing transverse momentum spectra for the core

Using Core-Corona picture:

- Core yields from SHMc
- Dynamics from blast wave prescription \Rightarrow Cooper-Frye freeze-out reduced to one-dim.

integral along $\tau - r$ plane. Dif. surfaces \Rightarrow sim. yields

A. Mazeliauskas, S. Floerchinger, E. Grossi, and D. Teaney, Eur. Phys. J. C 79 no. 3, (2019) 284 A. Mazeliauskas and V. Vislavicius, Phys. Rev. C 101 no. 1, (2020) 014910

SHMc predictions: transverse momentum spectra and R_{AA}

D^o: good agreement with the data for core, underpredicts the high- p_{T} tail \Rightarrow No incomplete thermalisation in the model

 \Rightarrow And bulk of the yields is below 3 GeV

- No new parameters in the model, only external input!
- Dominant model uncertainties: g_c for core, pp parametrisation for corona
- Λ_c: measured data preliminary so far, but our predictions are available as supplementary material on arXiv (also for other species!)
- R_{AA}: similar conclusions as for spectra

Pb-Pb data: ALICE Collaboration, JHEP 10 (2018) 174 pp data for corona: ALICE Collaboration, arXiv:2011.06079 [nucl-ex] ALICE Collaboration, Eur. Phys. J. C 79 no. 5, (2019) 388 ALICE Collaboration, arXiv:2102.13601 [nucl-ex]

