A comparison of spectral reconstruction methods applied to non-zero temperature NRQCD meson correlation functions

Thomas Spriggs [Swansea University]
FASTSUM Collaboration

A Virtual Tribute to Quark Confinement and the Hadron Spectrum 2021, August 2021
FASTSUM Collaboration’s NRQCD Project

Gert Aarts, Chris Allton, Tim Burns, Sam Offler, Benjamin Page, TS
Swansea University
Benjamin Jäger
Southern Denmark University
Seyong Kim
Sejong University, Korea
Maria Paola Lombardo
INFN, Florence
Sinead Ryan
Trinity College, Dublin
Jon-Ivar Skullerud
National University of Ireland, Maynooth, Ireland
Overview
Bottomonium from FASTSUM Collaboration

- FASTSUM lattice setup
 - anisotropic lattices
 - NRQCD to $O(v_b^4) \ | \ M_b$ set by spin average S-wave meson masses
- Towards chiral and continuum limits
 - $M_\perp = 392, 236, 140$ MeV
 - $a_T = 0.033, 0.017$ fm
- Spectral Reconstruction from 7 Methods
 - Maximum likelihood (x^2)
 - Moments
 - Bayesian (x^2)
 - Backus Gilbert
 - Kernel Ridge Regression
FASTSUM setup

Anisotropic Lattice:

\[a_\tau < a_s \]

allowing for better resolution, particularly at finite temperatures, since

\[T = \frac{1}{L_\tau} = \frac{1}{N_\tau a_\tau} \]
Lattice Parameters

(2+1) flavour
$a_s \sim 0.12$ fm

"fixed scale"

Aarts et al, JHEP 07 (2014) 097
Spectral Functions

$$G_{\pm}(\tau) = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} K(\tau, \omega) \rho_{\pm}(\omega)$$

↑

Euclidean (Lattice) Spectral
Correlator Kernel Function

$$K(\tau, \omega) = e^{-\omega \tau}$$

ρ(ω)

Stable
Bound (decaying) States
Melted/Plasma
Melted/Plasma with Transport

No transport peak
Extracting Spectral Functions

Input Data:

\[G(\tau); \tau = 1, 2, 3 \ldots O(10-100) \]

Output Data:

\[\rho(\omega); \omega = \omega_0, \ldots O(1000) \]

\textit{ill-posed!} \quad \text{i.e.} \quad \infty \text{ solutions with } \chi^2 = 0

“Entropy” Factor \(P(F) \) breaks this degeneracy
Study of Numerical Methods

1. Exponential (Conventional δ f’ns)
2. Gaussian Ground State (+ δ f’n excited)
3. Moments of Correlation F’ns
4. BR Method
5. Maximum Entropy Method
6. Kernel Ridge Regression
7. Backus Gilbert

Maximum Likelihood (Minimise χ^2)
Direct Method - “no” fit
Bayesian Approaches
Machine Learning from Geophysics
Moments

\[G(\tau) = \int e^{-\omega \tau} \rho(\omega) d\omega \rightarrow \frac{dG(\tau)}{d\tau} = \int \omega e^{-\omega \tau} \rho(\omega) d\omega \]

\[-\frac{1}{G(\tau)} \frac{dG(\tau)}{d\tau} = M_{eff}(\tau) = \frac{1}{G(\tau)} \int \omega e^{-\omega \tau} \rho(\omega) d\omega = \langle \omega \rangle e^{-\omega \tau} \rho(\omega) \]

Similarly, we can take a 2nd derivative to calculate

Variance (i.e. width):

\[\Gamma^2 = \frac{1}{G(\tau)} \frac{d^2G(\tau)}{d\tau^2} - M_{eff}^2 = \langle (\omega - \langle \omega \rangle)^2 \rangle \]
Bayesian Approaches

Need to maximise $P(F|D)$

Bayes Theorem:

$$P(F \cap D) = P(F|D)P(D) = P(D|F)P(F)$$

i.e. $P(F|D) = \frac{P(D|F)P(F)}{P(D)}$

Note $P(D|F) \sim \chi^2$

So we should always include $P(F)$

$P(F)$ is encoded as an Entropy

BR and MEM use different Entropy definitions
Choice of Entropy Term

\[P(F) \sim e^S \quad S = \text{Entropy} \]

Maximum Entropy Method:

Shannon-Jaynes Entropy:

\[
S = \int_0^\infty d\omega \left[\rho(\omega) - m(\omega) - \rho(\omega) \ln \frac{\rho(\omega)}{m(\omega)} \right]
\]

Asakawa, Hatsuda, Nakahara, Prog.Part.Nucl.Phys. 46 (2001) 459

BR Method:

\[
S = \int_0^\infty d\omega \left[1 - \frac{\rho(\omega)}{m(\omega)} + \ln \frac{\rho(\omega)}{m(\omega)} \right]
\]

Direct comparison of Bayesian Approaches

BR Upsilon Preliminary

MEM Upsilon Preliminary

\[\rho(\omega) \]

\[\omega \ [\text{GeV}] \]

\[T \ (\text{MeV}) \]

\[\rho(\omega) \]

\[\omega \ [\text{GeV}] \]

\[T \ (\text{MeV}) \]
Kernel Ridge Regression

Machine Learning

- uses training data to determine an *alpha matrix* of parameters determined analytically using a cost function
- cost function includes a term to prevent overfitting
- training data set is $\mathcal{O}(10^4)$ mock data with 5 Gaussians
- difficult to produce systematic error estimate

$$C_{ij}(x_i, x_j) = \exp \left\{ -\gamma \sum_{\tau} \left[\log(G_i(\tau)) - \log(G_j(\tau)) \right]^2 \right\}$$
Take \[G(\tau) = \int \rho(\omega)e^{-\omega \tau} d\omega = \int \rho(\omega)K(\omega, \tau) \]

Generate \textit{averaging functions}: \[A(\omega, \omega_0) = \sum_{\tau} c_{\tau}K(\omega, \tau) \]

(an approximation to the \(\delta\) f'n), such that

\[
\hat{\rho}(\omega_0) = \int A(\omega, \omega_0)\rho(\omega)d\omega \\
= \sum_{\tau} c_{\tau} G(\tau) \\
\approx \rho(\omega_0)
\]

Averaging coeiffs \(c_{\tau} \) determined by \textit{minimising the width of} \(A(\omega, \omega_0) \)
Results from all Methods
Generation 2L: Upsilon PRELIMINARY!
Summary
Bottomonium spectrum from FASTSUM Collaboration

• Towards chiral & continuum limits
 • $M_\pi = 392,236,140 MeV$
 • $a_\tau = 33,17 am$

• Spectral Reconstruction from 7 Methods
 • Max. Likelihood (x2)
 • Moments
 • Bayesian (x2)
 • Machine Learning
 • Backus-Gilbert

Towards Systematic Understanding of Bottomonium Spectrum from the Lattice