
Global fits beyond the standard
Beyond-the-Standard-Model models
Anders Kvellestad, University of Oslo

on behalf of the GAMBIT Collaboration

Fysikermøtet 2021 — June 23, 2021

G AM B I T

Anders Kvellestad

Outline

 2

1. Global fits

2. GAMBIT

3. GUM

G AM B I T

Anders Kvellestad 3

1. Global fits

G AM B I T

Anders Kvellestad 4

Global fits

Many observables 
One theory

G AM B I T

Anders Kvellestad 5

The basic steps of a BSM global fit

• Choose your BSM theory and parameterisation

• Construct the joint likelihood function including observables from collider
physics, dark matter, flavor physics, +++

 

• Use sophisticated scanning techniques to explore the likelihood
function across the parameter space of the theory

• Test parameter regions properly — not just single points  
(parameter estimation)

• Test different theories the same way (model comparison) 
 

L = LcolliderLDMLflavorLEWPO . . .

 5

Anders Kvellestad 6

θ1

θ2

θ3

• L(θ)

• L(θ)

• L(θ)

• L(θ)

• L(θ)

• L(θ)• L(θ)

• L(θ)

• L(θ)

• L(θ)

• L(θ)

• L(θ)

• L(θ)
• L(θ)

• L(θ)• L(θ)

• L(θ)

• L(θ)

• L(θ)• L(θ)• L(θ)
• L(θ)

• L(θ)• L(θ)

• L(θ) • L(θ)• L(θ)

• Region of highest L(θ) or lnL(θ): model’s best simultaneous fit to all data 
(but not necessarily a good fit, or the most probable θ…)

• Explore the model parameter space (θ1, θ2, θ3, …)

• At every point θ: calculate predictions(θ) → evaluate joint likelihood L(θ)

Anders Kvellestad 7

Computational challenges:

• Need smart exploration of parameter space

• Need fast theory calculations

• Need fast simulations of experiments (e.g. LHC)

• Need sufficiently detailed likelihoods

θ1

θ2

θ3

• L(θ)

• L(θ)

• L(θ)

• L(θ)

• L(θ)

• L(θ)
• L(θ)

• L(θ)

• L(θ)

• L(θ)

• L(θ)

• L(θ)

• L(θ)
• L(θ)

• L(θ)• L(θ)

• L(θ)

• L(θ)

• L(θ) • L(θ)• L(θ)
• L(θ)

• L(θ)• L(θ)

• L(θ) • L(θ)• L(θ)

Some infrastructure challenges:

• Need different parameter scanning algorithms

• Need model-agnostic core framework

• Need to interface many external physics codes

• Need massive parallelisation…

• …which implies a need for diskless interfacing…

• …which implies a need to stop external codes from
calling STOP and kill your 10,000-CPU scan… :)

Anders Kvellestad 8

2. GAMBIT

G AM B I T

Anders Kvellestad 9

G AM B I T

Recent collaborators:
F Agocs, V Ananyev, P Athron, C Balázs, A Beniwal, J Bhom, S
Bloor, T Bringmann, A Buckley, J-E Camargo-Molina, C
Chang, M Chrzaszcz, J Conrad, J Cornell, M Danninger, J
Edsjö, B Farmer, A Fowlie, T Gonzalo, P Grace, W Handley, J
Harz, S Hoof, S Hotinli, F Kahlhoefer, N Avis Kozar, A
Kvellestad, P Jackson, A Ladhu, N Mahmoudi, G Martinez, MT
Prim, F Rajec, A Raklev, J Renk, C Rogan, R Ruiz, I Sáez
Casares, N Serra, A Scaffidi, P Scott, P Stöcker, W Su, J Van
den Abeele, A Vincent, C Weniger, M White, Y Zhang

Members of:
ATLAS, Belle-II, CLiC,
CMS, CTA, Fermi-LAT,
DARWIN, IceCube, LHCb,
SHiP, XENON
Authors of:
DarkSUSY, DDCalc, Diver, FlexibleSUSY, gamlike, GM2Calc,
IsaTools, nulike, PolyChord, Rivet, SoftSUSY, SuperISO, SUSY-
AI, WIMPSim

70+ participants in 11 experiments and 14 major theory codes

G AM B I TA. Kvellestad 10

Models Core ScannerBit

CaptnGeneral, DarkSUSY, DDCalc, FeynHiggs,
FlexibleSUSY, gamLike, gm2calc, HiggsBounds,
HiggsSignals, MicrOmegas, nulike, Pythia,
SPheno, SUSYHD, SUSYHIT, SuperIso,
Vevacious, MontePython, CLASS, AlterBBN, …

Backends

Diver, GreAT, MultiNest,
PolyChord, TWalk, grid, random,
postprocessor, …

Scanners

ColliderBit DarkBit FlavBit

SpecBit DecayBit PrecisionBit

Physics modules

NeutrinoBit CosmoBit

Anders Kvellestad 11 G AM B I T

14

★

★

GAMBIT 1.0.0

G AM B I T

CMSSM

Best fit

1000

2000

3000

4000

5000

6000

m
1
/
2
(G

eV
)

P
rofi

le
likelih

ood
ratio

⇤
=

L
/L

m
a
x

2000 4000 6000 8000 10000
m0 (GeV)

0.2

0.4

0.6

0.8

1.0

★
★

★

GAMBIT 1.0.0

G AM B I T

CMSSM

1000

2000

3000

4000

5000

6000

m
1
/
2
(G

eV
)

2000 4000 6000 8000 10000
m0 (GeV)

★

★

GAMBIT 1.0.0

G AM B I T

CMSSM

Best fit

�5000

0

5000

10000

A
0
(G

eV
)

P
rofi

le
likelih

ood
ratio

⇤
=

L
/L

m
a
x

10 20 30 40 50 60
tan�

0.2

0.4

0.6

0.8

1.0

Fig. 2: Left: The profile likelihood ratio in the CMSSM, for m0 and m1/2 (top) and tan — and A0 (bottom), with explicit 68%
and 95% CL contour lines drawn in white, and the best fit point indicated by a star. Right: Colour-coding shows the mechanisms
active in models within the 95% CL contour for avoiding thermal overproduction of neutralino dark matter, through either
chargino co-annihilation, resonant annihilation via the A/H funnel, or stop co-annihilation. Other potential mechanisms (e.g. stau
co-annihilation) are not present, as they do not lie within the 95% CL contour.

We now see that relaxing the relic density con-
straint to an upper limit opens up a much richer set of
phenomenologically-viable scenarios, with lighter Hig-
gsino or mixed Higgino-bino LSPs. From the perspective
of global fits, treating the relic density as an upper bound
is a conservative approach, and allows us to test whether
the preference for heavy spectra found in recent studies
[115, 146, 308] persists even when a greater variety of
light LSPs is permitted.

The right panel of Fig. 1 shows that at 95% CL,
all of the identified annihilation mechanisms (stop co-
annihilation, A/H-funnel and chargino co-annihilation)
permit solutions where the measured relic density is fully
accounted for, as well as scenarios where only a very

small fraction of the DM relic abundance is explained
in the CMSSM. The fit does not demonstrate any clear
preference for the relic density to be under-abundant or
very close to the measured value. Looking at the top
of this plot, we indeed see the established picture for
chargino co-annihilation discussed above, where a pure
Higgsino DM candidate should have a mass of around
1 TeV to fit the observed relic density.

In Fig. 2, we show 2D CMSSM joint profile likeli-
hoods for m0 and m1/2, as well as for tan — and A0.
Here the plots include both positive and negative µ, and
are again coloured by relic density mechanism. We see
a large region of high likelihood at large m0 and m1/2,
consisting of overlapping chargino co-annihilation and

10

★

★

GAMBIT 1.0.0

G AM B I T

MSSM7
Best fit

�2000

0

2000

4000

M
1
(G

eV
)

P
rofi

le
likelih

ood
ratio

⇤
=

L
/L

m
a
x

0 2000 4000 6000 8000
µ (GeV)

0.2

0.4

0.6

0.8

1.0

★

★

★
★★

GAMBIT 1.0.0

G AM B I T

MSSM7

�2000

0

2000

4000

M
1
(G

eV
)

0 2000 4000 6000 8000
µ (GeV)

★

★

GAMBIT 1.0.0

G AM B I T

MSSM7
Best fit

2000

4000

6000

8000

10000

m
f̃
(G

eV
)

P
rofi

le
likelih

ood
ratio

⇤
=

L
/L

m
a
x

�5000 0 5000
M2 (GeV)

0.2

0.4

0.6

0.8

1.0

Fig. 3: Left: Joint profile likelihoods in the µ–M1 (top) and M2–m
f̃

planes (bottom). Stars indicate the point of highest likelihood
in each plain, and white contours correspond to the 1‡ and 2‡ CL regions with respect to the best-fit point. Right: Coloured regions
indicating in which parts of the 2‡ best-fit region di�erent co-annihilation and funnel mechanisms contribute to keeping the relic
density low. The best-fit point in each region is indicated by a star with the corresponding colour.

of Fig. 3). Because the MSSM7 employs a common
sfermion soft-mass parameter m

2
f̃

at the input scale
(Q = 1 TeV in our case), mass splittings among di�er-
ent sfermions are mostly generated by varying amounts
of mixing. In comparison, the contribution from RGE
running from Q = 1 TeV to Q = MSUSY, which splits
m

2
f̃

into individual soft masses, is generally subdomi-
nant.

In the tree-level stop mass matrix the o�-
diagonal element is vyt(Au3 sin — ≠ µ cos —), while it
is vyb,· (Ad3 cos — ≠ µ sin —) in the sbottom and stau
mass matrices, where yt,b,· are the fermion Yukawa cou-
plings and v ¥ 246 GeV. Because increased left-right
mixing reduces the mass of the lighter of the two mass
eigenstates, the large top Yukawa ensures that t̃1 is the

lightest sfermion across most of the allowed parameter
space (including for models that exhibit sbottom co-
annihilation). With 3 Æ tan — Æ 70 the terms Au3 sin —

(stop) and µ sin — (sbottom and stau) dominate the
sfermion mixing in large regions of parameter space.
The dependence on large µ to obtain a sbottom mass
significantly lower than the mass set by the common
m

f̃
parameter explains why the sbottom co-annihilation

region does not extend as far to small µ as the stop co-
annihilation region in Fig. 3. Also, since yb ¥ 2.5y· , the
lightest stau remains heavier than the lightest sbottom
in the regions of parameter space with large mixing for
the down-type sfermions, which explains the absence
of any region dominated by stau co-annihilation in our
results.

EW-MSSM: 1809.02097

MSSM7: 1705.07917

Vector and fermion Higgs  
portal DM: 1808.10465

Scalar Higgs portal DM:  
1705.07931

Right-handed neutrinos: 
1908.02302

GUT-scale SUSY: 
1705.07935

Scalar Higgs portal DM w/
vac. stability: 1806.11281

Axion-like particles: 
1810.07192

Flavour EFT: 2006.03489 More axion-like particles:
2006.03489

Neutrinos and cosmo:
2009.03287

Dark matter EFTs:
2106.02056

Anders Kvellestad 12 G AM B I T

GAMBIT clearly works as a general framework for global fits…

…but how much work does it take to set up GAMBIT to study a
new model?

G AM B I TA. Kvellestad 13

Models Core ScannerBit

CaptnGeneral, DarkSUSY, DDCalc, FeynHiggs,
FlexibleSUSY, gamLike, gm2calc, HiggsBounds,
HiggsSignals, MicrOmegas, nulike, Pythia,
SPheno, SUSYHD, SUSYHIT, SuperIso,
Vevacious, MontePython, CLASS, AlterBBN, …

Backends

Diver, GreAT, MultiNest,
PolyChord, TWalk, grid, random,
postprocessor, …

Scanners

ColliderBit DarkBit FlavBit

SpecBit DecayBit PrecisionBit

Physics modules

NeutrinoBit CosmoBit

G AM B I TA. Kvellestad 14

Models Core ScannerBit

CaptnGeneral, DarkSUSY, DDCalc, FeynHiggs,
FlexibleSUSY, gamLike, gm2calc, HiggsBounds,
HiggsSignals, MicrOmegas, nulike, Pythia,
SPheno, SUSYHD, SUSYHIT, SuperIso,
Vevacious, MontePython, CLASS, AlterBBN, …

Backends

Diver, GreAT, MultiNest,
PolyChord, TWalk, grid, random,
postprocessor, …

Scanners

ColliderBit DarkBit FlavBit

SpecBit DecayBit PrecisionBit

Physics modules

NeutrinoBit CosmoBit

• This part is completely model
independent

G AM B I TA. Kvellestad 15

Models Core ScannerBit

CaptnGeneral, DarkSUSY, DDCalc, FeynHiggs,
FlexibleSUSY, gamLike, gm2calc, HiggsBounds,
HiggsSignals, MicrOmegas, nulike, Pythia,
SPheno, SUSYHD, SUSYHIT, SuperIso,
Vevacious, MontePython, CLASS, AlterBBN, …

Backends

Diver, GreAT, MultiNest,
PolyChord, TWalk, grid, random,
postprocessor, …

Scanners

ColliderBit DarkBit FlavBit

SpecBit DecayBit PrecisionBit

Physics modules

NeutrinoBit CosmoBit

• This part is completely model
independent

• Adding a new GAMBIT model
definition is easy

G AM B I TA. Kvellestad 16

Models Core ScannerBit

CaptnGeneral, DarkSUSY, DDCalc, FeynHiggs,
FlexibleSUSY, gamLike, gm2calc, HiggsBounds,
HiggsSignals, MicrOmegas, nulike, Pythia,
SPheno, SUSYHD, SUSYHIT, SuperIso,
Vevacious, MontePython, CLASS, AlterBBN, …

Backends

Diver, GreAT, MultiNest,
PolyChord, TWalk, grid, random,
postprocessor, …

Scanners

ColliderBit DarkBit FlavBit

SpecBit DecayBit PrecisionBit

Physics modules

NeutrinoBit CosmoBit

• This part is completely model
independent

• Adding a new GAMBIT model
definition is easy

• Adding necessary code here is
largely formulaic, but time-
consuming and not trivial

G AM B I TA. Kvellestad 17

Models Core ScannerBit

CaptnGeneral, DarkSUSY, DDCalc, FeynHiggs,
FlexibleSUSY, gamLike, gm2calc, HiggsBounds,
HiggsSignals, MicrOmegas, nulike, Pythia,
SPheno, SUSYHD, SUSYHIT, SuperIso,
Vevacious, MontePython, CLASS, AlterBBN, …

Backends

Diver, GreAT, MultiNest,
PolyChord, TWalk, grid, random,
postprocessor, …

Scanners

ColliderBit DarkBit FlavBit

SpecBit DecayBit PrecisionBit

Physics modules

NeutrinoBit CosmoBit

• This part is completely model
independent

• Adding a new GAMBIT model
definition is easy

• Adding necessary code here is
largely formulaic, but time-
consuming and not trivial

• And here you may have to
develop/generate and
interface new codes…

Anders Kvellestad 18

3. GUM: 
the GAMBIT Universal Model Machine

G AM B I T

S. Bloor, T. Gonzalo,  
P. Scott, C. Chang,  
AK, et al

Anders Kvellestad 19 G AM B I T

GUM: the GAMBIT Universal Model Machine

• From Lagrangian to a GAMBIT global fit

• The major addition in GAMBIT 2.0

• Runs existing BSM tool chains to generate model-specific physics libraries

• Generates interfaces for these libraries to the relevant Bits in GAMBIT

• Generates additional GAMBIT code (model definiton, particle database additions, …)

GUM

GUM interfaces LLT SARAH and FeynRules with GAMBIT
Uses existing HEP toolchains

L

FeynRules SARAH

MadGraph CalcHEP SPheno

Pythia 8 MicrOMEGAs

Vevacious

ColliderBit DarkBit DecayBit SpecBit

Models

GAMBIT-compatible outputs from GUM

T. Gonzalo (Monash U) GAMBIT Tools 2020, 6/11/20 12 / 14

Anders Kvellestad 20 G AM B I T

From FeynRules
• Any Lagrangian (including EFTs),  

work at tree level

• CalcHEP

• micrOMEGAS (via CalcHEP)

• Pythia (via MadGraph)

GUM: the GAMBIT Universal Model Machine
3

Generated GAMBIT backends FeynRules SARAH Usage in GAMBIT

CalcHEP 3 3 Decays, cross-sections
micrOMEGAs (via CalcHEP) 3 3 DM observables
Pythia (via MadGraph) 3 3 Collider physics
SPheno 7 3 Particle mass spectra, decay widths
Vevacious 7 3 Vacuum stability

Table 1: GAMBIT backends with GUM support and Lagrangian-level tools used to generate them. Apart from the external packages
listed, GUM also produces GAMBIT Core and physics module code tailored to the model and observables of interest.

Although the outputs of SARAH are more sophisti-
cated than those of FeynRules, it also has limitations.
Unlike in FeynRules, it is not generally possible to de-
fine non-renormalisable theories or higher-dimensional
e�ective theories in SARAH. We therefore provide inter-
faces to both FeynRules and SARAH to allow the user to
incorporate a vast range of theories into GAMBIT, from
e�ective field theories (EFTs) via FeynRules to complex
UV-complete theories in SARAH. We stress that if a
model can be implemented in SARAH, then the user
should use SARAH over FeynRules – both to use GAM-
BIT to its full potential, and to perform more detailed
physics studies. The basic outputs available from GUM
in each case are summarised in Table 1.1

This manual is organised as follows: in Sec. 2, we de-
scribe the code structure and outputs of GUM. In Sec. 3
we give usage details, including installation, the GUM
file, and particulars of FeynRules and SARAH model
files. In Sec. 4 we provide a worked example, where we
use GUM to add a simplified DM model to GAMBIT,
and perform a quick statistical fit to DM observables.
Finally, in Sec. 5, we discuss future extensions of GUM
and summarise. We include details of the new GAMBIT
interfaces to CalcHEP, Vevacious and SARAH-SPheno
(the auto-generated version of SPheno created using
SARAH) in the Appendix.

GUM is open source and part of the GAMBIT 2.0
release, available from gambit.hepforge.org under the
terms of the standard 3-clause BSD license.2

2 Code design

GAMBIT consists of a set of Core software components,
a sampling module ScannerBit [3], and a series of physics
modules [4–9]. Each physics module is in charge of a

1Some readers will note the absence of FlexibleSUSY from this
list; this is due to the complex C++ templates used in Flexi-
bleSUSY and the fact that supporting it fully as a backend in
GAMBIT requires significant development of the classloading
abilities of the backend-on-a-stick script (BOSS) [1]. Once this
challenge has been overcome, future versions of GUM will also
generate code for FlexibleSUSY and its other flexi-bretheren.
2http://opensource.org/licenses/BSD-3-Clause.

domain-specific subset of GAMBIT’s physical calcula-
tions. GUM generates various snippets of code that it
then adds to parts of the GAMBIT Core, as well as
to some of the physics modules, enabling GAMBIT to
employ the capabilities of those modules with the new
model.

Within the Core, GUM adds code for any new parti-
cles to the GAMBIT particle database, and code for the
new model to the GAMBIT models database, informing
GAMBIT of the parameters of the new model so that
they can be varied in a fit. GUM also generates interfaces
(frontends) to the external codes (backends) that it is
able to generate. The backends supported by GUM in
this manner are those listed as outputs in Table 1.

Within the physics modules, GUM writes new code
for the SpecBit [8] module, responsible for spectrum
generation within GAMBIT, DecayBit [8], responsible
for calculating the decays of particles, DarkBit [4], re-
sponsible for DM observables, and ColliderBit [5], the
module that simulates hard-scattering, hadronisation
and showering of particles at colliders, and implements
subsequent LHC analyses.

GUM is primarily written in Python, with the excep-
tion of the Mathematica interface, which is written in
C++ and accessed via Boost.Python.

Initially, GUM parses a .gum input file, using the con-
tents to construct a singleton gum object. Details of the
input format can be found in Sec. 3.3. GUM then per-
forms some simple sanity and consistency checks, such
as ensuring that if the user requests DM observables,
they have also specified a DM candidate. GUM then
opens an interface to either FeynRules or SARAH via
the Wolfram Symbolic Transfer Protocol (WSTP), loads
the FeynRules or SARAH model file that the user has re-
quested into the Mathematica kernel, and performs some
additional sanity checks using the inbuilt diagnostics of
each package.

Once GUM is satisfied with the FeynRules or SARAH
model file, it extracts all physical particles, masses and
parameters (e.g. mixings and couplings). The minimal
information required to define a new particle is its mass,
spin, color representation, PDG code, and electric charge
(if non-self conjugate). For a parameter to be extracted,

From SARAH

• Renormalizable theories,  

one-loop

• CalcHEP

• micrOMEGAS (via CalcHEP)

• Pythia (via MadGraph)

• SPheno

• Vevacious

• + input for existing HiggsBounds + HiggsSignals 

backends (via SARAH-SPheno)

Anders Kvellestad 21 G AM B I T

18

various means. In the absence of a spectrum genera-
tor (e.g. SPheno, see below), almost all the parame-
ters in ParameterDefinitions become model parameters.
Only those with explicit dependencies on other param-
eters are removed, i.e. those with the Dependence or
DependenceSpheno fields. In addition, SARAH provides
tree-level relations for all masses, via TreeMass[particle_

name,EWSB], so even in the absence of a spectrum gener-
ator, none of the particle masses become explicit model
parameters. For models with BSM states that mix to-
gether into mass eigenstates6, the tree-level masses are
not used and an error is thrown to inform the user of
the need to use a spectrum generator.

If the user elects in their .gum file to gener-
ate any outputs from SARAH for specific backends,
GUM requests that SARAH generate the respective
code using the relevant SARAH commands. These are
MakeCHep[] for CalcHEP and micrOMEGAs, MakeUFO[]
for MadGraph/Pythia, MakeSPheno[] for SPheno and
MakeVevacious[] for Vevacious.

When SPheno output is requested, GUM interacts
further with SARAH in order to obtain all necessary
information for spectrum generation:

1. Replace parameters and masses with those in
SPheno. The parameter names are obtained us-
ing the SPhenoForm function operating on the
lists listAllParametersAndVEVs and NewMassParameters.
The particle masses are obtained just by using the
SPhenoMass[particle_name] command.

2. Extract the names and default values of the pa-
rameters in the MINPAR and EXTPAR blocks, as defined
in the model file SPheno.m. For each of these, store
the boundary conditions, also from SPheno.m, that
match the MINPAR and EXTPAR parameters to those in
the parameter list. Note that as of GUM 1.0, only
the boundary conditions in BoundaryLowScaleInput
are parsed.

3. Remove from the parameter list those parameters
that will be fixed by the tadpole equations, as they
are not free parameters. These are collected from the
list ParametersToSolveTadpoles as defined in SPheno.m.

4. Get the names of the blocks, entries and parameter
names for all SLHA input blocks ending in IN, e.g.
HMIXIN, DSQIN, etc. SARAH provides this information
in the list CombindedBlocks.

5. Register the values of various flags needed to
properly set up the interface to SPheno. These
are "SupersymmetricModel", "OnlyLowEnergySPheno",
"UseHiggs2LoopMSSM" and "SA‘AddOneLoopDecay".

6Technically this is done by checking if the PDG list for any of
the BSM particles contains more than one entry.

4 A worked example

To demonstrate the process of adding a new model to
GAMBIT with GUM, in this section we provide a simple
worked example. Here we use GUM to add a model to
GAMBIT, perform a parameter scan, and plot the results
with pippi [84]. This example is designed with ease of use
in mind, and can be performed on a personal computer
in a reasonable amount of time. For this reason we select
a simplified DM model, implemented in FeynRules.

In this example, we consider constraints from the
relic density of dark matter, gamma-ray indirect detec-
tion and traditional high-mass direct detection searches.
It should be noted that this is an example, not a full
global scan, so we do not use all of the information
available to us – a real global fit of this model would
consider nuisance parameters relevant to DM, as well
as a full set of complementary likelihoods such as from
other indirect DM searches, low-mass direct detection
searches, and cosmology.

The FeynRules model file, .gum file, GAMBIT input
file and pip file used in this example can be found within
the Tutorial folder in GUM.

4.1 The model

The model is a simplified DM model, where the Stan-
dard Model is extended by a Majorana fermion ‰ acting
as DM, and a scalar mediator Y with a Yukawa-type
coupling to all SM fermions, in order to adhere to min-
imal flavour violation. The DM particle is kept stable
by a Z2 symmetry under which it is odd, ‰ æ ≠‰, and
all other particles are even. Both ‰ and Y are singlets
under the SM gauge group.

Here, we assume that any mixing between Y and the
SM Higgs is small and can be neglected. This model has
been previously considered in e.g. [85, 86] and is also
one of the benchmark simplified models used in LHC
searches [87–89]. The model Lagrangian is

L = LSM + 1
2‰

!
i /̂ ≠ m‰

"
‰ + 1

2ˆµY ˆµY ≠ 1
2m2

Y Y 2

≠ g‰

2 ‰‰Y ≠ cY

2
ÿ

f

yf ffY . (1)

Note that this theory is not SU(2)L invariant. One
possibility for a ‘realistic’ model involves Y -Higgs mix-
ing, which justifies choosing the Y ff couplings to be
proportional to the SM Yukawas yf .

The free parameters of the model are simply the
dark sector masses and couplings, {m‰, mY , cY , g‰}. In
this example we follow the FeynRules pathway, working
at tree level.

Model defined in a FeynRules/SARAH file

Anders Kvellestad 22 G AM B I T

Write a .gum file

19

4.2 The .gum file

Firstly, we need to add the FeynRules model file to
the GUM directory. The model is named ‘MDMSM’
(Majorana DM, scalar mediator). Starting in the GUM
root directory, we first create the directory that the
model will live in, and move the example file from the
Tutorial folder to the GUM directory:

mkdir Models/MDMSM
cp Tutorial/MDMSM.fr Models/MDMSM/

As we are working with FeynRules, the only backends
that we are able to create output for are CalcHEP, mi-
crOMEGAs and MadGraph/Pythia. For the sake of speed,
in this tutorial we will not include any constraints from
collider physics. This is also a reasonable approximation,
as for the mass range that we consider here, the con-
straints from e.g. monojet, dijet and dilepton searches
are subleading (see e.g. Ref. [85] and Appendix A). We
therefore set pythia:false. The contents of the supplied
.gum file are simple:

math:
Choose FeynRules
package: feynrules
Name of the model
model: MDMSM
Model builds on the Standard Model FeynRules file
base_model: SM
The Lagrangian is defined by the DM sector (LDM),
defined in MDMSM.fr, plus the SM Lagrangian (LSM)
imported from the ‘base model’, SM.fr
Lagrangian: LDM + LSM
Make CKM matrix = identity to simplify output
restriction: DiagonalCKM

PDG code of the annihilating DM candidate
in the FeynRules file
wimp_candidate: 52

Select outputs for DM physics.
Collider physics is not as important in this model.
output:

pythia: false
calchep: true
micromegas: true

Note the selection of the PDG code of the DM particle
as 52, so that if we were to use Pythia, ‰ would be
correctly identified as invisible.

We can run this from the GUM directory,

./gum -f Tutorial/MDMSM.gum

and GUM will automatically create all code needed to
perform a fit using GAMBIT. On a laptop with an Intel
Core i5 processor, GUM takes about a minute to run.
All that remains now is to (re)compile the relevant
backends and GAMBIT, and the new model will be fully
implemented, and ready to scan. GUM prints a set of

suggested build commands to standard output to build
the new backends and GAMBIT itself. Starting from the
gum directory, these are
cd ../build
cmake ..
make micromegas_MDMSM
make calchep
make -jn gambit

where n specifies the number of processes to use when
building.

Note that GUM does not adjust any CMake flags
used in previous GAMBIT compilations, so the above
commands assume that the user has already configured
GAMBIT appropriately and built any relevant samplers
before running GUM. A user wishing to instead configure
and build GAMBIT from scratch after running GUM,
in order to e.g. run the example scan of Sec. 4 using
di�erential evolution sampling and MPI parallelisation,
would need to instead do
cd build
cmake -D WITH_MPI=ON ..
make diver
cmake ..
make micromegas_MDMSM
make calchep
make gamlike
make ddcalc
make -jn gambit

For more thorough CMake instructions, see the README
in the gum/Tutorial, and CMAKE_FLAGS.md in the GAMBIT
root directory.

4.3 Phenomenology and Constraints

The constraints that we will consider for this model are
entirely in the DM sector, as those from colliders are
less severe (collider constraints are given in Appendix
A). The dark matter constraint are:
– Relic abundance: computed by micrOMEGAs, and

employed as an upper bound, in the spirit of e�ective
DM models.

– Direct detection: rates computed by micrOMEGAs,
likelihoods from XENON1T 2018 [90] and LUX
2016 [91], as computed with DDCalc [4, 14, 15].

– Indirect detection: Fermi-LAT constraints from
gamma-ray observations of dwarf spheroidal galaxies
(dSphs). Tree level cross-sections are computed by
CalcHEP, “ ray yields are consequently computed via
DarkSUSY [92, 93], and the constraints are applied
by gamLike [4].
As the relic density constraint is imposed only as

an upper bound, we rescale all DM observables by the
fraction of DM, f = œ‰/œDM.

18

various means. In the absence of a spectrum genera-
tor (e.g. SPheno, see below), almost all the parame-
ters in ParameterDefinitions become model parameters.
Only those with explicit dependencies on other param-
eters are removed, i.e. those with the Dependence or
DependenceSpheno fields. In addition, SARAH provides
tree-level relations for all masses, via TreeMass[particle_

name,EWSB], so even in the absence of a spectrum gener-
ator, none of the particle masses become explicit model
parameters. For models with BSM states that mix to-
gether into mass eigenstates6, the tree-level masses are
not used and an error is thrown to inform the user of
the need to use a spectrum generator.

If the user elects in their .gum file to gener-
ate any outputs from SARAH for specific backends,
GUM requests that SARAH generate the respective
code using the relevant SARAH commands. These are
MakeCHep[] for CalcHEP and micrOMEGAs, MakeUFO[]
for MadGraph/Pythia, MakeSPheno[] for SPheno and
MakeVevacious[] for Vevacious.

When SPheno output is requested, GUM interacts
further with SARAH in order to obtain all necessary
information for spectrum generation:

1. Replace parameters and masses with those in
SPheno. The parameter names are obtained us-
ing the SPhenoForm function operating on the
lists listAllParametersAndVEVs and NewMassParameters.
The particle masses are obtained just by using the
SPhenoMass[particle_name] command.

2. Extract the names and default values of the pa-
rameters in the MINPAR and EXTPAR blocks, as defined
in the model file SPheno.m. For each of these, store
the boundary conditions, also from SPheno.m, that
match the MINPAR and EXTPAR parameters to those in
the parameter list. Note that as of GUM 1.0, only
the boundary conditions in BoundaryLowScaleInput
are parsed.

3. Remove from the parameter list those parameters
that will be fixed by the tadpole equations, as they
are not free parameters. These are collected from the
list ParametersToSolveTadpoles as defined in SPheno.m.

4. Get the names of the blocks, entries and parameter
names for all SLHA input blocks ending in IN, e.g.
HMIXIN, DSQIN, etc. SARAH provides this information
in the list CombindedBlocks.

5. Register the values of various flags needed to
properly set up the interface to SPheno. These
are "SupersymmetricModel", "OnlyLowEnergySPheno",
"UseHiggs2LoopMSSM" and "SA‘AddOneLoopDecay".

6Technically this is done by checking if the PDG list for any of
the BSM particles contains more than one entry.

4 A worked example

To demonstrate the process of adding a new model to
GAMBIT with GUM, in this section we provide a simple
worked example. Here we use GUM to add a model to
GAMBIT, perform a parameter scan, and plot the results
with pippi [84]. This example is designed with ease of use
in mind, and can be performed on a personal computer
in a reasonable amount of time. For this reason we select
a simplified DM model, implemented in FeynRules.

In this example, we consider constraints from the
relic density of dark matter, gamma-ray indirect detec-
tion and traditional high-mass direct detection searches.
It should be noted that this is an example, not a full
global scan, so we do not use all of the information
available to us – a real global fit of this model would
consider nuisance parameters relevant to DM, as well
as a full set of complementary likelihoods such as from
other indirect DM searches, low-mass direct detection
searches, and cosmology.

The FeynRules model file, .gum file, GAMBIT input
file and pip file used in this example can be found within
the Tutorial folder in GUM.

4.1 The model

The model is a simplified DM model, where the Stan-
dard Model is extended by a Majorana fermion ‰ acting
as DM, and a scalar mediator Y with a Yukawa-type
coupling to all SM fermions, in order to adhere to min-
imal flavour violation. The DM particle is kept stable
by a Z2 symmetry under which it is odd, ‰ æ ≠‰, and
all other particles are even. Both ‰ and Y are singlets
under the SM gauge group.

Here, we assume that any mixing between Y and the
SM Higgs is small and can be neglected. This model has
been previously considered in e.g. [85, 86] and is also
one of the benchmark simplified models used in LHC
searches [87–89]. The model Lagrangian is

L = LSM + 1
2‰

!
i /̂ ≠ m‰

"
‰ + 1

2ˆµY ˆµY ≠ 1
2m2

Y Y 2

≠ g‰

2 ‰‰Y ≠ cY

2
ÿ

f

yf ffY . (1)

Note that this theory is not SU(2)L invariant. One
possibility for a ‘realistic’ model involves Y -Higgs mix-
ing, which justifies choosing the Y ff couplings to be
proportional to the SM Yukawas yf .

The free parameters of the model are simply the
dark sector masses and couplings, {m‰, mY , cY , g‰}. In
this example we follow the FeynRules pathway, working
at tree level.

Model defined in a FeynRules/SARAH file

Anders Kvellestad 23 G AM B I T

Write a .gum file

Run GUM

19

4.2 The .gum file

Firstly, we need to add the FeynRules model file to
the GUM directory. The model is named ‘MDMSM’
(Majorana DM, scalar mediator). Starting in the GUM
root directory, we first create the directory that the
model will live in, and move the example file from the
Tutorial folder to the GUM directory:

mkdir Models/MDMSM
cp Tutorial/MDMSM.fr Models/MDMSM/

As we are working with FeynRules, the only backends
that we are able to create output for are CalcHEP, mi-
crOMEGAs and MadGraph/Pythia. For the sake of speed,
in this tutorial we will not include any constraints from
collider physics. This is also a reasonable approximation,
as for the mass range that we consider here, the con-
straints from e.g. monojet, dijet and dilepton searches
are subleading (see e.g. Ref. [85] and Appendix A). We
therefore set pythia:false. The contents of the supplied
.gum file are simple:

math:
Choose FeynRules
package: feynrules
Name of the model
model: MDMSM
Model builds on the Standard Model FeynRules file
base_model: SM
The Lagrangian is defined by the DM sector (LDM),
defined in MDMSM.fr, plus the SM Lagrangian (LSM)
imported from the ‘base model’, SM.fr
Lagrangian: LDM + LSM
Make CKM matrix = identity to simplify output
restriction: DiagonalCKM

PDG code of the annihilating DM candidate
in the FeynRules file
wimp_candidate: 52

Select outputs for DM physics.
Collider physics is not as important in this model.
output:

pythia: false
calchep: true
micromegas: true

Note the selection of the PDG code of the DM particle
as 52, so that if we were to use Pythia, ‰ would be
correctly identified as invisible.

We can run this from the GUM directory,

./gum -f Tutorial/MDMSM.gum

and GUM will automatically create all code needed to
perform a fit using GAMBIT. On a laptop with an Intel
Core i5 processor, GUM takes about a minute to run.
All that remains now is to (re)compile the relevant
backends and GAMBIT, and the new model will be fully
implemented, and ready to scan. GUM prints a set of

suggested build commands to standard output to build
the new backends and GAMBIT itself. Starting from the
gum directory, these are
cd ../build
cmake ..
make micromegas_MDMSM
make calchep
make -jn gambit

where n specifies the number of processes to use when
building.

Note that GUM does not adjust any CMake flags
used in previous GAMBIT compilations, so the above
commands assume that the user has already configured
GAMBIT appropriately and built any relevant samplers
before running GUM. A user wishing to instead configure
and build GAMBIT from scratch after running GUM,
in order to e.g. run the example scan of Sec. 4 using
di�erential evolution sampling and MPI parallelisation,
would need to instead do
cd build
cmake -D WITH_MPI=ON ..
make diver
cmake ..
make micromegas_MDMSM
make calchep
make gamlike
make ddcalc
make -jn gambit

For more thorough CMake instructions, see the README
in the gum/Tutorial, and CMAKE_FLAGS.md in the GAMBIT
root directory.

4.3 Phenomenology and Constraints

The constraints that we will consider for this model are
entirely in the DM sector, as those from colliders are
less severe (collider constraints are given in Appendix
A). The dark matter constraint are:
– Relic abundance: computed by micrOMEGAs, and

employed as an upper bound, in the spirit of e�ective
DM models.

– Direct detection: rates computed by micrOMEGAs,
likelihoods from XENON1T 2018 [90] and LUX
2016 [91], as computed with DDCalc [4, 14, 15].

– Indirect detection: Fermi-LAT constraints from
gamma-ray observations of dwarf spheroidal galaxies
(dSphs). Tree level cross-sections are computed by
CalcHEP, “ ray yields are consequently computed via
DarkSUSY [92, 93], and the constraints are applied
by gamLike [4].
As the relic density constraint is imposed only as

an upper bound, we rescale all DM observables by the
fraction of DM, f = œ‰/œDM.

Compile GAMBIT + backends

19

4.2 The .gum file

Firstly, we need to add the FeynRules model file to
the GUM directory. The model is named ‘MDMSM’
(Majorana DM, scalar mediator). Starting in the GUM
root directory, we first create the directory that the
model will live in, and move the example file from the
Tutorial folder to the GUM directory:

mkdir Models/MDMSM
cp Tutorial/MDMSM.fr Models/MDMSM/

As we are working with FeynRules, the only backends
that we are able to create output for are CalcHEP, mi-
crOMEGAs and MadGraph/Pythia. For the sake of speed,
in this tutorial we will not include any constraints from
collider physics. This is also a reasonable approximation,
as for the mass range that we consider here, the con-
straints from e.g. monojet, dijet and dilepton searches
are subleading (see e.g. Ref. [85] and Appendix A). We
therefore set pythia:false. The contents of the supplied
.gum file are simple:

math:
Choose FeynRules
package: feynrules
Name of the model
model: MDMSM
Model builds on the Standard Model FeynRules file
base_model: SM
The Lagrangian is defined by the DM sector (LDM),
defined in MDMSM.fr, plus the SM Lagrangian (LSM)
imported from the ‘base model’, SM.fr
Lagrangian: LDM + LSM
Make CKM matrix = identity to simplify output
restriction: DiagonalCKM

PDG code of the annihilating DM candidate
in the FeynRules file
wimp_candidate: 52

Select outputs for DM physics.
Collider physics is not as important in this model.
output:

pythia: false
calchep: true
micromegas: true

Note the selection of the PDG code of the DM particle
as 52, so that if we were to use Pythia, ‰ would be
correctly identified as invisible.

We can run this from the GUM directory,

./gum -f Tutorial/MDMSM.gum

and GUM will automatically create all code needed to
perform a fit using GAMBIT. On a laptop with an Intel
Core i5 processor, GUM takes about a minute to run.
All that remains now is to (re)compile the relevant
backends and GAMBIT, and the new model will be fully
implemented, and ready to scan. GUM prints a set of

suggested build commands to standard output to build
the new backends and GAMBIT itself. Starting from the
gum directory, these are
cd ../build
cmake ..
make micromegas_MDMSM
make calchep
make -jn gambit

where n specifies the number of processes to use when
building.

Note that GUM does not adjust any CMake flags
used in previous GAMBIT compilations, so the above
commands assume that the user has already configured
GAMBIT appropriately and built any relevant samplers
before running GUM. A user wishing to instead configure
and build GAMBIT from scratch after running GUM,
in order to e.g. run the example scan of Sec. 4 using
di�erential evolution sampling and MPI parallelisation,
would need to instead do
cd build
cmake -D WITH_MPI=ON ..
make diver
cmake ..
make micromegas_MDMSM
make calchep
make gamlike
make ddcalc
make -jn gambit

For more thorough CMake instructions, see the README
in the gum/Tutorial, and CMAKE_FLAGS.md in the GAMBIT
root directory.

4.3 Phenomenology and Constraints

The constraints that we will consider for this model are
entirely in the DM sector, as those from colliders are
less severe (collider constraints are given in Appendix
A). The dark matter constraint are:
– Relic abundance: computed by micrOMEGAs, and

employed as an upper bound, in the spirit of e�ective
DM models.

– Direct detection: rates computed by micrOMEGAs,
likelihoods from XENON1T 2018 [90] and LUX
2016 [91], as computed with DDCalc [4, 14, 15].

– Indirect detection: Fermi-LAT constraints from
gamma-ray observations of dwarf spheroidal galaxies
(dSphs). Tree level cross-sections are computed by
CalcHEP, “ ray yields are consequently computed via
DarkSUSY [92, 93], and the constraints are applied
by gamLike [4].
As the relic density constraint is imposed only as

an upper bound, we rescale all DM observables by the
fraction of DM, f = œ‰/œDM.

19

4.2 The .gum file

Firstly, we need to add the FeynRules model file to
the GUM directory. The model is named ‘MDMSM’
(Majorana DM, scalar mediator). Starting in the GUM
root directory, we first create the directory that the
model will live in, and move the example file from the
Tutorial folder to the GUM directory:

mkdir Models/MDMSM
cp Tutorial/MDMSM.fr Models/MDMSM/

As we are working with FeynRules, the only backends
that we are able to create output for are CalcHEP, mi-
crOMEGAs and MadGraph/Pythia. For the sake of speed,
in this tutorial we will not include any constraints from
collider physics. This is also a reasonable approximation,
as for the mass range that we consider here, the con-
straints from e.g. monojet, dijet and dilepton searches
are subleading (see e.g. Ref. [85] and Appendix A). We
therefore set pythia:false. The contents of the supplied
.gum file are simple:

math:
Choose FeynRules
package: feynrules
Name of the model
model: MDMSM
Model builds on the Standard Model FeynRules file
base_model: SM
The Lagrangian is defined by the DM sector (LDM),
defined in MDMSM.fr, plus the SM Lagrangian (LSM)
imported from the ‘base model’, SM.fr
Lagrangian: LDM + LSM
Make CKM matrix = identity to simplify output
restriction: DiagonalCKM

PDG code of the annihilating DM candidate
in the FeynRules file
wimp_candidate: 52

Select outputs for DM physics.
Collider physics is not as important in this model.
output:

pythia: false
calchep: true
micromegas: true

Note the selection of the PDG code of the DM particle
as 52, so that if we were to use Pythia, ‰ would be
correctly identified as invisible.

We can run this from the GUM directory,

./gum -f Tutorial/MDMSM.gum

and GUM will automatically create all code needed to
perform a fit using GAMBIT. On a laptop with an Intel
Core i5 processor, GUM takes about a minute to run.
All that remains now is to (re)compile the relevant
backends and GAMBIT, and the new model will be fully
implemented, and ready to scan. GUM prints a set of

suggested build commands to standard output to build
the new backends and GAMBIT itself. Starting from the
gum directory, these are
cd ../build
cmake ..
make micromegas_MDMSM
make calchep
make -jn gambit

where n specifies the number of processes to use when
building.

Note that GUM does not adjust any CMake flags
used in previous GAMBIT compilations, so the above
commands assume that the user has already configured
GAMBIT appropriately and built any relevant samplers
before running GUM. A user wishing to instead configure
and build GAMBIT from scratch after running GUM,
in order to e.g. run the example scan of Sec. 4 using
di�erential evolution sampling and MPI parallelisation,
would need to instead do
cd build
cmake -D WITH_MPI=ON ..
make diver
cmake ..
make micromegas_MDMSM
make calchep
make gamlike
make ddcalc
make -jn gambit

For more thorough CMake instructions, see the README
in the gum/Tutorial, and CMAKE_FLAGS.md in the GAMBIT
root directory.

4.3 Phenomenology and Constraints

The constraints that we will consider for this model are
entirely in the DM sector, as those from colliders are
less severe (collider constraints are given in Appendix
A). The dark matter constraint are:
– Relic abundance: computed by micrOMEGAs, and

employed as an upper bound, in the spirit of e�ective
DM models.

– Direct detection: rates computed by micrOMEGAs,
likelihoods from XENON1T 2018 [90] and LUX
2016 [91], as computed with DDCalc [4, 14, 15].

– Indirect detection: Fermi-LAT constraints from
gamma-ray observations of dwarf spheroidal galaxies
(dSphs). Tree level cross-sections are computed by
CalcHEP, “ ray yields are consequently computed via
DarkSUSY [92, 93], and the constraints are applied
by gamLike [4].
As the relic density constraint is imposed only as

an upper bound, we rescale all DM observables by the
fraction of DM, f = œ‰/œDM.

18

various means. In the absence of a spectrum genera-
tor (e.g. SPheno, see below), almost all the parame-
ters in ParameterDefinitions become model parameters.
Only those with explicit dependencies on other param-
eters are removed, i.e. those with the Dependence or
DependenceSpheno fields. In addition, SARAH provides
tree-level relations for all masses, via TreeMass[particle_

name,EWSB], so even in the absence of a spectrum gener-
ator, none of the particle masses become explicit model
parameters. For models with BSM states that mix to-
gether into mass eigenstates6, the tree-level masses are
not used and an error is thrown to inform the user of
the need to use a spectrum generator.

If the user elects in their .gum file to gener-
ate any outputs from SARAH for specific backends,
GUM requests that SARAH generate the respective
code using the relevant SARAH commands. These are
MakeCHep[] for CalcHEP and micrOMEGAs, MakeUFO[]
for MadGraph/Pythia, MakeSPheno[] for SPheno and
MakeVevacious[] for Vevacious.

When SPheno output is requested, GUM interacts
further with SARAH in order to obtain all necessary
information for spectrum generation:

1. Replace parameters and masses with those in
SPheno. The parameter names are obtained us-
ing the SPhenoForm function operating on the
lists listAllParametersAndVEVs and NewMassParameters.
The particle masses are obtained just by using the
SPhenoMass[particle_name] command.

2. Extract the names and default values of the pa-
rameters in the MINPAR and EXTPAR blocks, as defined
in the model file SPheno.m. For each of these, store
the boundary conditions, also from SPheno.m, that
match the MINPAR and EXTPAR parameters to those in
the parameter list. Note that as of GUM 1.0, only
the boundary conditions in BoundaryLowScaleInput
are parsed.

3. Remove from the parameter list those parameters
that will be fixed by the tadpole equations, as they
are not free parameters. These are collected from the
list ParametersToSolveTadpoles as defined in SPheno.m.

4. Get the names of the blocks, entries and parameter
names for all SLHA input blocks ending in IN, e.g.
HMIXIN, DSQIN, etc. SARAH provides this information
in the list CombindedBlocks.

5. Register the values of various flags needed to
properly set up the interface to SPheno. These
are "SupersymmetricModel", "OnlyLowEnergySPheno",
"UseHiggs2LoopMSSM" and "SA‘AddOneLoopDecay".

6Technically this is done by checking if the PDG list for any of
the BSM particles contains more than one entry.

4 A worked example

To demonstrate the process of adding a new model to
GAMBIT with GUM, in this section we provide a simple
worked example. Here we use GUM to add a model to
GAMBIT, perform a parameter scan, and plot the results
with pippi [84]. This example is designed with ease of use
in mind, and can be performed on a personal computer
in a reasonable amount of time. For this reason we select
a simplified DM model, implemented in FeynRules.

In this example, we consider constraints from the
relic density of dark matter, gamma-ray indirect detec-
tion and traditional high-mass direct detection searches.
It should be noted that this is an example, not a full
global scan, so we do not use all of the information
available to us – a real global fit of this model would
consider nuisance parameters relevant to DM, as well
as a full set of complementary likelihoods such as from
other indirect DM searches, low-mass direct detection
searches, and cosmology.

The FeynRules model file, .gum file, GAMBIT input
file and pip file used in this example can be found within
the Tutorial folder in GUM.

4.1 The model

The model is a simplified DM model, where the Stan-
dard Model is extended by a Majorana fermion ‰ acting
as DM, and a scalar mediator Y with a Yukawa-type
coupling to all SM fermions, in order to adhere to min-
imal flavour violation. The DM particle is kept stable
by a Z2 symmetry under which it is odd, ‰ æ ≠‰, and
all other particles are even. Both ‰ and Y are singlets
under the SM gauge group.

Here, we assume that any mixing between Y and the
SM Higgs is small and can be neglected. This model has
been previously considered in e.g. [85, 86] and is also
one of the benchmark simplified models used in LHC
searches [87–89]. The model Lagrangian is

L = LSM + 1
2‰

!
i /̂ ≠ m‰

"
‰ + 1

2ˆµY ˆµY ≠ 1
2m2

Y Y 2

≠ g‰

2 ‰‰Y ≠ cY

2
ÿ

f

yf ffY . (1)

Note that this theory is not SU(2)L invariant. One
possibility for a ‘realistic’ model involves Y -Higgs mix-
ing, which justifies choosing the Y ff couplings to be
proportional to the SM Yukawas yf .

The free parameters of the model are simply the
dark sector masses and couplings, {m‰, mY , cY , g‰}. In
this example we follow the FeynRules pathway, working
at tree level.

Model defined in a FeynRules/SARAH file

Anders Kvellestad 24 G AM B I T

Write a .gum file

Run GUM

19

4.2 The .gum file

Firstly, we need to add the FeynRules model file to
the GUM directory. The model is named ‘MDMSM’
(Majorana DM, scalar mediator). Starting in the GUM
root directory, we first create the directory that the
model will live in, and move the example file from the
Tutorial folder to the GUM directory:

mkdir Models/MDMSM
cp Tutorial/MDMSM.fr Models/MDMSM/

As we are working with FeynRules, the only backends
that we are able to create output for are CalcHEP, mi-
crOMEGAs and MadGraph/Pythia. For the sake of speed,
in this tutorial we will not include any constraints from
collider physics. This is also a reasonable approximation,
as for the mass range that we consider here, the con-
straints from e.g. monojet, dijet and dilepton searches
are subleading (see e.g. Ref. [85] and Appendix A). We
therefore set pythia:false. The contents of the supplied
.gum file are simple:

math:
Choose FeynRules
package: feynrules
Name of the model
model: MDMSM
Model builds on the Standard Model FeynRules file
base_model: SM
The Lagrangian is defined by the DM sector (LDM),
defined in MDMSM.fr, plus the SM Lagrangian (LSM)
imported from the ‘base model’, SM.fr
Lagrangian: LDM + LSM
Make CKM matrix = identity to simplify output
restriction: DiagonalCKM

PDG code of the annihilating DM candidate
in the FeynRules file
wimp_candidate: 52

Select outputs for DM physics.
Collider physics is not as important in this model.
output:

pythia: false
calchep: true
micromegas: true

Note the selection of the PDG code of the DM particle
as 52, so that if we were to use Pythia, ‰ would be
correctly identified as invisible.

We can run this from the GUM directory,

./gum -f Tutorial/MDMSM.gum

and GUM will automatically create all code needed to
perform a fit using GAMBIT. On a laptop with an Intel
Core i5 processor, GUM takes about a minute to run.
All that remains now is to (re)compile the relevant
backends and GAMBIT, and the new model will be fully
implemented, and ready to scan. GUM prints a set of

suggested build commands to standard output to build
the new backends and GAMBIT itself. Starting from the
gum directory, these are
cd ../build
cmake ..
make micromegas_MDMSM
make calchep
make -jn gambit

where n specifies the number of processes to use when
building.

Note that GUM does not adjust any CMake flags
used in previous GAMBIT compilations, so the above
commands assume that the user has already configured
GAMBIT appropriately and built any relevant samplers
before running GUM. A user wishing to instead configure
and build GAMBIT from scratch after running GUM,
in order to e.g. run the example scan of Sec. 4 using
di�erential evolution sampling and MPI parallelisation,
would need to instead do
cd build
cmake -D WITH_MPI=ON ..
make diver
cmake ..
make micromegas_MDMSM
make calchep
make gamlike
make ddcalc
make -jn gambit

For more thorough CMake instructions, see the README
in the gum/Tutorial, and CMAKE_FLAGS.md in the GAMBIT
root directory.

4.3 Phenomenology and Constraints

The constraints that we will consider for this model are
entirely in the DM sector, as those from colliders are
less severe (collider constraints are given in Appendix
A). The dark matter constraint are:
– Relic abundance: computed by micrOMEGAs, and

employed as an upper bound, in the spirit of e�ective
DM models.

– Direct detection: rates computed by micrOMEGAs,
likelihoods from XENON1T 2018 [90] and LUX
2016 [91], as computed with DDCalc [4, 14, 15].

– Indirect detection: Fermi-LAT constraints from
gamma-ray observations of dwarf spheroidal galaxies
(dSphs). Tree level cross-sections are computed by
CalcHEP, “ ray yields are consequently computed via
DarkSUSY [92, 93], and the constraints are applied
by gamLike [4].
As the relic density constraint is imposed only as

an upper bound, we rescale all DM observables by the
fraction of DM, f = œ‰/œDM.

Compile GAMBIT + backends

19

4.2 The .gum file

Firstly, we need to add the FeynRules model file to
the GUM directory. The model is named ‘MDMSM’
(Majorana DM, scalar mediator). Starting in the GUM
root directory, we first create the directory that the
model will live in, and move the example file from the
Tutorial folder to the GUM directory:

mkdir Models/MDMSM
cp Tutorial/MDMSM.fr Models/MDMSM/

As we are working with FeynRules, the only backends
that we are able to create output for are CalcHEP, mi-
crOMEGAs and MadGraph/Pythia. For the sake of speed,
in this tutorial we will not include any constraints from
collider physics. This is also a reasonable approximation,
as for the mass range that we consider here, the con-
straints from e.g. monojet, dijet and dilepton searches
are subleading (see e.g. Ref. [85] and Appendix A). We
therefore set pythia:false. The contents of the supplied
.gum file are simple:

math:
Choose FeynRules
package: feynrules
Name of the model
model: MDMSM
Model builds on the Standard Model FeynRules file
base_model: SM
The Lagrangian is defined by the DM sector (LDM),
defined in MDMSM.fr, plus the SM Lagrangian (LSM)
imported from the ‘base model’, SM.fr
Lagrangian: LDM + LSM
Make CKM matrix = identity to simplify output
restriction: DiagonalCKM

PDG code of the annihilating DM candidate
in the FeynRules file
wimp_candidate: 52

Select outputs for DM physics.
Collider physics is not as important in this model.
output:

pythia: false
calchep: true
micromegas: true

Note the selection of the PDG code of the DM particle
as 52, so that if we were to use Pythia, ‰ would be
correctly identified as invisible.

We can run this from the GUM directory,

./gum -f Tutorial/MDMSM.gum

and GUM will automatically create all code needed to
perform a fit using GAMBIT. On a laptop with an Intel
Core i5 processor, GUM takes about a minute to run.
All that remains now is to (re)compile the relevant
backends and GAMBIT, and the new model will be fully
implemented, and ready to scan. GUM prints a set of

suggested build commands to standard output to build
the new backends and GAMBIT itself. Starting from the
gum directory, these are
cd ../build
cmake ..
make micromegas_MDMSM
make calchep
make -jn gambit

where n specifies the number of processes to use when
building.

Note that GUM does not adjust any CMake flags
used in previous GAMBIT compilations, so the above
commands assume that the user has already configured
GAMBIT appropriately and built any relevant samplers
before running GUM. A user wishing to instead configure
and build GAMBIT from scratch after running GUM,
in order to e.g. run the example scan of Sec. 4 using
di�erential evolution sampling and MPI parallelisation,
would need to instead do
cd build
cmake -D WITH_MPI=ON ..
make diver
cmake ..
make micromegas_MDMSM
make calchep
make gamlike
make ddcalc
make -jn gambit

For more thorough CMake instructions, see the README
in the gum/Tutorial, and CMAKE_FLAGS.md in the GAMBIT
root directory.

4.3 Phenomenology and Constraints

The constraints that we will consider for this model are
entirely in the DM sector, as those from colliders are
less severe (collider constraints are given in Appendix
A). The dark matter constraint are:
– Relic abundance: computed by micrOMEGAs, and

employed as an upper bound, in the spirit of e�ective
DM models.

– Direct detection: rates computed by micrOMEGAs,
likelihoods from XENON1T 2018 [90] and LUX
2016 [91], as computed with DDCalc [4, 14, 15].

– Indirect detection: Fermi-LAT constraints from
gamma-ray observations of dwarf spheroidal galaxies
(dSphs). Tree level cross-sections are computed by
CalcHEP, “ ray yields are consequently computed via
DarkSUSY [92, 93], and the constraints are applied
by gamLike [4].
As the relic density constraint is imposed only as

an upper bound, we rescale all DM observables by the
fraction of DM, f = œ‰/œDM.

19

4.2 The .gum file

Firstly, we need to add the FeynRules model file to
the GUM directory. The model is named ‘MDMSM’
(Majorana DM, scalar mediator). Starting in the GUM
root directory, we first create the directory that the
model will live in, and move the example file from the
Tutorial folder to the GUM directory:

mkdir Models/MDMSM
cp Tutorial/MDMSM.fr Models/MDMSM/

As we are working with FeynRules, the only backends
that we are able to create output for are CalcHEP, mi-
crOMEGAs and MadGraph/Pythia. For the sake of speed,
in this tutorial we will not include any constraints from
collider physics. This is also a reasonable approximation,
as for the mass range that we consider here, the con-
straints from e.g. monojet, dijet and dilepton searches
are subleading (see e.g. Ref. [85] and Appendix A). We
therefore set pythia:false. The contents of the supplied
.gum file are simple:

math:
Choose FeynRules
package: feynrules
Name of the model
model: MDMSM
Model builds on the Standard Model FeynRules file
base_model: SM
The Lagrangian is defined by the DM sector (LDM),
defined in MDMSM.fr, plus the SM Lagrangian (LSM)
imported from the ‘base model’, SM.fr
Lagrangian: LDM + LSM
Make CKM matrix = identity to simplify output
restriction: DiagonalCKM

PDG code of the annihilating DM candidate
in the FeynRules file
wimp_candidate: 52

Select outputs for DM physics.
Collider physics is not as important in this model.
output:

pythia: false
calchep: true
micromegas: true

Note the selection of the PDG code of the DM particle
as 52, so that if we were to use Pythia, ‰ would be
correctly identified as invisible.

We can run this from the GUM directory,

./gum -f Tutorial/MDMSM.gum

and GUM will automatically create all code needed to
perform a fit using GAMBIT. On a laptop with an Intel
Core i5 processor, GUM takes about a minute to run.
All that remains now is to (re)compile the relevant
backends and GAMBIT, and the new model will be fully
implemented, and ready to scan. GUM prints a set of

suggested build commands to standard output to build
the new backends and GAMBIT itself. Starting from the
gum directory, these are
cd ../build
cmake ..
make micromegas_MDMSM
make calchep
make -jn gambit

where n specifies the number of processes to use when
building.

Note that GUM does not adjust any CMake flags
used in previous GAMBIT compilations, so the above
commands assume that the user has already configured
GAMBIT appropriately and built any relevant samplers
before running GUM. A user wishing to instead configure
and build GAMBIT from scratch after running GUM,
in order to e.g. run the example scan of Sec. 4 using
di�erential evolution sampling and MPI parallelisation,
would need to instead do
cd build
cmake -D WITH_MPI=ON ..
make diver
cmake ..
make micromegas_MDMSM
make calchep
make gamlike
make ddcalc
make -jn gambit

For more thorough CMake instructions, see the README
in the gum/Tutorial, and CMAKE_FLAGS.md in the GAMBIT
root directory.

4.3 Phenomenology and Constraints

The constraints that we will consider for this model are
entirely in the DM sector, as those from colliders are
less severe (collider constraints are given in Appendix
A). The dark matter constraint are:
– Relic abundance: computed by micrOMEGAs, and

employed as an upper bound, in the spirit of e�ective
DM models.

– Direct detection: rates computed by micrOMEGAs,
likelihoods from XENON1T 2018 [90] and LUX
2016 [91], as computed with DDCalc [4, 14, 15].

– Indirect detection: Fermi-LAT constraints from
gamma-ray observations of dwarf spheroidal galaxies
(dSphs). Tree level cross-sections are computed by
CalcHEP, “ ray yields are consequently computed via
DarkSUSY [92, 93], and the constraints are applied
by gamLike [4].
As the relic density constraint is imposed only as

an upper bound, we rescale all DM observables by the
fraction of DM, f = œ‰/œDM.

18

various means. In the absence of a spectrum genera-
tor (e.g. SPheno, see below), almost all the parame-
ters in ParameterDefinitions become model parameters.
Only those with explicit dependencies on other param-
eters are removed, i.e. those with the Dependence or
DependenceSpheno fields. In addition, SARAH provides
tree-level relations for all masses, via TreeMass[particle_

name,EWSB], so even in the absence of a spectrum gener-
ator, none of the particle masses become explicit model
parameters. For models with BSM states that mix to-
gether into mass eigenstates6, the tree-level masses are
not used and an error is thrown to inform the user of
the need to use a spectrum generator.

If the user elects in their .gum file to gener-
ate any outputs from SARAH for specific backends,
GUM requests that SARAH generate the respective
code using the relevant SARAH commands. These are
MakeCHep[] for CalcHEP and micrOMEGAs, MakeUFO[]
for MadGraph/Pythia, MakeSPheno[] for SPheno and
MakeVevacious[] for Vevacious.

When SPheno output is requested, GUM interacts
further with SARAH in order to obtain all necessary
information for spectrum generation:

1. Replace parameters and masses with those in
SPheno. The parameter names are obtained us-
ing the SPhenoForm function operating on the
lists listAllParametersAndVEVs and NewMassParameters.
The particle masses are obtained just by using the
SPhenoMass[particle_name] command.

2. Extract the names and default values of the pa-
rameters in the MINPAR and EXTPAR blocks, as defined
in the model file SPheno.m. For each of these, store
the boundary conditions, also from SPheno.m, that
match the MINPAR and EXTPAR parameters to those in
the parameter list. Note that as of GUM 1.0, only
the boundary conditions in BoundaryLowScaleInput
are parsed.

3. Remove from the parameter list those parameters
that will be fixed by the tadpole equations, as they
are not free parameters. These are collected from the
list ParametersToSolveTadpoles as defined in SPheno.m.

4. Get the names of the blocks, entries and parameter
names for all SLHA input blocks ending in IN, e.g.
HMIXIN, DSQIN, etc. SARAH provides this information
in the list CombindedBlocks.

5. Register the values of various flags needed to
properly set up the interface to SPheno. These
are "SupersymmetricModel", "OnlyLowEnergySPheno",
"UseHiggs2LoopMSSM" and "SA‘AddOneLoopDecay".

6Technically this is done by checking if the PDG list for any of
the BSM particles contains more than one entry.

4 A worked example

To demonstrate the process of adding a new model to
GAMBIT with GUM, in this section we provide a simple
worked example. Here we use GUM to add a model to
GAMBIT, perform a parameter scan, and plot the results
with pippi [84]. This example is designed with ease of use
in mind, and can be performed on a personal computer
in a reasonable amount of time. For this reason we select
a simplified DM model, implemented in FeynRules.

In this example, we consider constraints from the
relic density of dark matter, gamma-ray indirect detec-
tion and traditional high-mass direct detection searches.
It should be noted that this is an example, not a full
global scan, so we do not use all of the information
available to us – a real global fit of this model would
consider nuisance parameters relevant to DM, as well
as a full set of complementary likelihoods such as from
other indirect DM searches, low-mass direct detection
searches, and cosmology.

The FeynRules model file, .gum file, GAMBIT input
file and pip file used in this example can be found within
the Tutorial folder in GUM.

4.1 The model

The model is a simplified DM model, where the Stan-
dard Model is extended by a Majorana fermion ‰ acting
as DM, and a scalar mediator Y with a Yukawa-type
coupling to all SM fermions, in order to adhere to min-
imal flavour violation. The DM particle is kept stable
by a Z2 symmetry under which it is odd, ‰ æ ≠‰, and
all other particles are even. Both ‰ and Y are singlets
under the SM gauge group.

Here, we assume that any mixing between Y and the
SM Higgs is small and can be neglected. This model has
been previously considered in e.g. [85, 86] and is also
one of the benchmark simplified models used in LHC
searches [87–89]. The model Lagrangian is

L = LSM + 1
2‰

!
i /̂ ≠ m‰

"
‰ + 1

2ˆµY ˆµY ≠ 1
2m2

Y Y 2

≠ g‰

2 ‰‰Y ≠ cY

2
ÿ

f

yf ffY . (1)

Note that this theory is not SU(2)L invariant. One
possibility for a ‘realistic’ model involves Y -Higgs mix-
ing, which justifies choosing the Y ff couplings to be
proportional to the SM Yukawas yf .

The free parameters of the model are simply the
dark sector masses and couplings, {m‰, mY , cY , g‰}. In
this example we follow the FeynRules pathway, working
at tree level.

Model defined in a FeynRules/SARAH file

Anders Kvellestad 25 G AM B I T

Write a .gum file

Run GUM

19

4.2 The .gum file

Firstly, we need to add the FeynRules model file to
the GUM directory. The model is named ‘MDMSM’
(Majorana DM, scalar mediator). Starting in the GUM
root directory, we first create the directory that the
model will live in, and move the example file from the
Tutorial folder to the GUM directory:

mkdir Models/MDMSM
cp Tutorial/MDMSM.fr Models/MDMSM/

As we are working with FeynRules, the only backends
that we are able to create output for are CalcHEP, mi-
crOMEGAs and MadGraph/Pythia. For the sake of speed,
in this tutorial we will not include any constraints from
collider physics. This is also a reasonable approximation,
as for the mass range that we consider here, the con-
straints from e.g. monojet, dijet and dilepton searches
are subleading (see e.g. Ref. [85] and Appendix A). We
therefore set pythia:false. The contents of the supplied
.gum file are simple:

math:
Choose FeynRules
package: feynrules
Name of the model
model: MDMSM
Model builds on the Standard Model FeynRules file
base_model: SM
The Lagrangian is defined by the DM sector (LDM),
defined in MDMSM.fr, plus the SM Lagrangian (LSM)
imported from the ‘base model’, SM.fr
Lagrangian: LDM + LSM
Make CKM matrix = identity to simplify output
restriction: DiagonalCKM

PDG code of the annihilating DM candidate
in the FeynRules file
wimp_candidate: 52

Select outputs for DM physics.
Collider physics is not as important in this model.
output:

pythia: false
calchep: true
micromegas: true

Note the selection of the PDG code of the DM particle
as 52, so that if we were to use Pythia, ‰ would be
correctly identified as invisible.

We can run this from the GUM directory,

./gum -f Tutorial/MDMSM.gum

and GUM will automatically create all code needed to
perform a fit using GAMBIT. On a laptop with an Intel
Core i5 processor, GUM takes about a minute to run.
All that remains now is to (re)compile the relevant
backends and GAMBIT, and the new model will be fully
implemented, and ready to scan. GUM prints a set of

suggested build commands to standard output to build
the new backends and GAMBIT itself. Starting from the
gum directory, these are
cd ../build
cmake ..
make micromegas_MDMSM
make calchep
make -jn gambit

where n specifies the number of processes to use when
building.

Note that GUM does not adjust any CMake flags
used in previous GAMBIT compilations, so the above
commands assume that the user has already configured
GAMBIT appropriately and built any relevant samplers
before running GUM. A user wishing to instead configure
and build GAMBIT from scratch after running GUM,
in order to e.g. run the example scan of Sec. 4 using
di�erential evolution sampling and MPI parallelisation,
would need to instead do
cd build
cmake -D WITH_MPI=ON ..
make diver
cmake ..
make micromegas_MDMSM
make calchep
make gamlike
make ddcalc
make -jn gambit

For more thorough CMake instructions, see the README
in the gum/Tutorial, and CMAKE_FLAGS.md in the GAMBIT
root directory.

4.3 Phenomenology and Constraints

The constraints that we will consider for this model are
entirely in the DM sector, as those from colliders are
less severe (collider constraints are given in Appendix
A). The dark matter constraint are:
– Relic abundance: computed by micrOMEGAs, and

employed as an upper bound, in the spirit of e�ective
DM models.

– Direct detection: rates computed by micrOMEGAs,
likelihoods from XENON1T 2018 [90] and LUX
2016 [91], as computed with DDCalc [4, 14, 15].

– Indirect detection: Fermi-LAT constraints from
gamma-ray observations of dwarf spheroidal galaxies
(dSphs). Tree level cross-sections are computed by
CalcHEP, “ ray yields are consequently computed via
DarkSUSY [92, 93], and the constraints are applied
by gamLike [4].
As the relic density constraint is imposed only as

an upper bound, we rescale all DM observables by the
fraction of DM, f = œ‰/œDM.

Compile GAMBIT + backends

19

4.2 The .gum file

Firstly, we need to add the FeynRules model file to
the GUM directory. The model is named ‘MDMSM’
(Majorana DM, scalar mediator). Starting in the GUM
root directory, we first create the directory that the
model will live in, and move the example file from the
Tutorial folder to the GUM directory:

mkdir Models/MDMSM
cp Tutorial/MDMSM.fr Models/MDMSM/

As we are working with FeynRules, the only backends
that we are able to create output for are CalcHEP, mi-
crOMEGAs and MadGraph/Pythia. For the sake of speed,
in this tutorial we will not include any constraints from
collider physics. This is also a reasonable approximation,
as for the mass range that we consider here, the con-
straints from e.g. monojet, dijet and dilepton searches
are subleading (see e.g. Ref. [85] and Appendix A). We
therefore set pythia:false. The contents of the supplied
.gum file are simple:

math:
Choose FeynRules
package: feynrules
Name of the model
model: MDMSM
Model builds on the Standard Model FeynRules file
base_model: SM
The Lagrangian is defined by the DM sector (LDM),
defined in MDMSM.fr, plus the SM Lagrangian (LSM)
imported from the ‘base model’, SM.fr
Lagrangian: LDM + LSM
Make CKM matrix = identity to simplify output
restriction: DiagonalCKM

PDG code of the annihilating DM candidate
in the FeynRules file
wimp_candidate: 52

Select outputs for DM physics.
Collider physics is not as important in this model.
output:

pythia: false
calchep: true
micromegas: true

Note the selection of the PDG code of the DM particle
as 52, so that if we were to use Pythia, ‰ would be
correctly identified as invisible.

We can run this from the GUM directory,

./gum -f Tutorial/MDMSM.gum

and GUM will automatically create all code needed to
perform a fit using GAMBIT. On a laptop with an Intel
Core i5 processor, GUM takes about a minute to run.
All that remains now is to (re)compile the relevant
backends and GAMBIT, and the new model will be fully
implemented, and ready to scan. GUM prints a set of

suggested build commands to standard output to build
the new backends and GAMBIT itself. Starting from the
gum directory, these are
cd ../build
cmake ..
make micromegas_MDMSM
make calchep
make -jn gambit

where n specifies the number of processes to use when
building.

Note that GUM does not adjust any CMake flags
used in previous GAMBIT compilations, so the above
commands assume that the user has already configured
GAMBIT appropriately and built any relevant samplers
before running GUM. A user wishing to instead configure
and build GAMBIT from scratch after running GUM,
in order to e.g. run the example scan of Sec. 4 using
di�erential evolution sampling and MPI parallelisation,
would need to instead do
cd build
cmake -D WITH_MPI=ON ..
make diver
cmake ..
make micromegas_MDMSM
make calchep
make gamlike
make ddcalc
make -jn gambit

For more thorough CMake instructions, see the README
in the gum/Tutorial, and CMAKE_FLAGS.md in the GAMBIT
root directory.

4.3 Phenomenology and Constraints

The constraints that we will consider for this model are
entirely in the DM sector, as those from colliders are
less severe (collider constraints are given in Appendix
A). The dark matter constraint are:
– Relic abundance: computed by micrOMEGAs, and

employed as an upper bound, in the spirit of e�ective
DM models.

– Direct detection: rates computed by micrOMEGAs,
likelihoods from XENON1T 2018 [90] and LUX
2016 [91], as computed with DDCalc [4, 14, 15].

– Indirect detection: Fermi-LAT constraints from
gamma-ray observations of dwarf spheroidal galaxies
(dSphs). Tree level cross-sections are computed by
CalcHEP, “ ray yields are consequently computed via
DarkSUSY [92, 93], and the constraints are applied
by gamLike [4].
As the relic density constraint is imposed only as

an upper bound, we rescale all DM observables by the
fraction of DM, f = œ‰/œDM.

19

4.2 The .gum file

Firstly, we need to add the FeynRules model file to
the GUM directory. The model is named ‘MDMSM’
(Majorana DM, scalar mediator). Starting in the GUM
root directory, we first create the directory that the
model will live in, and move the example file from the
Tutorial folder to the GUM directory:

mkdir Models/MDMSM
cp Tutorial/MDMSM.fr Models/MDMSM/

As we are working with FeynRules, the only backends
that we are able to create output for are CalcHEP, mi-
crOMEGAs and MadGraph/Pythia. For the sake of speed,
in this tutorial we will not include any constraints from
collider physics. This is also a reasonable approximation,
as for the mass range that we consider here, the con-
straints from e.g. monojet, dijet and dilepton searches
are subleading (see e.g. Ref. [85] and Appendix A). We
therefore set pythia:false. The contents of the supplied
.gum file are simple:

math:
Choose FeynRules
package: feynrules
Name of the model
model: MDMSM
Model builds on the Standard Model FeynRules file
base_model: SM
The Lagrangian is defined by the DM sector (LDM),
defined in MDMSM.fr, plus the SM Lagrangian (LSM)
imported from the ‘base model’, SM.fr
Lagrangian: LDM + LSM
Make CKM matrix = identity to simplify output
restriction: DiagonalCKM

PDG code of the annihilating DM candidate
in the FeynRules file
wimp_candidate: 52

Select outputs for DM physics.
Collider physics is not as important in this model.
output:

pythia: false
calchep: true
micromegas: true

Note the selection of the PDG code of the DM particle
as 52, so that if we were to use Pythia, ‰ would be
correctly identified as invisible.

We can run this from the GUM directory,

./gum -f Tutorial/MDMSM.gum

and GUM will automatically create all code needed to
perform a fit using GAMBIT. On a laptop with an Intel
Core i5 processor, GUM takes about a minute to run.
All that remains now is to (re)compile the relevant
backends and GAMBIT, and the new model will be fully
implemented, and ready to scan. GUM prints a set of

suggested build commands to standard output to build
the new backends and GAMBIT itself. Starting from the
gum directory, these are
cd ../build
cmake ..
make micromegas_MDMSM
make calchep
make -jn gambit

where n specifies the number of processes to use when
building.

Note that GUM does not adjust any CMake flags
used in previous GAMBIT compilations, so the above
commands assume that the user has already configured
GAMBIT appropriately and built any relevant samplers
before running GUM. A user wishing to instead configure
and build GAMBIT from scratch after running GUM,
in order to e.g. run the example scan of Sec. 4 using
di�erential evolution sampling and MPI parallelisation,
would need to instead do
cd build
cmake -D WITH_MPI=ON ..
make diver
cmake ..
make micromegas_MDMSM
make calchep
make gamlike
make ddcalc
make -jn gambit

For more thorough CMake instructions, see the README
in the gum/Tutorial, and CMAKE_FLAGS.md in the GAMBIT
root directory.

4.3 Phenomenology and Constraints

The constraints that we will consider for this model are
entirely in the DM sector, as those from colliders are
less severe (collider constraints are given in Appendix
A). The dark matter constraint are:
– Relic abundance: computed by micrOMEGAs, and

employed as an upper bound, in the spirit of e�ective
DM models.

– Direct detection: rates computed by micrOMEGAs,
likelihoods from XENON1T 2018 [90] and LUX
2016 [91], as computed with DDCalc [4, 14, 15].

– Indirect detection: Fermi-LAT constraints from
gamma-ray observations of dwarf spheroidal galaxies
(dSphs). Tree level cross-sections are computed by
CalcHEP, “ ray yields are consequently computed via
DarkSUSY [92, 93], and the constraints are applied
by gamLike [4].
As the relic density constraint is imposed only as

an upper bound, we rescale all DM observables by the
fraction of DM, f = œ‰/œDM.

18

various means. In the absence of a spectrum genera-
tor (e.g. SPheno, see below), almost all the parame-
ters in ParameterDefinitions become model parameters.
Only those with explicit dependencies on other param-
eters are removed, i.e. those with the Dependence or
DependenceSpheno fields. In addition, SARAH provides
tree-level relations for all masses, via TreeMass[particle_

name,EWSB], so even in the absence of a spectrum gener-
ator, none of the particle masses become explicit model
parameters. For models with BSM states that mix to-
gether into mass eigenstates6, the tree-level masses are
not used and an error is thrown to inform the user of
the need to use a spectrum generator.

If the user elects in their .gum file to gener-
ate any outputs from SARAH for specific backends,
GUM requests that SARAH generate the respective
code using the relevant SARAH commands. These are
MakeCHep[] for CalcHEP and micrOMEGAs, MakeUFO[]
for MadGraph/Pythia, MakeSPheno[] for SPheno and
MakeVevacious[] for Vevacious.

When SPheno output is requested, GUM interacts
further with SARAH in order to obtain all necessary
information for spectrum generation:

1. Replace parameters and masses with those in
SPheno. The parameter names are obtained us-
ing the SPhenoForm function operating on the
lists listAllParametersAndVEVs and NewMassParameters.
The particle masses are obtained just by using the
SPhenoMass[particle_name] command.

2. Extract the names and default values of the pa-
rameters in the MINPAR and EXTPAR blocks, as defined
in the model file SPheno.m. For each of these, store
the boundary conditions, also from SPheno.m, that
match the MINPAR and EXTPAR parameters to those in
the parameter list. Note that as of GUM 1.0, only
the boundary conditions in BoundaryLowScaleInput
are parsed.

3. Remove from the parameter list those parameters
that will be fixed by the tadpole equations, as they
are not free parameters. These are collected from the
list ParametersToSolveTadpoles as defined in SPheno.m.

4. Get the names of the blocks, entries and parameter
names for all SLHA input blocks ending in IN, e.g.
HMIXIN, DSQIN, etc. SARAH provides this information
in the list CombindedBlocks.

5. Register the values of various flags needed to
properly set up the interface to SPheno. These
are "SupersymmetricModel", "OnlyLowEnergySPheno",
"UseHiggs2LoopMSSM" and "SA‘AddOneLoopDecay".

6Technically this is done by checking if the PDG list for any of
the BSM particles contains more than one entry.

4 A worked example

To demonstrate the process of adding a new model to
GAMBIT with GUM, in this section we provide a simple
worked example. Here we use GUM to add a model to
GAMBIT, perform a parameter scan, and plot the results
with pippi [84]. This example is designed with ease of use
in mind, and can be performed on a personal computer
in a reasonable amount of time. For this reason we select
a simplified DM model, implemented in FeynRules.

In this example, we consider constraints from the
relic density of dark matter, gamma-ray indirect detec-
tion and traditional high-mass direct detection searches.
It should be noted that this is an example, not a full
global scan, so we do not use all of the information
available to us – a real global fit of this model would
consider nuisance parameters relevant to DM, as well
as a full set of complementary likelihoods such as from
other indirect DM searches, low-mass direct detection
searches, and cosmology.

The FeynRules model file, .gum file, GAMBIT input
file and pip file used in this example can be found within
the Tutorial folder in GUM.

4.1 The model

The model is a simplified DM model, where the Stan-
dard Model is extended by a Majorana fermion ‰ acting
as DM, and a scalar mediator Y with a Yukawa-type
coupling to all SM fermions, in order to adhere to min-
imal flavour violation. The DM particle is kept stable
by a Z2 symmetry under which it is odd, ‰ æ ≠‰, and
all other particles are even. Both ‰ and Y are singlets
under the SM gauge group.

Here, we assume that any mixing between Y and the
SM Higgs is small and can be neglected. This model has
been previously considered in e.g. [85, 86] and is also
one of the benchmark simplified models used in LHC
searches [87–89]. The model Lagrangian is

L = LSM + 1
2‰

!
i /̂ ≠ m‰

"
‰ + 1

2ˆµY ˆµY ≠ 1
2m2

Y Y 2

≠ g‰

2 ‰‰Y ≠ cY

2
ÿ

f

yf ffY . (1)

Note that this theory is not SU(2)L invariant. One
possibility for a ‘realistic’ model involves Y -Higgs mix-
ing, which justifies choosing the Y ff couplings to be
proportional to the SM Yukawas yf .

The free parameters of the model are simply the
dark sector masses and couplings, {m‰, mY , cY , g‰}. In
this example we follow the FeynRules pathway, working
at tree level.

Model defined in a FeynRules/SARAH file

Anders Kvellestad 26 G AM B I T

Write a .gum file

Run GUM

19

4.2 The .gum file

Firstly, we need to add the FeynRules model file to
the GUM directory. The model is named ‘MDMSM’
(Majorana DM, scalar mediator). Starting in the GUM
root directory, we first create the directory that the
model will live in, and move the example file from the
Tutorial folder to the GUM directory:

mkdir Models/MDMSM
cp Tutorial/MDMSM.fr Models/MDMSM/

As we are working with FeynRules, the only backends
that we are able to create output for are CalcHEP, mi-
crOMEGAs and MadGraph/Pythia. For the sake of speed,
in this tutorial we will not include any constraints from
collider physics. This is also a reasonable approximation,
as for the mass range that we consider here, the con-
straints from e.g. monojet, dijet and dilepton searches
are subleading (see e.g. Ref. [85] and Appendix A). We
therefore set pythia:false. The contents of the supplied
.gum file are simple:

math:
Choose FeynRules
package: feynrules
Name of the model
model: MDMSM
Model builds on the Standard Model FeynRules file
base_model: SM
The Lagrangian is defined by the DM sector (LDM),
defined in MDMSM.fr, plus the SM Lagrangian (LSM)
imported from the ‘base model’, SM.fr
Lagrangian: LDM + LSM
Make CKM matrix = identity to simplify output
restriction: DiagonalCKM

PDG code of the annihilating DM candidate
in the FeynRules file
wimp_candidate: 52

Select outputs for DM physics.
Collider physics is not as important in this model.
output:

pythia: false
calchep: true
micromegas: true

Note the selection of the PDG code of the DM particle
as 52, so that if we were to use Pythia, ‰ would be
correctly identified as invisible.

We can run this from the GUM directory,

./gum -f Tutorial/MDMSM.gum

and GUM will automatically create all code needed to
perform a fit using GAMBIT. On a laptop with an Intel
Core i5 processor, GUM takes about a minute to run.
All that remains now is to (re)compile the relevant
backends and GAMBIT, and the new model will be fully
implemented, and ready to scan. GUM prints a set of

suggested build commands to standard output to build
the new backends and GAMBIT itself. Starting from the
gum directory, these are
cd ../build
cmake ..
make micromegas_MDMSM
make calchep
make -jn gambit

where n specifies the number of processes to use when
building.

Note that GUM does not adjust any CMake flags
used in previous GAMBIT compilations, so the above
commands assume that the user has already configured
GAMBIT appropriately and built any relevant samplers
before running GUM. A user wishing to instead configure
and build GAMBIT from scratch after running GUM,
in order to e.g. run the example scan of Sec. 4 using
di�erential evolution sampling and MPI parallelisation,
would need to instead do
cd build
cmake -D WITH_MPI=ON ..
make diver
cmake ..
make micromegas_MDMSM
make calchep
make gamlike
make ddcalc
make -jn gambit

For more thorough CMake instructions, see the README
in the gum/Tutorial, and CMAKE_FLAGS.md in the GAMBIT
root directory.

4.3 Phenomenology and Constraints

The constraints that we will consider for this model are
entirely in the DM sector, as those from colliders are
less severe (collider constraints are given in Appendix
A). The dark matter constraint are:
– Relic abundance: computed by micrOMEGAs, and

employed as an upper bound, in the spirit of e�ective
DM models.

– Direct detection: rates computed by micrOMEGAs,
likelihoods from XENON1T 2018 [90] and LUX
2016 [91], as computed with DDCalc [4, 14, 15].

– Indirect detection: Fermi-LAT constraints from
gamma-ray observations of dwarf spheroidal galaxies
(dSphs). Tree level cross-sections are computed by
CalcHEP, “ ray yields are consequently computed via
DarkSUSY [92, 93], and the constraints are applied
by gamLike [4].
As the relic density constraint is imposed only as

an upper bound, we rescale all DM observables by the
fraction of DM, f = œ‰/œDM.

Compile GAMBIT + backends

19

4.2 The .gum file

Firstly, we need to add the FeynRules model file to
the GUM directory. The model is named ‘MDMSM’
(Majorana DM, scalar mediator). Starting in the GUM
root directory, we first create the directory that the
model will live in, and move the example file from the
Tutorial folder to the GUM directory:

mkdir Models/MDMSM
cp Tutorial/MDMSM.fr Models/MDMSM/

As we are working with FeynRules, the only backends
that we are able to create output for are CalcHEP, mi-
crOMEGAs and MadGraph/Pythia. For the sake of speed,
in this tutorial we will not include any constraints from
collider physics. This is also a reasonable approximation,
as for the mass range that we consider here, the con-
straints from e.g. monojet, dijet and dilepton searches
are subleading (see e.g. Ref. [85] and Appendix A). We
therefore set pythia:false. The contents of the supplied
.gum file are simple:

math:
Choose FeynRules
package: feynrules
Name of the model
model: MDMSM
Model builds on the Standard Model FeynRules file
base_model: SM
The Lagrangian is defined by the DM sector (LDM),
defined in MDMSM.fr, plus the SM Lagrangian (LSM)
imported from the ‘base model’, SM.fr
Lagrangian: LDM + LSM
Make CKM matrix = identity to simplify output
restriction: DiagonalCKM

PDG code of the annihilating DM candidate
in the FeynRules file
wimp_candidate: 52

Select outputs for DM physics.
Collider physics is not as important in this model.
output:

pythia: false
calchep: true
micromegas: true

Note the selection of the PDG code of the DM particle
as 52, so that if we were to use Pythia, ‰ would be
correctly identified as invisible.

We can run this from the GUM directory,

./gum -f Tutorial/MDMSM.gum

and GUM will automatically create all code needed to
perform a fit using GAMBIT. On a laptop with an Intel
Core i5 processor, GUM takes about a minute to run.
All that remains now is to (re)compile the relevant
backends and GAMBIT, and the new model will be fully
implemented, and ready to scan. GUM prints a set of

suggested build commands to standard output to build
the new backends and GAMBIT itself. Starting from the
gum directory, these are
cd ../build
cmake ..
make micromegas_MDMSM
make calchep
make -jn gambit

where n specifies the number of processes to use when
building.

Note that GUM does not adjust any CMake flags
used in previous GAMBIT compilations, so the above
commands assume that the user has already configured
GAMBIT appropriately and built any relevant samplers
before running GUM. A user wishing to instead configure
and build GAMBIT from scratch after running GUM,
in order to e.g. run the example scan of Sec. 4 using
di�erential evolution sampling and MPI parallelisation,
would need to instead do
cd build
cmake -D WITH_MPI=ON ..
make diver
cmake ..
make micromegas_MDMSM
make calchep
make gamlike
make ddcalc
make -jn gambit

For more thorough CMake instructions, see the README
in the gum/Tutorial, and CMAKE_FLAGS.md in the GAMBIT
root directory.

4.3 Phenomenology and Constraints

The constraints that we will consider for this model are
entirely in the DM sector, as those from colliders are
less severe (collider constraints are given in Appendix
A). The dark matter constraint are:
– Relic abundance: computed by micrOMEGAs, and

employed as an upper bound, in the spirit of e�ective
DM models.

– Direct detection: rates computed by micrOMEGAs,
likelihoods from XENON1T 2018 [90] and LUX
2016 [91], as computed with DDCalc [4, 14, 15].

– Indirect detection: Fermi-LAT constraints from
gamma-ray observations of dwarf spheroidal galaxies
(dSphs). Tree level cross-sections are computed by
CalcHEP, “ ray yields are consequently computed via
DarkSUSY [92, 93], and the constraints are applied
by gamLike [4].
As the relic density constraint is imposed only as

an upper bound, we rescale all DM observables by the
fraction of DM, f = œ‰/œDM.

20

Here we will use the GAMBIT input file gum/
Tutorial/MDMSM_Tute.yaml. Although it does contain a
little more than the GAMBIT input file automatically
generated by GUM (yaml_files/MDMSM_example.yaml), it
is still fairly standard, so we will cover only the impor-
tant sections here. For an overview of YAML files in
GAMBIT, we refer the reader to Sec. 6 of the GAMBIT
manual [1].

Firstly the parameters section indicates all models
required for this scan: not just the MDMSM parameters,
but also SM parameters, nuclear matrix elements and
DM halo parameters. The parameter range of interest for
the MDMSM model will be masses ranging from 45 GeV
to 10 TeV, and dimensionless couplings ranging from
10≠4 to 4fi. We will scan each of these four parameters
logarithmically.

Parameters:

Import some default GAMBIT SM values
StandardModel_SLHA2: !import
include/StandardModel_SLHA2_defaults.yaml

Higgs sector is defined separately in GAMBIT
StandardModel_Higgs:

mH: 125.09

Our dark matter model, implemented by GUM
MDMSM:

mchi:
range: [45, 10000]
prior_type: log

mY:
range: [45, 10000]
prior_type: log

gchi:
range: [1e-4, 12.566]
prior_type: log

cY:
range: [1e-4, 12.566]
prior_type: log

Default halo parameters for the example
Halo_gNFW_rho0:

rho0: 0.3
v0: 240
vesc: 533
vrot: 240
rs: 20.0
r_sun: 8.5
alpha: 1
beta: 3
gamma: 1

Nuclear matrix parameters, also default
nuclear_params_sigmas_sigmal:

sigmas: 43
sigmal: 58
deltau: 0.842
deltad: -0.427
deltas: -0.085

The ObsLikes section includes likelihoods concerning the
relic density, indirect detection from dSphs, and direct
detection experiments.
ObsLikes:

Relic density
- capability: lnL_oh2

purpose: LogLike

Indirect detection
- capability: lnL_FermiLATdwarfs

purpose: LogLike

Direct detection: LUX experiment
- capability: LUX_2016_LogLikelihood

purpose: LogLike

Direct detection: XENON1T experiment
- capability: XENON1T_2018_LogLikelihood

purpose: LogLike

The Rules section uniquely specifies the functions to use
for the dependency resolver:
Rules:

Use MicrOmegas to compute the relic density
- capability: RD_oh2

function: RD_oh2_MicrOmegas

Choose to implement the relic density
likelihood as an upper bound, not a detection
- capability: lnL_oh2

function: lnL_oh2_upperlimit

Choose to use detailed Fermi Pass 8 dwarf
likelihoood from gamlike
- capability: lnL_FermiLATdwarfs

function: lnL_FermiLATdwarfs_gamLike

Choose to get decays from regular DecayBit
Òæfunction,

not from an SLHA file nor SPheno.
- capability: decay_rates

function: all_decays

Choose to rescale signals in direct and indirect
detection by the relic density fraction
- capability: RD_fraction

function: RD_fraction_leq_one

The scanner section selects the di�erential evolution
sampler Diver [3] with a fairly loose stopping tolerance
of 10≠3 and a working population of 10,000 points.
Scanner:

Select differential evolution (DE) scanner
use_scanner: de

scanners:

Select settings for DE with Diver
de:

plugin: diver
like: LogLike
NP: 10000

Adjust GAMBIT input file

19

4.2 The .gum file

Firstly, we need to add the FeynRules model file to
the GUM directory. The model is named ‘MDMSM’
(Majorana DM, scalar mediator). Starting in the GUM
root directory, we first create the directory that the
model will live in, and move the example file from the
Tutorial folder to the GUM directory:

mkdir Models/MDMSM
cp Tutorial/MDMSM.fr Models/MDMSM/

As we are working with FeynRules, the only backends
that we are able to create output for are CalcHEP, mi-
crOMEGAs and MadGraph/Pythia. For the sake of speed,
in this tutorial we will not include any constraints from
collider physics. This is also a reasonable approximation,
as for the mass range that we consider here, the con-
straints from e.g. monojet, dijet and dilepton searches
are subleading (see e.g. Ref. [85] and Appendix A). We
therefore set pythia:false. The contents of the supplied
.gum file are simple:

math:
Choose FeynRules
package: feynrules
Name of the model
model: MDMSM
Model builds on the Standard Model FeynRules file
base_model: SM
The Lagrangian is defined by the DM sector (LDM),
defined in MDMSM.fr, plus the SM Lagrangian (LSM)
imported from the ‘base model’, SM.fr
Lagrangian: LDM + LSM
Make CKM matrix = identity to simplify output
restriction: DiagonalCKM

PDG code of the annihilating DM candidate
in the FeynRules file
wimp_candidate: 52

Select outputs for DM physics.
Collider physics is not as important in this model.
output:

pythia: false
calchep: true
micromegas: true

Note the selection of the PDG code of the DM particle
as 52, so that if we were to use Pythia, ‰ would be
correctly identified as invisible.

We can run this from the GUM directory,

./gum -f Tutorial/MDMSM.gum

and GUM will automatically create all code needed to
perform a fit using GAMBIT. On a laptop with an Intel
Core i5 processor, GUM takes about a minute to run.
All that remains now is to (re)compile the relevant
backends and GAMBIT, and the new model will be fully
implemented, and ready to scan. GUM prints a set of

suggested build commands to standard output to build
the new backends and GAMBIT itself. Starting from the
gum directory, these are
cd ../build
cmake ..
make micromegas_MDMSM
make calchep
make -jn gambit

where n specifies the number of processes to use when
building.

Note that GUM does not adjust any CMake flags
used in previous GAMBIT compilations, so the above
commands assume that the user has already configured
GAMBIT appropriately and built any relevant samplers
before running GUM. A user wishing to instead configure
and build GAMBIT from scratch after running GUM,
in order to e.g. run the example scan of Sec. 4 using
di�erential evolution sampling and MPI parallelisation,
would need to instead do
cd build
cmake -D WITH_MPI=ON ..
make diver
cmake ..
make micromegas_MDMSM
make calchep
make gamlike
make ddcalc
make -jn gambit

For more thorough CMake instructions, see the README
in the gum/Tutorial, and CMAKE_FLAGS.md in the GAMBIT
root directory.

4.3 Phenomenology and Constraints

The constraints that we will consider for this model are
entirely in the DM sector, as those from colliders are
less severe (collider constraints are given in Appendix
A). The dark matter constraint are:
– Relic abundance: computed by micrOMEGAs, and

employed as an upper bound, in the spirit of e�ective
DM models.

– Direct detection: rates computed by micrOMEGAs,
likelihoods from XENON1T 2018 [90] and LUX
2016 [91], as computed with DDCalc [4, 14, 15].

– Indirect detection: Fermi-LAT constraints from
gamma-ray observations of dwarf spheroidal galaxies
(dSphs). Tree level cross-sections are computed by
CalcHEP, “ ray yields are consequently computed via
DarkSUSY [92, 93], and the constraints are applied
by gamLike [4].
As the relic density constraint is imposed only as

an upper bound, we rescale all DM observables by the
fraction of DM, f = œ‰/œDM.

18

various means. In the absence of a spectrum genera-
tor (e.g. SPheno, see below), almost all the parame-
ters in ParameterDefinitions become model parameters.
Only those with explicit dependencies on other param-
eters are removed, i.e. those with the Dependence or
DependenceSpheno fields. In addition, SARAH provides
tree-level relations for all masses, via TreeMass[particle_

name,EWSB], so even in the absence of a spectrum gener-
ator, none of the particle masses become explicit model
parameters. For models with BSM states that mix to-
gether into mass eigenstates6, the tree-level masses are
not used and an error is thrown to inform the user of
the need to use a spectrum generator.

If the user elects in their .gum file to gener-
ate any outputs from SARAH for specific backends,
GUM requests that SARAH generate the respective
code using the relevant SARAH commands. These are
MakeCHep[] for CalcHEP and micrOMEGAs, MakeUFO[]
for MadGraph/Pythia, MakeSPheno[] for SPheno and
MakeVevacious[] for Vevacious.

When SPheno output is requested, GUM interacts
further with SARAH in order to obtain all necessary
information for spectrum generation:

1. Replace parameters and masses with those in
SPheno. The parameter names are obtained us-
ing the SPhenoForm function operating on the
lists listAllParametersAndVEVs and NewMassParameters.
The particle masses are obtained just by using the
SPhenoMass[particle_name] command.

2. Extract the names and default values of the pa-
rameters in the MINPAR and EXTPAR blocks, as defined
in the model file SPheno.m. For each of these, store
the boundary conditions, also from SPheno.m, that
match the MINPAR and EXTPAR parameters to those in
the parameter list. Note that as of GUM 1.0, only
the boundary conditions in BoundaryLowScaleInput
are parsed.

3. Remove from the parameter list those parameters
that will be fixed by the tadpole equations, as they
are not free parameters. These are collected from the
list ParametersToSolveTadpoles as defined in SPheno.m.

4. Get the names of the blocks, entries and parameter
names for all SLHA input blocks ending in IN, e.g.
HMIXIN, DSQIN, etc. SARAH provides this information
in the list CombindedBlocks.

5. Register the values of various flags needed to
properly set up the interface to SPheno. These
are "SupersymmetricModel", "OnlyLowEnergySPheno",
"UseHiggs2LoopMSSM" and "SA‘AddOneLoopDecay".

6Technically this is done by checking if the PDG list for any of
the BSM particles contains more than one entry.

4 A worked example

To demonstrate the process of adding a new model to
GAMBIT with GUM, in this section we provide a simple
worked example. Here we use GUM to add a model to
GAMBIT, perform a parameter scan, and plot the results
with pippi [84]. This example is designed with ease of use
in mind, and can be performed on a personal computer
in a reasonable amount of time. For this reason we select
a simplified DM model, implemented in FeynRules.

In this example, we consider constraints from the
relic density of dark matter, gamma-ray indirect detec-
tion and traditional high-mass direct detection searches.
It should be noted that this is an example, not a full
global scan, so we do not use all of the information
available to us – a real global fit of this model would
consider nuisance parameters relevant to DM, as well
as a full set of complementary likelihoods such as from
other indirect DM searches, low-mass direct detection
searches, and cosmology.

The FeynRules model file, .gum file, GAMBIT input
file and pip file used in this example can be found within
the Tutorial folder in GUM.

4.1 The model

The model is a simplified DM model, where the Stan-
dard Model is extended by a Majorana fermion ‰ acting
as DM, and a scalar mediator Y with a Yukawa-type
coupling to all SM fermions, in order to adhere to min-
imal flavour violation. The DM particle is kept stable
by a Z2 symmetry under which it is odd, ‰ æ ≠‰, and
all other particles are even. Both ‰ and Y are singlets
under the SM gauge group.

Here, we assume that any mixing between Y and the
SM Higgs is small and can be neglected. This model has
been previously considered in e.g. [85, 86] and is also
one of the benchmark simplified models used in LHC
searches [87–89]. The model Lagrangian is

L = LSM + 1
2‰

!
i /̂ ≠ m‰

"
‰ + 1

2ˆµY ˆµY ≠ 1
2m2

Y Y 2

≠ g‰

2 ‰‰Y ≠ cY

2
ÿ

f

yf ffY . (1)

Note that this theory is not SU(2)L invariant. One
possibility for a ‘realistic’ model involves Y -Higgs mix-
ing, which justifies choosing the Y ff couplings to be
proportional to the SM Yukawas yf .

The free parameters of the model are simply the
dark sector masses and couplings, {m‰, mY , cY , g‰}. In
this example we follow the FeynRules pathway, working
at tree level.

Model defined in a FeynRules/SARAH file

Anders Kvellestad 27 G AM B I T

Run GAMBIT!

• 4D scan (mX, mY, gX, cY)

• Relic abundance (as upper bound) 

[micrOMEGAs]

• Direct detection: XENON1T 2018, LUX 2016 

[micrOMEGAs, DDCalc]

• Indirect detection: Fermi-LAT dwarf galaxies 

[CalcHEP, DarkSUSY, gamLike]

• ~11 hours on 4-core laptop,  

sampling ~300k parameter points [Diver]  

• Same model
• 1D scan of mY

• mX = 1 GeV, gX = 1, cY = 1
• Collider: ATLAS 2lep+jets+MET, 139 fb-1 

[Pythia, ColliderBit]

• Light mY disfavoured, but can easily be accommodated

in the larger 4D parameter space

25

The modular nature of GUM means extension is
straightforward. Future planned extensions include com-
putations of modifications of SM precision observ-
ables and decays, a four-fermion EFT plugin connect-
ing FeynRules and CalcHEP, multi-component and co-
annihilating dark matter models, and interfacing to the
GAMBIT flavour physics module FlavBit via FlavorKit, to
the spectrum generator FlexibleSUSY, to micrOMEGAs
5 and to the dark matter package MadDM.

Acknowledgements We thank the rest of the GAMBIT com-
munity for many helpful discussions, and for helping to develop
and test GAMBIT over a period of many years. We also acknowl-
edge PRACE for awarding us access to Marconi at CINECA,
Italy, and Joliot-Curie at CEA, France. PS is supported by the
Australian Research Council (ARC) under grant FT190100814.
PA and CB are supported by the ARC under grant DP180102209.
This project was also undertaken with the assistance of resources
and services from the National Computational Infrastructure,
which is supported by the Australian Government. We also thank
Astronomy Australia Limited for financial support of comput-
ing resources. JJR acknowledges support by Katherine Freese
through a grant from the Swedish Research Council (Contract
No. 638-2013-8993). JECM is supported by the Carl Trygger
Foundation through grant no. CTS 17:139.

A: Collider constraints on the Majorana DM

simplified model with scalar mediator

We argued in Sec. 4 that the collider constraints are
expected to be subleading for the MDMSM. To justify
and clarify that argument, and to demonstrate GUM’s
ability to generate code for collider simulations, we
here investigate the likelihood contribution from LHC
searches.

It has been demonstrated that monojet searchers are
not necessarily the most constraining searches for the
MDMSM [86]. In fact, given the large Yukawa couplings
the tree level production of top quark pairs together
with the mediator Y , despite the large final state masses,
should be the most sensitive final state at the 13 TeV
LHC. To investigate the constraints from this process, we
select a 139 fb≠1 ATLAS search for final states with two
leptons, jets and missing momentum, which is targeted
to this specific final state [99].

The computational requirement of a GAMBIT scan
increases significantly when full collider simulations with
ColliderBit are included. For this example scan we there-
fore only vary the mass mY of the mediator particle.
The simulations are performed using the GUM-generated
Pythia interface, as described in sections 2.2.4 and 2.3.5.
For each parameter point in the scan we generate 12 mil-
lion Pythia events. The events are then passed through
fast detector simulation in ColliderBit and selection cuts
emulating the ATLAS search. This search targets events

Fig. 6: The log-likelihood contribution ∆ ln L = ln L(s + b) ≠
ln L(b) from a simulation of the ATLAS search in Ref. [99] in a
scan of the mediator mass mY in the MDMSM. The mediator
coupling to SM particles (cY) and to DM (g‰) are set to cY =
g‰ = 1, and the DM mass is fixed at m‰ = 1 GeV. The dashed
black line denotes ∆ ln L = 0, i.e. the limit where the signal
plus background prediction fits the data equally as well as the
background-only prediction. The dashed red line at ∆ ln L = ≠2
shows the ∆ ln L limit corresponding to a 2‡ confidence interval
on mY .

with two opposite-charge leptons, jets and missing trans-
verse momentum. No large excesses are observed in this
search; across all signal regions the observed event counts
agree with the Standard Model expectations to around
the 2‡ level.

The ATLAS analysis defines both exclusive and in-
clusive signal regions based on the ‘stransverse mass’
kinematic variable and the signal lepton flavours. For
our scan we consider the exclusive signal regions. There
is no publicly available full likelihood function for this
analysis, nor any data on correlations, and we therefore
take the conservative approach of only using the like-
lihood contribution from the single signal region with
the best expected sensitivity at each point in our scan.
As a consequence of this, we expect to find some sharp
features and kinks in the likelihood function where the
most sensitive signal region changes.

Figure 6 shows the resulting ATLAS likelihood func-
tion in our scan of the mediator mass mY , with the other
model parameters set to m‰ = 1 GeV and cY = g‰ = 1.
Following the standard approach in ColliderBit, we show
the log-likelihood di�erence ∆ ln L = ln L(s+b)≠ln L(b),
where L(s + b) denotes the likelihood when the pre-
dicted DM signal (s) is added on top of the SM back-
ground expectation (b), and L(b) is the likelihood for
the background-only prediction. Further details on the
likelihood evaluation in ColliderBit are given in Ref. [5].

21

convthresh: 1e-3
verbosity: 1

To perform the scan we copy the GAMBIT input file
to the yaml_files folder within the GAMBIT root direc-
tory. This is a necessary step, as we need to !import
the appropriate Standard Model YAML file from the
relative path include (i.e. the folder yaml_files/include
in the GAMBIT root directory). From the GAMBIT root
directory, we

cp gum/Tutorial/MDMSM_Tute.yaml yaml_files/

and run GAMBIT with n processes,

mpirun -n n gambit -f yaml_files/MDMSM_Tute.yaml

The above scan should converge in a reasonable time
on a modern personal computer; this took 11 hr to run
across 4 cores on a laptop with an i5-6200U CPU @
2.30GHz, sampling 292k points in total. The results of
this scan are shown below.

Note that whilst the scan has converged statistically,
the convergence criterion that we set in the input file
above is not particularly stringent, so many of the con-
tours presented in this section are not sampled well
enough to be clearly defined. A serious production scan
would typically be run for longer, and more e�ort made
to map the likelihood contours more finely. Nonetheless,
the samples generated are more than su�cient to extract
meaningful physics.

Once the scan has finished, we can plot the result
using pippi [84]. As Diver aims to finds the maximum
likelihood point, we will perform a profile likelihood
analysis with pippi. Assuming that pippi is in $PATH, do

cd gum/Tutorial
pippi MDMSM.pip

which will produce plots of the four model parameters
against one another, as well against as a raft of observ-
ables such as the relic abundance and spin-independent
cross-section (rescaled by f).

4.4 Results

The upper panel of Fig. 1 shows the profile likelihood
in the plane of the DM mass m‰ against the media-
tor mass mY . The relic density requirement maps out
the structure in the same plane. There are two sets
of solutions: firstly when the DM is heavier than the
mediator, m‰ > mY (bordered by the red dashed line
in Fig. 1), and secondly where DM annihilates on reso-
nance, 2m‰ ¥ mY (centred on the purple dashed line
in Fig. 1).

★
GUM+GAMBIT 2.0.0, Diver 1.0.4, pippi 2.1

G AM B I T

m �
=
m Y

2
m �

=
m Y

2.0

2.5

3.0

3.5

lo
g
1
0
(
m

�
/G

e
V
)

P
r
o
fi
le

lik
e
lih

o
o
d
r
a
t
io

⇤
=

L
/L

m
a
x

2.0 2.5 3.0 3.5
log10 (mY/GeV)

0.2

0.4

0.6

0.8

1.0

Fig. 1: Profile likelihood in the m‰–mY plane with the relic
density as an upper bound (upper panel) and as an observation
(lower panel). Above the red dashed line at m‰ = mY , DM can
annihilate into Y bosons. The purple dashed line at 2m‰ = mY

indicates the region where DM can annihilate on resonance.
Contour lines show the 1 and 2‡ confidence regions. The white
star shows the best-fit point. The grey contours in the lower
panel the 1 and 2‡ contours from the upper panel.

When m‰ < mY and the Y Y annihilation channel is
not kinematically accessible, annihilation predominantly
occurs via an s-channel Y to bb or tt, depending on the
DM mass. In this case, the only way to e�ciently deplete
DM in the early Universe is when annihilation is on
resonance, m‰ ¥ mY /2. Away from the resonance when
the Y Y channel is closed, even couplings of 4fi are not
large enough to produce a su�ciently high annihilation
cross-section to deplete the thermal population of ‰ to
below the observed value.

When kinematically allowed, ‰‰ æ Y æ tt is the
dominant process responsible for depleting the DM

Anders Kvellestad 28 G AM B I T

GUM used in recent GAMBIT dark matter studyEur. Phys. J. C manuscript No.
(will be inserted by the editor)

ADP-21-9/T1156, CERN-TH-2021-084, CP3-21-15, P3H-21-038, TTK-21-19, gambit-physics-21

Thermal WIMPs and the Scale of New Physics:
Global Fits of Dirac Dark Matter E�ective Field Theories
The GAMBIT Collaboration: Peter Athron1,2, Neal Avis Kozar3,4,
Csaba Balázs1, Ankit Beniwal5,a, Sanjay Bloor6,7,b, Torsten Bringmann8,
Joachim Brod9, Christopher Chang7, Jonathan M. Cornell10,
Ben Farmer11, Andrew Fowlie2, Tomás E. Gonzalo1,12,c, Will Handley13,14,
Felix Kahlhoefer12,d, Anders Kvellestad8, Farvah Mahmoudi15,16,
Markus T. Prim17, Are Raklev8, Janina J. Renk6,18, Andre Sca�di19,20,
Pat Scott6,7, Patrick Stöcker12, Aaron C. Vincent3,4,21, Martin White19,
Sebastian Wild22, Jure Zupan9

1 School of Physics and Astronomy, Monash University, Melbourne, VIC 3800, Australia
2 Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing, Jiangsu 210023, China
3 Arthur B. McDonald Canadian Astroparticle Physics Research Institute, Kingston ON K7L 3N6, Canada
4 Department of Physics, Engineering Physics and Astronomy, Queen’s University, Kingston ON K7L 3N6, Canada
5 Center for Cosmology, Particle Physics and Phenomenology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
6 Department of Physics, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, UK
7 School of Mathematics and Physics, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
8 Department of Physics, University of Oslo, N-0316 Oslo, Norway
9 Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA
10 Department of Physics, Weber State University, 1415 Edvalson St., Dept. 2508, Ogden, UT 84408, USA
11 Bureau of Meteorology, Melbourne, VIC 3001, Australia
12 Institute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University, D-52056 Aachen, Germany
13 Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK
14 Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
15 Univ Lyon, Univ Lyon 1, CNRS/IN2P3, Institut de Physique des 2 Infinis de Lyon, UMR 5822, 69622 Villeurbanne, France
16 Theoretical Physics Department, CERN, CH-1211 Geneva 23, Switzerland
17 Physikalisches Institut der Rheinischen Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
18 Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, SE-10691 Stockholm, Sweden
19 ARC Centre of Excellence for Dark Matter Particle Physics & CSSM, Department of Physics, University of Adelaide, Adelaide,
SA 5005
20 Istituto Nazionale di Fisica Nucleare, Sezione di Torino, via P. Giuria 1, I–10125 Torino, Italy
21 Perimeter Institute for Theoretical Physics, Waterloo ON N2L 2Y5, Canada
22 DESY, Notkestraße 85, D-22607 Hamburg, Germany
Received: date / Accepted: date

Abstract Using the global fitting framework GAMBIT,
we provide the most general assessment to date of gauge-
singlet, Dirac fermion, WIMP dark matter (DM). We
perform a global fit of e�ective field theory (EFT) oper-
ators describing the interactions between the DM and
the Standard Model quarks, the gluons and the photon,
using the latest experimental results. In this bottom-
up approach, we simultaneously vary the coe�cients
of 14 such operators up to dimension 7, along with
the DM mass, the scale of new physics and 8 nuisance
parameters that reflect uncertainties in the local DM
halo, nuclear form factors and the top quark mass. We
aankit.beniwal@uclouvain.be
bsanjay.bloor12@imperial.ac.uk
cgonzalo@physik.rwth-aachen.de
dkahlhoefer@physik.rwth-aachen.de

include the renormalization group evolution of all oper-
ator coe�cients and perform an automated matching
to the non-relativistic EFT relevant for DM scattering.
Our up-to-date likelihood functions include all relevant
experimental constraints based on the latest data from
Planck, direct and indirect detection experiments, and
the LHC, in particular a very recent ATLAS monojet
search based on the full run 2 dataset. For light DM
(. 100 GeV), we find that it is impossible to satisfy all
constraints simultaneously unless the particle under con-
sideration constitutes only a DM sub-component and
the scale of the new physics is so low that the EFT
breaks down for the calculation of LHC constraints.
At intermediate values of the new physics scale (¥ 1
TeV), we find that our results are significantly influenced
by several small excesses in the LHC data such that

[arXiv:2106.02056]
17

★

d = 6, capped LLHC (hard cut-o↵), f�  1

G AM B I T

⇤  2m�

102

103

104

105

106

⇤
/G

eV

P
rofi

le
likelih

ood
ratio

L
/L

m
a
x

10 102 103 104 105

m�/GeV

0.2

0.4

0.6

0.8

1.0

★

d = 6, capped LLHC (hard cut-o↵), f�  1

G AM B I T

⇤  2m�

102

103

⇤
/G

eV

P
rofi

le
likelih

ood
ratio

L
/L

m
a
x

100 200 300 400 500
m�/GeV

0.2

0.4

0.6

0.8

1.0

Fig. 2: Profile likelihood in the m‰–� plane when considering only dimension-6 operators and capping the LHC likelihood at the
value of the background-only hypothesis. The white contours indicate the 1‡ and 2‡ confidence regions and the best-fit point is
indicated by the white star. The shaded region (corresponding to � Æ 2m‰) is excluded by the EFT validity requirement. In the
right panel, the parameter ranges have been restricted to the most interesting region. Note that the position of the best-fit points in
the two panels is somewhat arbitrary, as there is a degeneracy between � and C(6)

3,4 and hence the likelihood is essentially constant
across the entire yellow region (see also Fig. 4).

4.1 Capped LHC likelihood

Let us begin with the case that the LHC likelihood
is capped, i.e. it cannot exceed the likelihood of the
background-only hypothesis. We first consider only
dimension-6 operators with di�erent requirements for
the DM relic density, and then also include dimension-7
operators.

Dimension-6 operators only (relic density upper bound)

Our main results for this case are shown in Fig. 2 in
terms of the DM mass and the new physics scale �.
The left panel corresponds to the full parameter range,
whereas the right panel provides a closer look at the most
interesting parameter region. We find a large viable pa-
rameter space but also a number of notable features. For
large values of m‰ and �, the allowed parameter space is
determined by the EFT validity requirement � > 2m‰

and the relic density requirement which, combined with
the perturbativity bound on the Wilson coe�cients, im-
plies an upper bound on � for given m‰. These di�erent
constraints are compatible only for m‰ < 150 TeV, im-
plying an upper bound on the scale of new physics of
� < 300 TeV. This limit corresponds to the well-known
unitarity bound for thermal freeze-out [65].

The zoomed-in version in the right panel reveals a
number of additional features. In the top-left corner
(small m‰, large �), there are strong constraints from
the LHC, which make it impossible to satisfy the relic

density requirement. These constraints become weaker
as � decreases and the EFT can only be trusted for
smaller values of /ET . The various sharp features cor-
respond to the points where � crosses the boundary
of a specific /ET bin, leading to a jump in the likeli-
hood. In our conservative approach, LHC constraints
are completely absent for � < 200 GeV. Finally, we
find that there is a slight upward fluctuation in Fermi-
LAT data, which can be fitted for m‰ = 5.0 GeV and
f

2

‰È‡vÍ0 = 1.1 ◊ 10≠27 cm3 s≠1.
We illustrate this further in Fig. 3, which shows the

allowed parameter regions in terms of the DM mass, the
relic density and the rescaled annihilation cross-section.
A number of additional features become apparent in
these plots. First, for m‰ . 100 GeV it is impossible to
saturate the observed DM relic density, œDMh

2 = 0.12,
due to the combined constraints from direct and indirect
detection experiments. However, these constraints are
suppressed for DM sub-components, such that it is possi-
ble to have very small relic densities in this mass region.
For m‰ > 100 GeV (corresponding to � > 200 GeV), on
the other hand, constraints from the LHC become rele-
vant, which are not suppressed for DM sub-components.
These constraints are then again relaxed for m‰ & 1 TeV
as the LHC energy becomes insu�cient to produce a
pair of DM particles.

For m‰ . 1 TeV, we find that there is a direct corre-
spondence between œ‰h

2 and the rescaled annihilation
cross-section f

2

‰È‡vÍ0. This is because the operators
that induce p-wave annihilations (in particular C

(6)

2
) are

Anders Kvellestad 29

• Global fits are great. We should do more of those.

• The core GAMBIT framework is model-independent

• …but so far it’s taken a lot of work to set up GAMBIT + backends for
new theories

• Coming soon: GAMBIT 2.0 w/ GUM

• Auto-generation of GAMBIT code + interfaces for calculations of
mass spectrum, decays, dark matter observables, collider
physics and vacuum stability

• gambit.hepforge.org

• zenodo.org/communities/gambit-official

G AM B I T

Summary

http://gambit.hepforge.org
http://zenodo.org/communities/gambit-official

Anders Kvellestad 30 G AM B I T

