

UiO **Content of Physics**

University of Oslo

Finding an Elephant in the Aurora

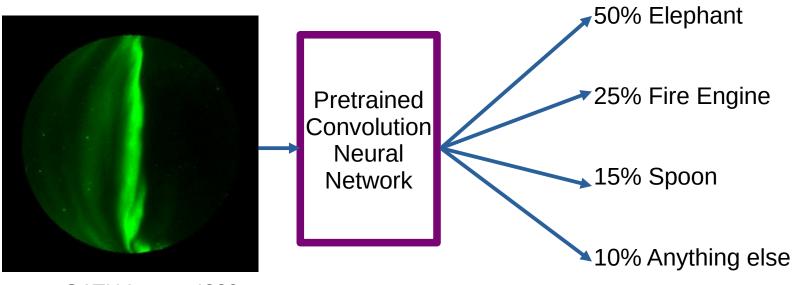
Using machine learning to classify Northern lights images and predict phenomena

Pascal Sado – University of Oslo

UiO **Department of Physics** University of Oslo

Contents

- Problem
- Methods
 - Feature Extraction
 - Transfer Learning
- Classification
 - Performance on Training Data
 - Performance on Unseen Data
- Application
 - Prediction of magnetic field disturbance

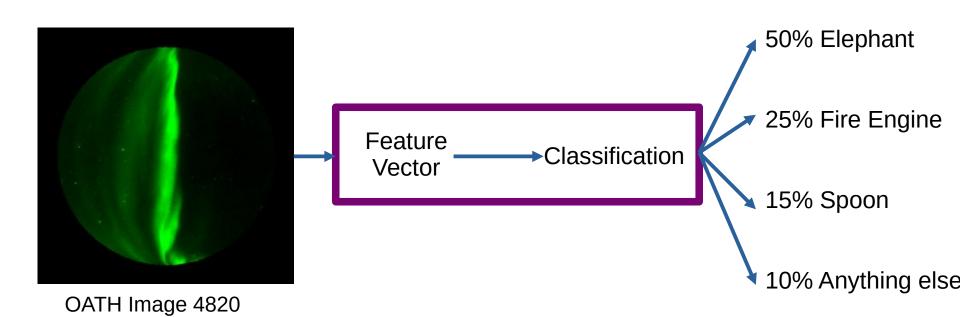


Problem

- 100s of Millions of Images of the night sky
 - Analysis of single events -> time intensive
 - Algorithms for automated classification -> Complex, expensive
- Transfer Learning:
 - established methods applied to similar problems
 - No / minimal training necesary

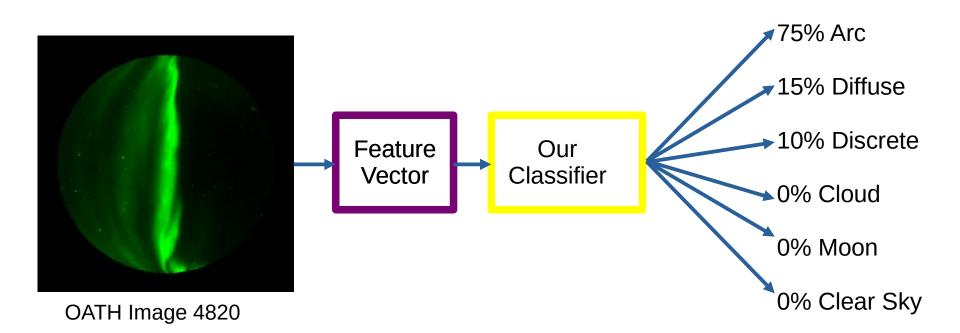
University of Oslo

Methods: Feature Extraction


OATH Image 4820

(Clausen and Nickisch, 2018)

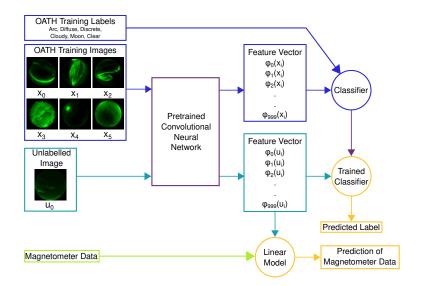
21.06.2021 - Fysikermøtet – Pascal Sado


University of Oslo

Methods: Feature Extraction

University of Oslo

Methods: Feature Extraction



 $\mathrm{UiO}\,\ensuremath{^{\bullet}}$ Department of Physics

University of Oslo

Method

- Pretrained CNN for feature extraction
- Train SVM on extracted features
- Predict unseen images' labels
- Advantages:
 - Computationally inexpensive
 - Libraries for extraction and classification already exist
 - Features can be "reused"

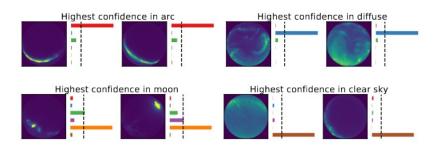
UiO **Department of Physics**

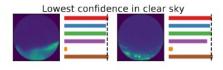
University of Oslo

Performance on Training Data

- 90% accuracy for six classes
- 98% accuracy for aggregated 2 classes
- Largest confusion between auroral classes and "clear sky"

	arc	diffuse	discrete	cloud	moon	clear
arc	166	13	28	0	0	4
diffuse	15	277	39	0	0	8
discrete	22	23	383	1	1	5
cloud	0	2	1	249	4	0
moon	0	0	0	2	178	2
clear	7	12	4	0	1	300

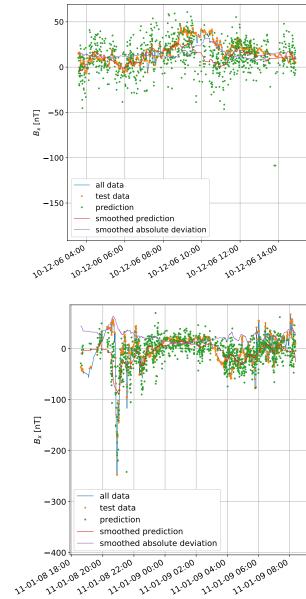

OATH 2052 (clear)


OATH 2053 (arc)

UiO **Department of Physics** University of Oslo

Performance on unseen Data

- ~550000 Unseen Images
- Classified by new Algorithm
 - Arcs: 43544
 - Diffuse: 81547
 - Discrete: 70334
 - Clouds: 316050
 - Moon: 46
 - Clear: 38765



UiO **Department of Physics** University of Oslo

Application: Prediction of magnetic field disturbance

- Removed images classified as non-aurora and by meteorological data (n~180000 left)
- Assign locally measured magnetic field
- Predict disturbance from mean magnetic field based on extracted features
- Poor per-image performance, but running average fits nicely
- Performing better than fitting the mean

Conclusion

- Transfer Learning for Aurora Image Classification works
- 2 classes "aurora" \leftrightarrow "no aurora" with human like precision
- Classifier excels at Preprocessor for removing clouds / non-aurora
- Features are usefull for other processes like magnetic field disturbance prediction

Read our paper:

Transfer Learning Aurora Image Classification and Magnetic Disturbance Evaluation (TAME) – Pending Peer Review, PrePrint available here:

https://doi.org/10.1002/essoar.10507386.1

http://tid.uio.no/TAME/