Introduction	Setup	Noise	FV		Results	Window	Conclusions

Leading hadronic contribution to the muon magnetic moment from lattice QCD

Bálint C. Tóth

University of Wuppertal

Budapest-Marseille-Wuppertal-collaboration

Nature (2021), doi.org/10.1038/s41586-021-03418-1 [2002.12347]

Sz. Borsanyi, Z. Fodor, J. N. Guenther, C. Hoelbling, S. D. Katz, L. Lellouch, T. Lippert, K. Miura, L. Parato, K. K. Szabo, F. Stokes, B. C. Toth, Cs. Torok, L. Varnhorst

Introduction	Setup	Noise	FV	Scale	IB	Results	Window	Conclusions
0000000	O	00	oo	O	oo	00000	O	0
Outline								

- Introduction
- Simulation setup
- Challenges
- Results for $a_{\mu}^{\text{LO-HVP}}$
- Window

Introduction	Setup	Noise	FV	Scale	Results	Window	Conclusions
000000					00000		

Introduction

Introduction	Setup	Noise	FV	Scale	IB	Results	Window	Conclusions
000000	0	00	oo	O	oo	00000	O	0
Lattice (QCD							

- Lattice gauge theory: systematically improvable, non-perturbative, 1st principles method
 - Discretize space-time with lattice spacing: a
 - Take a finite volume: $V = L^3 \times T$

- Quarks: on sites
 Gluons: on links
- Have to discretize action + operators

$$\int d^4 x \longrightarrow a^4 \sum_x \\ \partial_\mu \longrightarrow \text{ finite differences}$$

• Momentum $p \leq \frac{\pi}{a} \implies$ natural UV cutoff.

• To get physical results, need to perform:

() Infinite volume limit $(V \to \infty) \longrightarrow$ numerically or analytically **(2)** Continuum limit $(a \to 0) \longrightarrow$ min. 3 different *a*

Introduction	Setup	Noise	FV		Results	Window	Conclusions
000000							
Lattice	QCD						

• Compute path integral in Euclidean spacetime

$$\int [\mathrm{d} U] \, [\mathrm{d} \overline{\psi}] \, [\mathrm{d} \psi] \, \mathcal{O} \, e^{-S_{\mathrm{g}}(U) - \overline{\psi} \, \mathcal{M}(U) \, \psi} = \int [\mathrm{d} U] \, \mathcal{O}_{\mathrm{Wick}} \, \det(\mathcal{M}(U)) \, e^{-S_{\mathrm{g}}(U)}$$

- $L^3 \times T = 96^3 \times 144 \longrightarrow \approx 4 \cdot 10^9$ dimensional integral
- $det(M(U)) e^{-S_g(U)}$ positive measure \longrightarrow stochastic integration

• 100000 years for a laptop \longrightarrow 1 year for supercomputer

Introduction	Setup	Noise	FV		Results	Window	Conclusions
0000000	0	00			00000		

Lattice QCD: examples

Dürr et.al, Ab-initio Determination of Light Hadron Masses, Science 322 (2008) 1224-1227

 Borsanyi et.al, Lattice QCD for Cosmology, Nature 539 (2016) 7627, 69-71

 Borsanyi et.al, Ab initio calculation of the neutron-proton mass difference, Science 347 (2015) 1452-1455

 Chang et.al, A per-cent-level determination of the nucleon axial coupling from quantum chromodynamics, Nature 558 (2018) 7708, 91-94

22 Apr 2021

B. C. Tóth | BMWc

• $\Pi_{\mu
u}(q) = \left(q_{\mu}q_{
u} - g_{\mu
u}q^2
ight)\Pi(q^2)$ analytic + branch-cut

- Minkowski from R-ratio experiments
- Euclidean from lattice QCD or exp. like MUonE
- Minkowski \rightarrow Euclidean via dispersion relation ($Q^2 = -q^2$)

$$\Pi(Q^2) = \int_{s_{
m th}}^{\infty} ds \; rac{Q^2}{s(s+Q^2)} rac{1}{\pi} {
m Im} \Pi(s)$$

• get Π from Euclidean current-current correlator

$$\Pi_{\mu
u} = \int dx \, e^{iQx} \langle J_{\mu}(x) J_{
u}(0)
angle = \left(Q_{\mu} Q_{
u} - \delta_{\mu
u} Q^2
ight) \Pi(Q^2)$$

• Q is available at discrete momenta only

• smooth interpolation in Q and prescription for $\Pi(0)$

[Bernecker, Meyer '11], [HPQCD'14], ...

[Blum '02]

$$a_\mu^{ extsf{HVP}} = rac{lpha^2}{\pi^2}\int dQ^2 \,\, k_\mu(Q^2)\,\,\Pi(Q^2)$$

 $k_{\mu}(Q^2)$ describes the leptonic part of diagram

•
$$a_{\mu}^{\rm LO-HVP} = \alpha^2 \int_0^\infty dt \ K(t) \ C(t)$$

with the weight function

$$\begin{split} \mathcal{K}(t) &= \int_0^{Q_{\max}^2} \frac{dQ^2}{m_{\mu}^2} \,\omega\left(\frac{Q^2}{m_{\mu}^2}\right) \left[t^2 - \frac{4}{Q^2} \sin^2\left(\frac{Qt}{2}\right)\right] \\ \omega(r) &= [r+2 - \sqrt{r(r+4)}]^2 / \sqrt{r(r+4)} \end{split}$$

• only integrate up to $Q_{max}^2 = 3 \, \text{GeV}^2$

• $Q^2 > Q_{\max}^2$: perturbation theory

Introduction	Setup	Noise	FV		Results	Window	Conclusions

Simulation setup

Introduction	Setup	Noise	FV	Scale	IB	Results	Window	Conclusions
0000000	•	00	oo	O	oo	00000	0	0
Simulatio	ons							

- Tree-level Symanzyk gauge action
- $N_f = 2 + 1 + 1$ staggered fermions
- stout smearing 4 steps, $\rho = 0.125$
- $L \sim 6 \, \text{fm}$, $T \sim 9 \, \text{fm}$
- M_{π} and M_{K} are around physical point

β	<i>a</i> [fm]	$L \times T$	#conf
3.7000	0.1315	48 imes 64	904
3.7500	0.1191	56 imes 96	2072
3.7753	0.1116	56 imes 84	1907
3.8400	0.0952	64 imes 96	3139
3.9200	0.0787	80 imes 128	4296
4.0126	0.0640	96 imes144	6980

Ensembles for dynamical QED

β	<i>a</i> [fm]	$L \times T$	#conf
3.7000	0.1315	24 imes48	716
		48 imes 64	300
3.7753	0.1116	28 imes 56	887
3.8400	0.0952	32 imes 64	4253

Introduction	Setup	Noise	FV	Scale	IB	Results	Window	Conclusions
0000000	O	00	oo	O	oo	00000	0	0
Challeng	jes							

Introduction	Setup	Noise	FV	Scale	IB	Results	Window	Conclusions
0000000	O	00	oo	O	oo	00000	0	0
Noise re	ductio	n						

• decrease noise by replacing C(t) by upper/lower bounds above t_c

[Lehner 2016] [Borsanyi et.al. 2017]

$$0 \leq C^{ ext{light}}(t) \leq C^{ ext{light}}(t_c)e^{-E_{2\pi}(t-t_c)}$$
 $t_c = 4.0 ext{ fm}$
 $0 \leq -C^{ ext{disc}}(t) \leq rac{1}{10}C^{ ext{light}}(t_c)e^{-E_{2\pi}(t-t_c)} + C^{ ext{strange}}(t) + C^{ ext{charm}}(t)$ $t_c = 2.5 ext{ fm}$

Introduction	Setup	Noise	FV	Scale	IB	Results	Window	Conclusions
0000000	O	⊙●	oo	O	oo	00000	0	0
Low Mo	de Ave	eraging						

• Treat lowest eigenmodes of Dirac operator exactly

[Neff et.al. 2001] [Giusti et.al. 2004] [Li et.al. 2010] ...

- $L = 6 \, \text{fm} \approx 1000 \, \text{eigenvectors}$ up to $\approx m_s/2$
- $L = 11 \, \text{fm} \approx 6000 \, \text{eigenvectors}$

- factor 5 gain in precision
- bounding t_c : 3 fm \rightarrow 4 fm
- few permil accuracy on each ensemble

0000000	o	00	00	O	00	00000	o	o
Finite v	olume	correc	tions					

Setup O	Noise 00	FV ●0	Scale O	IB oo	Results 00000	Window 0	Conclusions 0					
FV: lattice												
• FV correction in two steps												
$a_\mu(\infty)-a_\mu(ref)=[a_\mu(big)-a_\mu(ref)]_{\mathtt{4HEX}}+[a_\mu(\infty)-a_\mu(big)]_{\mathrm{XPT}}$												
	$\stackrel{Setup}{\circ}$	\sum_{o}^{Noise}	Setup Noise FV \circ 00 \bullet 0 iCe V correction in two steps $p_{\mu}(\infty) - a_{\mu}(\text{ref}) = [a_{\mu}(\text{big})$	Setup Noise FV Scale 0 00 \bullet 0 0 0 \bullet 0 0 0 0 0 0 0 0 0 0 0	Setup Noise FV Scale IB o o o o $oiCeV correction in two stepsp_{\mu}(\infty) - a_{\mu}(\text{ref}) = [a_{\mu}(\text{big}) - a_{\mu}(\text{ref})]_{4\text{HEX}} + $	Setup Noise FV Scale IB Results o o o o o o o o o o	Setup Noise FV Scale IB Results Window $\bullet \circ$ $\bullet \circ$					

Introduction	Setup	Noise	FV	Scale	IB	Results	Window	Conclusions
0000000	O	00	o●	O	oo	00000	0	0
FV: non-	lattice							

Comparison to non-lattice approaches

• NLO and NNLO Chiral perturtabion theory (XPT)

[Gasser & Leutwyler 1985] [Bijnens et.al. 1999]

- [Gounaris & Sakurai 1968] [Lellouch & Lüscher 2001] [Mever 2011] [Francis *et.al.* 2013]
- Hansen–Patella approach
- Rho-pion-gamma model (RHO)

[Sakurai 1960], [Jegerlehner & Szafron 2011] [Chakraborty et.al. 2017]

[Hansen & Patella 2019,2020]

- 2. $a_\mu(\infty) a_\mu(big)$
 - NLO XPT: 0.3

MLLGS-model

NNLO XPT: 0.6

 $a_{\mu}(\infty) - a_{\mu}(\text{ref}) = 18.7(2.0)_{\text{stat}}(1.4)_{\text{cont}}(0.3)_{\text{big}}(0.6)_{I=0}(0.1)_{\text{qed}}[2.5]$

		00	00	0	00	00000	0	0
Scale Se	rung							

Introduction	Setup	Noise	FV	Scale	IB	Results	Window	Conclusions
0000000	O	00	oo		oo	00000	0	0
Scale det	ermina	ation						

Lattice spacing a enters into a_{μ} determination:

- physical value of m_{μ}
- physical values of m_{π}, m_K
- $\longrightarrow \Delta_{\sf scale} a_\mu \sim 2 \cdot \Delta(\sf scale)$

- Experimentally well known: 1672.45(29) MeV [PDG 2018]
- Moderate *m_q* dependence
- Can be precisely determined on the lattice
- For separation of isospin breaking effects: w₀ scale setting
 - Moderate m_q dependence
 - Can be precisely determined on the lattice
 - No experimental value
 - \longrightarrow Determine value of w_0 from $M_\Omega \cdot w_0$

 $w_0 = 0.17236(29)(63)[70]$ fm

Introduction	Setup	Noise	FV	Scale	IB	Results	Window	Conclusions
0000000	O	00	oo	O	oo	00000	O	0
Isospin	breakir	ng						

Introduction	Setup	Noise	FV	Scale	IB	Results	Window	Conclusions
QCD+G	QED							

- Reach sub-percent level: include isospin breaking effects for
 - ⟨jj⟩
 - masses
 - scale
- Rewrite dynamical QED as quenched QED expectation values

$$\langle \mathcal{O} \rangle_{\text{QCD+unquenched QED}} = \frac{\left\langle \left\langle \mathcal{O}(U,A) \frac{\det M(U,A)}{\det M(U,0)} \right\rangle_{\text{quenched QED}} \right\rangle_{\text{QCD}}}{\left\langle \left\langle \frac{\det M(U,A)}{\det M(U,0)} \right\rangle_{\text{quenched QED}} \right\rangle_{\text{QCD}}}$$

- Take isospin symmetric gluon configurations: U
- Compute derivatives

$$m_l \frac{\partial X}{\partial \delta m}$$
 $\frac{\partial X}{\partial e}$ $\frac{1}{2} \frac{\partial^2 X}{\partial e^2}$

Hybrid approach:

- sea effects: derivatives
- valence effects: finite differences

[De Divitiis et.al. 2013] [Eichten et.al. 1997]

Introduction	Setup	Noise	FV	IB	Results	Window	Conclusions
				00			

Overview of contributions

22 Apr 2021

Introduction	Setup	Noise	FV		Results	Window	Conclusions
					00000		

Results for $\textit{a}_{\mu}^{\text{LO-HVP}}$

Continuu	o Im lin	oit	00	0	00	00000	0	O
Introduction	Setup	Noise	FV	Scale	IB	Results	Window	Conclusions

000000	0	00	00	0	00	00000	0	0
Introduction	Setup	Noise	FV	Scale	IB	Results	Window	Conclusions

Introduction	Setup	Noise	FV	Scale	IB	Results	Window	Conclusions
0000000	O	00	oo	0	oo	00000	O	0
-								

Introduction	Setup	Noise	FV	Scale	IB	Results	Window	Conclusions
0000000	O	00	oo	0	oo	00000	O	0
-								

Introduction	Setup	Noise	FV	Scale	IB	Results	Window	Conclusions
-		00	00	•	00	00000	Ŭ.	0

Introduction	Setup	Noise	FV	Scale	IB	Results	Window	Conclusions
0000000	O	00	oo	O	oo	0●000	0	0
Global fit	t proce	dure						

- For full result: physical point is set via M_{Ω} , $M_{K_{\chi}}^2 = \frac{1}{2} \left(M_{K_0}^2 + M_{K_+}^2 - M_{\pi_+}^2 \right)$, ΔM_K^2 , $M_{\pi_0}^2$ \leftarrow Type-I
- For IB-decomposition: physical point is set via w_0 , M_{ss}^2 , $\Delta M^2 = M_{dd}^2 - M_{uu}^2$, $M_{\pi_{\chi}}^2 = \frac{1}{2} \left(M_{uu}^2 + M_{dd}^2 \right) \quad \longleftarrow$ Type-II
- Expand observable around physical point

$$Y = A + BX_l + CX_s + DX_{\delta m} + Ee_v^2 + Fe_ve_s + Ge_s^2$$

- Combined χ^2 fit for all components
- Several thousand analyses, combined using histogram method

$$a_{\mu}^{
m light}(L_{
m ref},\,T_{
m ref})=639.3(2.0)(4.2)[4.6]$$

•
$$a_{\mu}^{\text{strange}}(L_{\text{ref}}, T_{\text{ref}}) = 53.379(89)(67)[111] - 32256 \text{ fits}$$

• $a_{\mu}^{\text{disc}}(L_{\text{ref}}, T_{\text{ref}}) = -18.61(1.03)(1.17)[1.56] - 55296 \text{ fits}$

22 Apr 2021

00	500000	0	00	00	0	00	00000	0	0
Int	roduction	Setup	Noise	FV	Scale	IB	Results	Window	Conclusions

Introduction	Setup	Noise	FV	Scale	IB	Results	Window	Conclusions
0000000	0	00	oo	O	oo	0000●	0	0
Compar	ison wi	ith oth	ier de	termin	ation	S		

Introduction	Setup	Noise	FV		Results	Window	Conclusions

Window

Introduction	Setup	Noise	FV	Scale	IB	Results	Window	Conclusions
0000000	O	00	oo	O	oo	00000	•	0
Window	obser	vable						

• Restrict correlator to window between $t_1 = 0.4 \text{ fm}$ and $t_2 = 1.0 \text{ fm}$

[RBC/UKQCD'18]

- Less challenging than full a_{μ}
 - signal/noise
 - finite size effects
 - lattice artefacts (short & long)

Introduction	Setup	Noise	FV		Results	Window	Conclusions

Conclusions & Outlook

Introduction	Setup	Noise	FV	Scale	IB	Results	Window	Conclusions
0000000	O	00	oo	O	oo	00000	0	•
Conclus	ions							

Do our results imply NP @ EW scale?

- Passera et al '08: first exploration of connection $a_{\mu}^{\text{LO-HVP}} \leftrightarrow \Delta_{\text{had}}^{(5)} \alpha(M_Z^2)$
- Crivellin et al '20, most aggressive scenario (see also Keshavarzi et al '20, Malaescu et al '20): our results suggest a 4.2 σ overshoot in $\Delta_{had}^{(5)} \alpha(M_Z^2)$ compared to result of fit to EWPO
- Assume same 2.8% relative deviation in R-ratio as we found in $a_{\mu}^{\text{LO-HVP}}$
- Hypothesis is not consistent w/ BMWc '17 nor new result

EWP