On the mixed 0-form/1-form anomaly in the Hilbert space: pouring new wine into old bottles Andrew Cox University of Toronto

with Erich Poppitz and F. David Wandler in hep-th/2106.11442

August 1, 2022

Outline

- 1. Introduction and Motivation
- 2. Higher-form Symmetries and Anomalies
- 3. Pure Yang-Mills
- 4. QCD (adj)
- 5. Discussion and Conclusion

Introduction and Motivation

Introduction and Motivation **Anomaly Matching**

known 🗸 't Hooft anomaly matching anything??? IR

Anomaly matching allows us to constrain IR dynamics

"Usual" anomaly matching understood since 1980s

Seiberg 2014-... + others)

- **New:** generalized 't-Hooft anomaly matching (Gaiotto, Kapustin, Komargodski,

Introduction and Motivation This Talk

New mixed anomalies involving higher-form symmetries in Hilbert space Give clear, down to earth picture of these anomalies

Old bottles: van Baal's work on Hamiltonian pure Yang-Mills on torus in 1980s New wine: new 0-form/1-form anomalies

We study 4d gauge theories: pure Yang-Mills and QCD (adj) Exact degeneracies between appropriate electric flux states for any torus size

Study all gauge groups (with center): SU(N), Sp(N), Spin(N), E_6 , E_7

- **Our work:** provide explicit examples of 0-form/1-form anomaly in Hilbert space

Higher-form Symmetries and Anomalies

Anomalies in the Hilbert space A Review

Simultaneously diagonalize \hat{H} and $\hat{U} \longrightarrow$ states $|E, u\rangle$

 $|\hat{H}, \hat{V}| = 0 \implies \hat{V}$ cannot change energy

 $\hat{U}\hat{V}\left(\hat{V}\hat{U}\right)^{-1} \neq 1 \implies \hat{V}|E,u\rangle$

Takeaway: anomaly informs degeneracy of states

- Suppose G and H have a mixed 't Hooft anomaly $\implies |\hat{H}, \hat{U}| = 0$ and $|\hat{H}, \hat{V}| = 0$ Introduce backgrounds for $\mathbf{G} \longleftrightarrow \hat{U}\hat{V}(\hat{V}\hat{U})^{-1}$ changed (group commutator)

$$\sim |E, u'\rangle, u \neq u'$$

Higher Form Symmetries A Quick Introduction

Old (0-form) symmetries: act on local objects (fields)

New (higher form) symmetries: act on non-local objects

eg: 1-form center symmetry acting on Wilson loops Have been known on the lattice for a long time, new insights into continuum description

Our interest: new generalized 't Hooft anomalies involving higher form symmetries

Theory	0-form	1-form	
Pure Yang-Mills	Parity	Center	
QCD (adj)	Chiral	Center	

Pure Yang-Mills on the Torus

Pure Yang-Mills Setup

Spacetime is $\mathbb{T}^3 \times \mathbb{R}$ - \mathbb{T}^3 size is $L_1 \times L_2 \times L_3$

SU(N) gauge group (will generalize later)

$$\hat{H}_{\theta=0} = \int_{\mathbb{T}^3} \mathrm{d}^3 x \,\mathrm{Tr}\left(g^2 \hat{\Pi}_i \hat{\Pi}_i + \frac{1}{g^2} \hat{B}_i\right)$$

We will impose twisted boundary conditions on \mathbb{T}^3 corresponding to 't Hooft magnetic flux, explicit details not necessary here (see paper for more information)

 \hat{B}_i

$$\hat{A}_{0} = 0 \text{ gauge}$$
$$\hat{\Pi}_{i}^{a}(\overrightarrow{x}) = -i\frac{\delta}{\delta A_{i}^{a}(\overrightarrow{x})} \qquad \hat{B}_{i} = \frac{1}{2}\varepsilon_{ijk}\hat{F}_{jk}$$

Pure Yang-Mills Setup

Spacetime is $\mathbb{T}^3 \times \mathbb{R}$ - \mathbb{T}^3 size is $L_1 \times L_2 \times L_3$

SU(N) gauge group (will generalize later)

$$\hat{H}_{\theta=0} = \int_{\mathbb{T}^3} \mathrm{d}^3 x \,\mathrm{Tr}\left(g^2 \hat{\Pi}_i \hat{\Pi}_i + \frac{1}{g^2} \hat{B}_i\right)$$

 $\hat{H}_{\theta=\alpha} = \hat{V}_{\alpha} \hat{H}_{\theta=0} \hat{V}_{\alpha}^{-1}$

 $\hat{V}_{\alpha}\left[\hat{A}\right] = e^{i\alpha \int_{\mathbb{T}^3} K_0(\hat{A})} \text{ shifts the } \theta \text{-angle by } \alpha$

$$K_0(\hat{A})$$

We will impose twisted boundary conditions on \mathbb{T}^3 corresponding to 't Hooft magnetic flux, explicit details not necessary here (see paper for more information)

 $\hat{B}_{i} \hat{B}_{i} = 0 \text{ gauge}$ $\hat{\Pi}_{i}^{a}(\vec{x}) = -i \frac{\delta}{\delta A_{i}^{a}(\vec{x})} \qquad \hat{B}_{i} = \frac{1}{2} \varepsilon_{ijk} \hat{F}_{jk}$

$$=\frac{1}{8\pi^2}\operatorname{Tr}\left(A\wedge F-\frac{i}{3}A\wedge A\wedge A\right)$$

Pure Yang-Mills Setup: Hilbert Space

Gauge field states $\hat{A}(\vec{x})|A\rangle = A(\vec{x})|A\rangle$

Gauge transformations: $\hat{U}|A\rangle = |U \circ A\rangle$ $U \circ A = U(A - id)U^{-1}$

U obey appropriate \mathbb{T}^3 boundary conditions for magnetic flux

Hilbert space:
$$\mathscr{H} = \left\{ |\psi\rangle \mid \hat{U}|\psi\rangle = \right.$$

U are homotopic to identity, preserve \mathbb{T}^3 boundary conditions

Under large gauge transformations $\hat{U}[\nu]|\psi\rangle = |\psi\rangle$

We take the $\theta = 0$ Hilbert space, placing the θ dependence in the Hamiltonian $\nu \neq 0$ is the instanton number of U

 $|\psi\rangle$

Pure Yang-Mills Setup: Center Symmetry

 \mathbb{Z}_N 1-form center symmetry acts on (winding) Wilson loops

Generated by improper* gauge transformations C[k]

$$C[\overrightarrow{k}]: W_{l} \equiv \operatorname{Tr}_{F}\left(\mathscr{P}e^{-i \oint \mathrm{d}x^{l}A_{l}}\right) \to e^{2\pi i k_{l}/N}W_{l}$$

-lilbert space as $\hat{T}_{l}|A\rangle = \left|C[\overrightarrow{e}_{l}] \circ A\right\rangle$

Implemented on H

*The transformations are improper because they do not obey the \mathbb{T}^3 boundary conditions

Pure Yang-Mills Setup: Parity

 \mathbb{Z}_2 0-form parity symmetry at $\theta = 0, \pi$ $P: A(x, y, z) \to A^{P}(x, y, z) = -\Gamma_{P}A(L_{1} - x, L_{2} - y, L_{3} - z)\Gamma_{P}^{-1}$ $\Gamma_P \in SU(N), \ \Gamma_P^2 = \pm 1$ is necessary to preserve twisted boundary conditions on \mathbb{T}^3 $\theta = 0$: Parity acts directly as above \hat{P} $\theta = \pi$: Parity maps $\theta = \pi \to -\pi$, need to also insert $\hat{V}_{2\pi}$: $\hat{P}_{\pi} = \hat{V}_{2\pi}\hat{P}_{0}$

$$\hat{P}_0|A\rangle = |A^P\rangle$$

Pure Yang-Mills Center Symmetry: Diagonalizing and Backgrounds

Introduce center background ('t Hooft flux) magnetic flux \vec{m}

 \overrightarrow{m} related to \mathbb{T}^3 twisted boundary conditions

Introduce "electric flux" states $\hat{T}_l |\vec{e}\rangle = e^{2\pi i e_l/N} |\vec{e}\rangle$ Recall $\left[\hat{H}, \hat{T}_l\right] = 0 \longrightarrow$ can label states by energy and \overrightarrow{e}

Introducing a static center vortex in the l^{th} direction increases m_l by one

unit

Introducing a Wilson loop in the l^{th} direction increases e_1 by one unit

Pure Yang-Mills Setup: Center Symmetry and θ Shifts, an Important Commutation Relation

Very important commutation relation:

$$\hat{T}_l \hat{V}_{2\pi}[\hat{A}] \hat{T}_l^{-1} = e^{2\pi i \frac{m_l}{N}} \hat{V}_{2\pi}[\hat{A}] = \left(e^{2\pi i Q[T_l]} \hat{V}_{2\pi}[\hat{A}] \right)$$

This can be obtained by direct calculation, see the paper for more explicit details $Q[T_l]$ is the topological charge of a configuration on \mathbb{T}^4 with boundary conditions twisted by $C[\overrightarrow{e}_l, 0]$ in the time direction

Pure Yang-Mills Center-Parity at $\theta = 0$ Act with $\hat{P}_0 \hat{T}_i \hat{P}_0$ on $|A\rangle$ Acts as "gauge transformation":

 $\Gamma_P C[\overrightarrow{e}_i, 0](L_1 -$

Result: Î

We see that parity and centre symmetry form a D_N (dihedral) algebra

No mixed anomaly

$$x, L_2 - y, L_3 - z)\Gamma_P \sim C[-\vec{e}_i, 0](x, y, z)$$

$$\hat{P}_0 \hat{T}_i \hat{P}_0 = \hat{T}_i^{-1}$$

Pure Yang-Mills Center-Parity at $\theta = \pi$

Use important commutation relation a $\hat{T}_l \hat{V}_{2\pi}[\hat{A}] \hat{T}_l^{-1} = e^{2\pi i \frac{m_l}{N}} \hat{V}_{2\pi}[\hat{A}] = \left(e^{2\pi i Q[T_l]} \hat{V}_{2\pi}[\hat{A}]\right)$

Result:
$$\hat{T}_l \hat{P}_{\pi} = e^{2\pi i m_l / N} \hat{P}_{\pi} \hat{T}_l^{-1} \left(= e^{2\pi i Q[T_l]} \hat{P}_{\pi} \hat{T}_l^{-1} \right)$$

We see that parity and center symmetry form a central extension of the D_N (dihedral) algebra

Notice: center symmetry background modifies the group

and
$$\theta = 0$$
 result
 $\hat{P}_{\pi} = \hat{V}_{2\pi}\hat{P}_{0}$

commutator
$$\hat{T}_l \hat{P}_{\pi} \left(\hat{P}_{\pi} \hat{T}_l \right)^{-1}$$
 according to the anomaly!

Pure Yang-Mills Implications of Center-Parity Algebra Consider $\overrightarrow{m} = (0,0,1)$ as example Remember $|\hat{H}_{\theta=0,\pi}, \hat{T}_l| = |\hat{H}_{\theta=0,\pi}, \hat{P}|$ Label simultaneous $\hat{H}_{\theta=0,\pi}$ and \hat{T}_l eigenstates by e_3 only

$$\left[\hat{b}_{0,\pi}\right] = 0$$

Pure Yang-Mills Implications of Center-Parity Algebra Consider $\overrightarrow{m} = (0,0,1)$ as example Remember $\left| \hat{H}_{\theta=0,\pi}, \hat{T}_{l} \right| = \left| \hat{H}_{\theta=0,\pi}, \hat{P}_{l} \right|$ Label simultaneous $\hat{H}_{\theta=0,\pi}$ and \hat{T}_l eigenstates by e_3 only At $\theta = 0$: $\hat{T}_{I}\hat{P}_{0} = \hat{P}_{0}\hat{T}_{I}^{-1} \implies \hat{P}_{0}|e_{3}\rangle = |-e_{3}\rangle$ Recall: e_3 is defined mod N N odd: $e_3 = 0$ invariant N even: $e_3 = 0$, $\frac{N}{2}$ invariant

$$\left[\hat{b}_{0,\pi}\right] = 0$$

Pure Yang-Mills Implications of Center-Parity Algebra Consider $\overrightarrow{m} = (0,0,1)$ as example Remember $\left| \hat{H}_{\theta=0,\pi}, \hat{T}_{l} \right| = \left| \hat{H}_{\theta=0,\pi}, \hat{P}_{l} \right|$ Label simultaneous $\hat{H}_{\theta=0,\pi}$ and \hat{T}_l eigenstates by e_3 only At $\theta = 0$: $\hat{T}_1 \hat{P}_0 = \hat{P}_0 \hat{T}_1^{-1} \implies \hat{P}_0 |e_3\rangle = |-e_3\rangle$ Recall: e_3 is defined mod N *N* odd: $e_3 = 0$ invariant N even: $e_3 = 0$, $\frac{N}{2}$ invariant

$$\left[\hat{b}_{0,\pi}\right] = 0$$

At
$$\theta = \pi$$
:
 $\hat{T}_l \hat{P}_{\pi} = e^{2\pi i m_l / N} \hat{P}_{\pi} \hat{T}_l^{-1} \implies \hat{P}_{\pi} |e_3\rangle = |m_3|$
Recall: e_3 and m_3 are defined mod N
 N odd: $e_3 = \frac{N+1}{2}$ invariant

N even: no invariant states

 $-e_{2}\rangle$

Pure Yang-Mills Implications of Center-Parity Algebra At $\theta = 0$:

$$\hat{T}_l \hat{P}_0 = \hat{P}_0 \hat{T}_l^{-1} \implies \hat{P}_0 |e_3\rangle = |-e_3\rangle$$

Recall: e_3 is defined mod N

N odd: $e_3 = 0$ invariant N even: $e_3 = 0$, $\frac{N}{2}$ invariant

At $\theta = \pi$: $\hat{T}_1 \hat{P}_{\pi} = e^{2\pi i m_l / N} \hat{P}_{\pi} \hat{T}_1^{-1} \implies \hat{P}_{\pi} |e_3\rangle = |m_3 - e_3\rangle$ Recall: e_3 and m_3 are defined mod N N odd: $e_3 = \frac{N+1}{2}$ invariant No anomaly, but a global inconsistency

N even: no invariant states

Pure Yang-Mills Implications of Center-Parity Algebra At $\theta = 0$:

$$\hat{T}_l \hat{P}_0 = \hat{P}_0 \hat{T}_l^{-1} \implies \hat{P}_0 |e_3\rangle = |-e_3\rangle$$

Recall: e_3 is defined mod N

N odd: $e_3 = 0$ invariant *N* even: $e_3 = 0$, $\frac{N}{2}$ invariant

Candidates for unique ground state

At
$$\theta = \pi$$
:
 $\hat{T}_l \hat{P}_{\pi} = e^{2\pi i m_l / N} \hat{P}_{\pi} \hat{T}_l^{-1} \implies \hat{P}_{\pi} | e_3 \rangle = | m_3$
Recall: e_3 and m_3 are defined mod N
 N odd: $e_3 = \frac{N+1}{2}$ invariant
No anomaly, but a global inconsistency

N even: no invariant states

Pure Yang-Mills Implications of Center-Parity Algebra At $\theta = 0$:

$$\hat{T}_l \hat{P}_0 = \hat{P}_0 \hat{T}_l^{-1} \implies \hat{P}_0 |e_3\rangle = |-e_3\rangle$$

Recall: e_3 is defined mod N

N odd: $e_3 = 0$ invariant **N even**: $e_3 = 0$, $\frac{N}{2}$ invariant

Candidates for unique ground state No unique ground state, at least doubly degenerate!

At
$$\theta = \pi$$
:
 $\hat{T}_l \hat{P}_{\pi} = e^{2\pi i m_l / N} \hat{P}_{\pi} \hat{T}_l^{-1} \implies \hat{P}_{\pi} | e_3 \rangle = | m_3$
Recall: e_3 and m_3 are defined mod N
 N odd: $e_3 = \frac{N+1}{2}$ invariant
No anomaly, but a global inconsistency
 N even: no invariant states

Pure Yang-Mills Examples

Take $\overrightarrow{m} = (0,0,1)$, label ground states by e_3 only

$$N = 4: \qquad \begin{array}{c} |0\rangle \longleftrightarrow |0\rangle \\ |2\rangle \longleftrightarrow |2\rangle \\ |1\rangle \longleftrightarrow |3\rangle \\ \theta = 0 \end{array}$$

$$N = 3: \qquad \begin{array}{c} |0\rangle \leftrightarrow |0\rangle \\ |1\rangle \leftrightarrow |2\rangle \\ \theta = 0 \end{array} \qquad \begin{array}{c} |0\rangle \leftrightarrow |1\rangle \\ |2\rangle \leftrightarrow |2\rangle \\ \theta = \pi \end{array}$$

$$\begin{array}{c} |0\rangle \longleftrightarrow |1\rangle \\ |2\rangle \longleftrightarrow |3\rangle \\ \theta = \pi \end{array}$$

Pure Yang-Mills Summary and Discussion of Results

N odd:

- Candidates for unique ground states for both $\theta = 0, \pi$
- Ground states are different global inconsistency (no anomaly)

N even:

- Only unique ground state at $\theta = 0$
- States at $\theta = \pi$ at least doubly degenerate

All results are exact at any size torus

Infinite volume limit: if center is preserved (confining phase), parity must be spontaneously broken

Pure Yang-Mills All Gauge Groups

Replace $e^{2\pi i m_l/N}$ in phases by $e^{2\pi i Q_{top}}$

Group	Center	$Q_{\rm top} \pmod{1}$
SU(N)	\mathbb{Z}_N	$rac{1}{N}ec{m}\cdotec{k}$
Sp(N)	\mathbb{Z}_2	$-rac{N}{2}ec{m}\cdotec{k}$
Spin(8N)	$\mathbb{Z}_2^+ \times \mathbb{Z}_2^-$	$-rac{1}{2}(ec{m}^+\cdotec{k}^-)$
Spin(8N+4)	$\mathbb{Z}_2^+ \times \mathbb{Z}_2^-$	$-rac{1}{2}(ec{m}^+\cdotec{k}^-)$
Spin(4N+2)	\mathbb{Z}_4	$-rac{1+2N}{4}ec{m}\cdotec{k}$
Spin(2N+1)	\mathbb{Z}_2	0
E_6	\mathbb{Z}_3	$-rac{1}{3}ec{m}\cdotec{k}$
E_7	\mathbb{Z}_2	$-rac{1}{2}ec{m}\cdotec{k}$

Note that none of Sp(2N), Spin(2N + 1), or E_6 have a center-parity anomaly

Recall:
$$\hat{T}_{l}\hat{P}_{\pi} = e^{2\pi i Q[T_{l}]}\hat{P}_{\pi}\hat{T}_{l}^{-1}$$

$$p[\overrightarrow{m}\cdot\overrightarrow{k}=1]$$

Center-Chiral Anomaly: QCD (adj)

QCD (adj) Introduction

Same setup as pure Yang-Mills (gauge fields, spacetime, etc) Introduce $n_f \leq 5$ adjoint Weyl fermions

Classical 0-form $U(n_f)$ chiral symmetry broken by anomaly to $\frac{\mathbb{Z}_{2n_fN} \times SU(n_f)}{\mathbb{Z}_{n_f}}$

Focus on anomaly between \mathbb{Z}_{2n_fN} discrete chiral symmetry and center symmetry

In a general gauge group \mathbb{Z}_{2n_fN} is replaced by $\mathbb{Z}_{2n_fc_2}$ where c_2 is the dual Coxeter number of the gauge group

QCD (adj) Discrete Chiral Symmetry

Implemented on Hilbert space by $\hat{X}_{\mathbb{Z}_2^0}$

 $\hat{j}^{\mu}_{f} = \hat{\lambda}^{a\,\dagger} \bar{\sigma}^{\mu} \hat{\lambda}^{a}$ is the classical U(1) chiral current

- Note: \hat{j}_{f}^{0} depends only on fermion op
- Center-chiral algebra determined by \hat{I}

Result:
$$\hat{T}_{l}\hat{X}_{\mathbb{Z}_{2n_{f}N}^{(0)}} = e^{-2\pi i \frac{m_{l}}{N}}\hat{X}_{\mathbb{Z}_{2n_{f}N}^{(0)}}\hat{T}_{l}$$

$$e^{(0)}_{2n_fN} = e^{\frac{2\pi i}{2n_fN} \int d^3x \hat{j}_f^0} \hat{V}_{2\pi}^{-1}$$

berators $\implies \left[\hat{j}_f^0, \hat{T}_l\right] = 0$

$$\hat{T}_l, \, \hat{V}_{2\pi} \, \text{algebra!}$$

QCD (adj) **Discrete Chiral Symmetry**

Take $\overrightarrow{m} = (0,0,1)$ as example

Again use electric flux, energy eigenstates $|E, e_3\rangle$

- \implies spontaneous breaking $\mathbb{Z}_{2n_fN} \rightarrow \mathbb{Z}_{2n_f}$

QCD (adj) **All Gauge Groups**

Replace $e^{2\pi i m_l/N}$ in phases by $e^{2\pi i Q_{top}}$

Group	Center	$Q_{\text{top}} \pmod{1}$	Minimum Chiral Breaking	Minimum Degeneracy
SU(N)	\mathbb{Z}_N	$rac{1}{N}ec{m}\cdotec{k}$	$\mathbb{Z}_{2n_fN} \to \mathbb{Z}_{2n_f}$	N
Sp(2N)	\mathbb{Z}_2	0	$\mathbb{Z}_{2n_f(2N+1)} \to \mathbb{Z}_{2n_f(2N+1)}$	1
Sp(2N+1)	\mathbb{Z}_2	$-rac{1}{2}ec{m}\cdotec{k}$	$\mathbb{Z}_{2n_f(2N+2)} \to \mathbb{Z}_{2n_f(N+1)}$	2
Spin(8N)	$\mathbb{Z}_2^+ imes \mathbb{Z}_2^-$	$-\frac{1}{2}(\vec{m}^+\cdot\vec{k}^-+\vec{m}^-\cdot\vec{k}^+)$	$\mathbb{Z}_{2n_f(8N-2)} \to \mathbb{Z}_{2n_f(4N-1)}$	2
Spin(8N+4)	$\mathbb{Z}_2^+ imes \mathbb{Z}_2^-$	$-\frac{1}{2}(\vec{m}^+\cdot\vec{k}^++\vec{m}^-\cdot\vec{k}^-)$	$\mathbb{Z}_{2n_f(8N+2)} \to \mathbb{Z}_{2n_f(4N+1)}$	2
Spin(4N+2)	\mathbb{Z}_4	$-rac{1+2N}{4}ec{m}\cdotec{k}$	$\mathbb{Z}_{8n_fN} \to \mathbb{Z}_{2n_fN}$	4
Spin(2N+1)	\mathbb{Z}_2	0	$\mathbb{Z}_{2n_f(2N-1)} \to \mathbb{Z}_{2n_f(2N-1)}$	1
E_6	\mathbb{Z}_3	$-\frac{1}{3}ec{m}\cdotec{k}$	$\mathbb{Z}_{24n_f} \to \mathbb{Z}_{8n_f}$	3
E_7	\mathbb{Z}_2	$-rac{1}{2}ec{m}\cdotec{k}$	$\mathbb{Z}_{36n_f} \to \mathbb{Z}_{18n_f}$	2

Notice: breaking relatively mild for non SU(N) groups

Expect higher degeneracy for (at least) $n_f = 1$ case (SYM) Perhaps non-invertible symmetries? Discrete chiral/gravity anomaly implies more breaking (for all n_f)

Recall:
$$\hat{T}_l \hat{X}_{\mathbb{Z}_{2n_fN}^{(0)}} = e^{-2\pi i \frac{m_l}{N}} \hat{X}_{\mathbb{Z}_{2n_fN}^{(0)}} \hat{T}_l$$

$$[\overrightarrow{m} \cdot \overrightarrow{k} = 1]$$

Conclusion

Conclusions and Outlook Summary of Results

All results are **exact** for **any** torus size

Pure Yang-Mills

cancellation

Interesting implications for both lattice and semiclassics

QCD (adj)

At least N-fold degeneracy for SU(N)

All other groups have much smaller minimal degeneracy - expect higher

Perhaps breaking of non-invertible symmetries?

Discrete chiral/gravity anomaly implies further breaking then center/chiral

- Exact degeneracy of ground state for all but SU(2N + 1), Sp(2N), Spin(2N + 1), and E_6 Usually expect tunnelling to lift degeneracy at finite volume - there must be some delicate

Thanks for Listening!