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Introduction and Motivation



Introduction and Motivation
Anomaly Matching

‘t Hooft anomaly matching

UV

IR

known ✓

anything???

UV

IR

known ✓

anything that matches anomaly?

Anomaly matching allows us to constrain IR dynamics

“Usual” anomaly matching understood since 1980s

New: generalized ’t-Hooft anomaly matching (Gaiotto, Kapustin, Komargodski, 
Seiberg 2014-… + others)



Introduction and Motivation
This Talk

New mixed anomalies involving higher-form symmetries in Hilbert space

Our work: provide explicit examples of 0-form/1-form anomaly in Hilbert space
Old bottles: van Baal’s work on Hamiltonian pure Yang-Mills on torus in 1980s
New wine: new 0-form/1-form anomalies

We study 4d gauge theories: pure Yang-Mills and QCD (adj)
Exact degeneracies between appropriate electric flux states for any torus size

Study all gauge groups (with center): SU(N), Sp(N), Spin(N), E6, E7

Give clear, down to earth picture of these anomalies



Higher-form Symmetries and 
Anomalies



Anomalies in the Hilbert space
A Review

Suppose G and H have a mixed ’t Hooft anomaly   and ⟹ [Ĥ, Û] = 0 [Ĥ, ̂V] = 0

Introduce backgrounds for G   changed (group commutator)⟷ Û ̂V ( ̂VÛ)
−1

Simultaneously diagonalize  and   states Ĥ Û ⟶ |E, u⟩

 cannot change energy[Ĥ, ̂V] = 0 ⟹ ̂V

Û ̂V ( ̂VÛ)
−1

≠ 1 ⟹ ̂V|E, u⟩ ∼ |E, u′￼⟩, u ≠ u′￼

Takeaway: anomaly informs degeneracy of states



Higher Form Symmetries
A Quick Introduction

Old (0-form) symmetries: act on local objects (fields)

New (higher form) symmetries: act on non-local objects
eg: 1-form center symmetry acting on Wilson loops

Our interest: new generalized ‘t Hooft anomalies involving higher form symmetries

Have been known on the lattice for a long time, new insights into continuum description

Theory 0-form 1-form

Pure Yang-Mills Parity Center

QCD (adj) Chiral Center



Pure Yang-Mills on the Torus



Pure Yang-Mills
Setup

Spacetime is  -  size is 𝕋3 × ℝ 𝕋3 L1 × L2 × L3

  gauge group (will generalize later)SU(N)

 Ĥθ=0 = ∫𝕋3

d3x Tr (g2Π̂iΠ̂i +
1
g2

B̂iB̂i) Π̂a
i ( ⃗x ) = − i

δ
δAa

i ( ⃗x ) B̂i =
1
2

εijk
̂Fjk

We will impose twisted boundary conditions on 
 corresponding to ‘t Hooft magnetic flux, 

explicit details not necessary here (see paper 
for more information)

𝕋3

 gaugeA0 = 0



Pure Yang-Mills
Setup

Spacetime is  -  size is 𝕋3 × ℝ 𝕋3 L1 × L2 × L3

  gauge group (will generalize later)SU(N)

 Ĥθ=0 = ∫𝕋3

d3x Tr (g2Π̂iΠ̂i +
1
g2

B̂iB̂i) Π̂a
i ( ⃗x ) = − i

δ
δAa

i ( ⃗x ) B̂i =
1
2

εijk
̂Fjk

 Ĥθ=α = ̂VαĤθ=0
̂V−1
α

 shifts the -angle by ̂Vα [ ̂A] = eiα ∫𝕋3 K0( ̂A) θ α K0( ̂A) =
1

8π2
Tr (A ∧ F −

i
3

A ∧ A ∧ A)

We will impose twisted boundary conditions on 
 corresponding to ‘t Hooft magnetic flux, 

explicit details not necessary here (see paper 
for more information)

𝕋3

 gaugeA0 = 0



Pure Yang-Mills
Setup: Hilbert Space

Gauge field states ̂A( ⃗x )|A⟩ = A( ⃗x )|A⟩

U ∘ A = U(A − id)U−1
Gauge transformations: Û|A⟩ = |U ∘ A⟩

Hilbert space: ℋ = {|ψ⟩ ∣ Û|ψ⟩ = |ψ⟩}
Under large gauge transformations Û[ν]|ψ⟩ = |ψ⟩

 is the instanton number of ν ≠ 0 U

 are homotopic to identity, preserve  boundary conditionsU 𝕋3

 obey appropriate  boundary conditions for magnetic fluxU 𝕋3

We take the  Hilbert space, placing the  dependence in the Hamiltonianθ = 0 θ



Pure Yang-Mills
Setup: Center Symmetry

 1-form center symmetry acts on (winding) Wilson loopsℤN

Generated by improper* gauge transformations C[ ⃗k ]

C[ ⃗k ] : Wl ≡ TrF (𝒫e−i∮ dxlAl) → e2πikl/NWl

Implemented on Hilbert space as ̂Tl|A⟩ = C[ ⃗e l] ∘ A⟩

*The transformations are improper because they do not obey the  boundary conditions𝕋3



Pure Yang-Mills
Setup: Parity

P : A(x, y, z) → AP(x, y, z) = − ΓPA(L1 − x, L2 − y, L3 − z)Γ−1
P

 is necessary to preserve twisted boundary conditions on ΓP ∈ SU(N), Γ2
P = ± 1 𝕋3

 0-form parity symmetry at ℤ2 θ = 0, π

: Parity acts directly as above θ = 0 ̂P0|A⟩ = |AP⟩

: Parity maps , need to also insert : θ = π θ = π → − π ̂V2π
̂Pπ = ̂V2π

̂P0



Pure Yang-Mills
Center Symmetry: Diagonalizing and Backgrounds

Introducing a static center vortex in 
the  direction increases  by one 

unit
lth ml

Introduce center background (’t Hooft flux) magnetic flux ⃗m
 related to  twisted boundary conditions⃗m 𝕋3

Introduce “electric flux” states ̂Tl| ⃗e ⟩ = e2πiel/N| ⃗e ⟩

Introducing a Wilson loop in the  
direction increases  by one unit

lth

el

Recall   can label states by energy and [Ĥ, ̂Tl] = 0 ⟶ ⃗e



Pure Yang-Mills
Setup: Center Symmetry and  Shifts, an Important Commutation Relationθ

Very important commutation relation:

 is the topological charge of a configuration on  with boundary conditions twisted by  in the time directionQ[Tl] 𝕋4 C[ ⃗e l,0]

̂Tl
̂V2π[ ̂A] ̂T−1

l = e2πi ml
N ̂V2π[ ̂A] = (e2πiQ[Tl] ̂V2π[ ̂A])

This can be obtained by direct calculation, see the paper for more explicit details



Pure Yang-Mills
Center-Parity at θ = 0

Act with  on ̂P0
̂Ti

̂P0 |A⟩

Acts as “gauge transformation”:


ΓPC[ ⃗e i,0](L1 − x, L2 − y, L3 − z)ΓP ∼ C[− ⃗e i,0](x, y, z)

Result: ̂P0
̂Ti

̂P0 = ̂T−1
i

We see that parity and centre symmetry form a  (dihedral) algebraDN

No mixed anomaly



Pure Yang-Mills
Center-Parity at θ = π

Result: ̂Tl
̂Pπ = e2πiml/N ̂Pπ

̂T−1
l ( = e2πiQ[Tl] ̂Pπ

̂T−1
l )

We see that parity and center symmetry form a central extension of the  
 (dihedral) algebraDN

Use important commutation relation and  resultθ = 0
̂Tl

̂V2π[ ̂A] ̂T−1
l = e2πi ml

N ̂V2π[ ̂A] = (e2πiQ[Tl] ̂V2π[ ̂A]) ̂Pπ = ̂V2π
̂P0

Notice: center symmetry background modifies the group commutator  according to the anomaly!̂Tl
̂Pπ ( ̂Pπ

̂Tl)
−1



Implications of Center-Parity Algebra
Consider  as example⃗m = (0,0,1)

Pure Yang-Mills

Remember [Ĥθ=0,π, ̂Tl] = [Ĥθ=0,π, ̂P0,π] = 0

Label simultaneous  and  eigenstates by  onlyĤθ=0,π
̂Tl e3



Implications of Center-Parity Algebra

At :θ = 0

Consider  as example⃗m = (0,0,1)

Recall:  is defined e3 modN

 odd:  invariantN e3 = 0

 even:  invariantN e3 = 0,
N
2

Pure Yang-Mills

̂Tl
̂P0 = ̂P0

̂T−1
l ⟹ ̂P0|e3⟩ = |−e3⟩

Remember [Ĥθ=0,π, ̂Tl] = [Ĥθ=0,π, ̂P0,π] = 0

Label simultaneous  and  eigenstates by  onlyĤθ=0,π
̂Tl e3



Implications of Center-Parity Algebra

At :θ = 0

Consider  as example⃗m = (0,0,1)

Recall:  is defined e3 modN

 odd:  invariantN e3 = 0

 even:  invariantN e3 = 0,
N
2

Pure Yang-Mills

̂Tl
̂P0 = ̂P0

̂T−1
l ⟹ ̂P0|e3⟩ = |−e3⟩

Remember [Ĥθ=0,π, ̂Tl] = [Ĥθ=0,π, ̂P0,π] = 0

Label simultaneous  and  eigenstates by  onlyĤθ=0,π
̂Tl e3

At :θ = π

Recall:  and  are defined e3 m3 modN

 odd:  invariantN e3 =
N + 1

2
 even: no invariant statesN

̂Tl
̂Pπ = e2πiml/N ̂Pπ

̂T−1
l ⟹ ̂Pπ|e3⟩ = |m3 − e3⟩



Implications of Center-Parity Algebra
At :θ = 0
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 even:  invariantN e3 = 0,
N
2

Pure Yang-Mills

̂Tl
̂P0 = ̂P0

̂T−1
l ⟹ ̂P0|e3⟩ = |−e3⟩

At :θ = π

Recall:  and  are defined e3 m3 modN

 odd:  invariantN e3 =
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2

 even: no invariant statesN

̂Tl
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̂T−1
l ⟹ ̂Pπ|e3⟩ = |m3 − e3⟩

No anomaly, but a global inconsistency
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Implications of Center-Parity Algebra
At :θ = 0

Recall:  is defined e3 modN

 odd:  invariantN e3 = 0

 even:  invariantN e3 = 0,
N
2

Pure Yang-Mills

̂Tl
̂P0 = ̂P0

̂T−1
l ⟹ ̂P0|e3⟩ = |−e3⟩

At :θ = π

Recall:  and  are defined e3 m3 modN

 odd:  invariantN e3 =
N + 1

2

 even: no invariant statesN

̂Tl
̂Pπ = e2πiml/N ̂Pπ

̂T−1
l ⟹ ̂Pπ|e3⟩ = |m3 − e3⟩

Candidates for unique ground state
No unique ground state, at least doubly degenerate!

No anomaly, but a global inconsistency



Pure Yang-Mills
Examples

:N = 4

Take , label ground states by  only⃗m = (0,0,1) e3

|0⟩ ⟷ |0⟩

|1⟩ ⟷ |3⟩

θ = 0

|2⟩ ⟷ |2⟩
|0⟩ ⟷ |1⟩

θ = π

|2⟩ ⟷ |3⟩

|0⟩ ⟷ |0⟩

θ = 0

|1⟩ ⟷ |2⟩
:N = 3

|0⟩ ⟷ |1⟩

θ = π

|2⟩ ⟷ |2⟩Global inconsistency



Pure Yang-Mills
Summary and Discussion of Results

 odd:


• Candidates for unique ground states for both 

• Ground states are different - global inconsistency (no anomaly)


 even:


• Only unique ground state at 


• States at  at least doubly degenerate


All results are exact at any size torus

N
θ = 0, π

N
θ = 0

θ = π

Infinite volume limit: if center is preserved (confining phase), parity must be 
spontaneously broken



Pure Yang-Mills
All Gauge Groups

Replace  in phases by e2πi ml/N e2πi Qtop[ ⃗m⋅ ⃗k =1]

Recall: ̂Tl
̂Pπ = e2πiQ[Tl] ̂Pπ

̂T−1
l

Note that none of , , or  have a center-parity anomalySp(2N) Spin(2N + 1) E6

<latexit sha1_base64="PJqcw1FFpe2qmn/utB+qn+ekM8k="></latexit>

Group Center Qtop (mod 1) Parity Broken

SU(N) ZN
1
N ~m · ~k N even

Sp(N) Z2 �N
2 ~m · ~k N odd

Spin(8N) Z+
2 ⇥ Z�

2 � 1
2 (~m

+ · ~k� + ~m� · ~k+) Always

Spin(8N + 4) Z+
2 ⇥ Z�

2 � 1
2 (~m

+ · ~k+ + ~m� · ~k�) Always

Spin(4N + 2) Z4 � 1+2N
4 ~m · ~k Always

Spin(2N + 1) Z2 0 Never

E6 Z3 � 1
3 ~m · ~k Never

E7 Z2 � 1
2 ~m · ~k Always



Center-Chiral Anomaly: QCD (adj)



QCD (adj)
Introduction
Same setup as pure Yang-Mills (gauge fields, spacetime, etc)
Introduce  adjoint Weyl fermionsnf ≤ 5

Classical 0-form  chiral symmetry broken by anomaly to U(nf)
ℤ2nf N × SU(nf)

ℤnf

Focus on anomaly between  discrete chiral symmetry and center symmetryℤ2nf N

In a general gauge group  is replaced by  where  is the dual Coxeter number of the gauge groupℤ2nf N ℤ2nf c2
c2



QCD (adj)
Discrete Chiral Symmetry

Implemented on Hilbert space by X̂ℤ(0)
2nf N

= e
2πi

2nf N ∫ d3x ̂j 0
f ̂V−1

2π
 is the classical  chiral current̂jμ

f = ̂λa †σ̄μ ̂λa U(1)

Note:   depends only on fermion operators ̂j0
f ⟹ [ ̂j0

f , ̂Tl] = 0

Center-chiral algebra determined by ,  algebra!̂Tl
̂V2π

Result: ̂TlX̂ℤ(0)
2nf N

= e−2πi ml
N X̂ℤ(0)

2nf N
̂Tl



QCD (adj)
Discrete Chiral Symmetry

Take  as example⃗m = (0,0,1)

Again use electric flux, energy eigenstates |E, e3⟩

at least -fold degeneracy for all X̂ℤ(0)
2nf N

|E, e3⟩ = |E, e3 − 1⟩ ⟹ N N
 spontaneous breaking ⟹ ℤ2nf N → ℤ2nf

|0⟩

|1⟩

|2⟩ |3⟩

|4⟩
:N = 5



QCD (adj)
All Gauge Groups

<latexit sha1_base64="tI/mEAkHaiHGmfLuMQ8QKvm46Bw="></latexit>

Group Center Qtop (mod 1) Minimum Chiral Breaking Minimum Degeneracy

SU(N) ZN
1
N ~m · ~k Z2nfN ! Z2nf N

Sp(2N) Z2 0 Z2nf (2N+1) ! Z2nf (2N+1) 1

Sp(2N + 1) Z2 � 1
2 ~m · ~k Z2nf (2N+2) ! Z2nf (N+1) 2

Spin(8N) Z+
2 ⇥ Z�

2 � 1
2 (~m

+ · ~k� + ~m� · ~k+) Z2nf (8N�2) ! Z2nf (4N�1) 2

Spin(8N + 4) Z+
2 ⇥ Z�

2 � 1
2 (~m

+ · ~k+ + ~m� · ~k�) Z2nf (8N+2) ! Z2nf (4N+1) 2

Spin(4N + 2) Z4 � 1+2N
4 ~m · ~k Z8nfN ! Z2nfN 4

Spin(2N + 1) Z2 0 Z2nf (2N�1) ! Z2nf (2N�1) 1

E6 Z3 � 1
3 ~m · ~k Z24nf ! Z8nf 3

E7 Z2 � 1
2 ~m · ~k Z36nf ! Z18nf 2

Notice: breaking relatively mild for non  groupsSU(N)

Replace  in phases by e2πi ml/N e2πi Qtop[ ⃗m⋅ ⃗k =1]

Expect higher degeneracy for (at least)  case (SYM)

Perhaps non-invertible symmetries? 

Discrete chiral/gravity anomaly implies more breaking (for all )

nf = 1

nf

Recall: ̂TlX̂ℤ(0)
2nf N

= e−2πi ml
N X̂ℤ(0)

2nf N
̂Tl



Conclusion



Conclusions and Outlook
Summary of Results

Pure Yang-Mills
Exact degeneracy of ground state for all but , , , and SU(2N + 1) Sp(2N) Spin(2N + 1) E6

All results are exact for any torus size

Usually expect tunnelling to lift degeneracy at finite volume - there must be some delicate 
cancellation

QCD (adj)
At least -fold degeneracy for N SU(N)
All other groups have much smaller minimal degeneracy - expect higher
Perhaps breaking of non-invertible symmetries?
Discrete chiral/gravity anomaly implies further breaking then center/chiral

Interesting implications for both lattice and semiclassics



Thanks for Listening!


