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Introduction and Motivation
Anomaly Matching

UV UV

't Hooft anomaly matching
—

IR anything??? IR

Anomaly matching allows us to constrain IR dynamics

“Usual” anomaly matching understood since 1980s

New: generalized ’'t-Hooft anomaly matching (Gaiotto, Kapustin, Komargodski,
Seiberg 2014-... + others)



Introduction and Motivation
This Talk

New mixed anomalies involving higher-form symmetries in Hilbert space

Give clear, down to earth picture of these anomalies

Our work: provide explicit examples of O-form/1-form anomaly in Hilbert space

Old bottles: van Baal’'s work on Hamiltonian pure Yang-Mills on torus in 1980s

New wine: new 0-form/1-form anomalies

We study 4d gauge theories: pure Yang-Mills and QCD (adj)

Study all gauge groups (with center): SU(N), Sp(IV), Spin(N), E¢, E



Higher-form Symmetries and
Anomalies



Anomalies In the Hilbert space

A Review

Suppose G and H have a mixed 't Hooft anomaly — [ﬁ, lA]] = () and [ﬁ, ‘A/] = ()
~1
Introduce backgrounds for G «— UV (VU ) changed (group commutator)

Simultaneously diagonalize H and U — states |E, u)

[I—AI, ‘A/] = (0 = V cannot change energy

A A A A —1 A
UV(VU) 41 = V|E.u) ~ |E.u), u

Takeaway: anomaly informs degeneracy of states



Higher Form Symmetries

A Quick Introduction

Old (0-form) symmetries: act on local objects (fields)

New (higher form) symmetries: act on non-local objects

eg. 1-form center symmetry acting on Wilson loops
Have been known on the lattice for a long time, new insights into continuum description

Our interest: new generalized ‘t Hooft anomalies involving higher form symmetries

Theory O-form 1-form

Pure Yang-Mills Parity Center
QCD (adj) Chiral Center




Pure Yang-Mills on the Torus




We will impose twisted boundary conditions on
T° corresponding to ‘t Hooft magnetic flux,

Pu re Yan g - M I I IS explicit details not necessary here (see paper

for more information)
Setup

Spacetime is T> X R - T° sizeis L; X L, X L,

SU(N) gauge group (will generalize later)




We will impose twisted boundary conditions on
T° corresponding to ‘t Hooft magnetic flux,

Pu re Yan g - M I I IS explicit details not necessary here (see paper

for more information)
Setup

Spacetime is T> X R - T° sizeis L; X L, X L,

SU(N) gauge group (will generalize later)

Ay = 0 gauge
1 0
2 — 3 2 R D D Sar— o 5 A 1 A
HQZO —_ J d XTI’ g HlHl + _2BlBl HZ(X) — léAﬁ(?) Bz = Eglijjk
T3 g
VaN o VaN VaN /\_1
H6’=a — Va 6’=0Va

A A . " A 1 ]
V., [A] = ¢'*IB &) ghifts the #-angle by a Ky (A) = P} Tr (A ANF — éA ANA A A)
T



Pure Yang-Mills

Setup: Hilbert Space
Gauge field states A(X)|A) = A(X)|A)

Gauge transformations: U|A) = |[U - A)
UoA=UQA —id)U™!
U obey appropriate T°> boundary conditions for magnetic flux

Hilbert space: # = {\l//> | Uly) = |l//>}

U are homotopic to identity, preserve T boundary conditions

Under large gauge transformations U[v]|w) = |y)

We take the @ = O Hilbert space, placing the 8 dependence in the Hamiltonian
v % 0 is the instanton number of U



Pure Yang-Mills

Setup: Center Symmetry

Z \ 1-form center symmetry acts on (winding) Wilson loops

Generated by improper* gauge transformations C [?]

C| k] Wl TI'F (g)e—lgﬁdxlAl) N ekal/NWl

Implemented on Hilbert space as T)|A) = | Cle)] o A>

*The transformations are improper because they do not obey the T boundary conditions



Pure Yang-Mills

Setup: Parity
Z  0-form parity symmetry at 0 = 0, x
P: A(x,y,2) > AP(x,y,2) = = TpA(L, — x,L, — y, L3 — '’

', € SUN), F%D = + 1 is necessary to preserve twisted boundary conditions on T°

6 = 0: Parity acts directly as above Py|A) = |AF)

A\ A\

6 = : Parity maps @ = 7 — — 7, need to also insert V,, : P_ =V, P,



Pure Yang-Mills

Center Symmetry: Diagonalizing and Backgrounds

Introduce center background ('t Hooft flux) magnetic flux m 3

m related to T° twisted boundary conditions

Introducing a static center vortex in

the [ direction increases m; by one
unit

Introduce “electric flux” states 7;| ¢’y = e“™'N|e’)

Recall [I—AI, Tl] = () — can label states by energy and €

Introducing a Wilson loop in the [t
direction increases ¢; by one unit



Pure Yang-Mills

Setup: Center Symmetry and @ Shifts, an Important Commutation Relation

Very important commutation relation:

This can be obtained by direct calculation, see the paper for more explicit details

Q| T;] is the topological charge of a configuration on |
[

4

with boundary conditions twisted by C[e",,0] in the time direction



Pure Yang-Mills

Center-Parity at 9 = 0

Act with P,T:P, on |A)

Acts as “gauge transformation”;

FPC[?i’O] (Ll — X, L2 — Y, L3 — Z)FP ~ C[_?po] (xa Y Z)

We see that parity and centre symmetry form a D, (dihedral) algebra

No mixed anomaly



Pure Yang-Mills

Center-Parity at 9 ==

Use important commutation relation and @ = 0 result

.mz A

TV, [AIT;! = > WV, [A] = (ezﬂiQ[TﬂVzﬂ[AD P =V,P,

We see that parity and center symmetry form a central extension of the
Dy, (dihedral) algebra

A A

-1
Notice: center symmetry background modifies the group commutator 1P _ <PﬂTl> according to the anomaly!



Pure Yang-Mills

Implications of Center-Parity Algebra

Consider m = (0,0,1) as example

Remember [I-Alezo,ﬂ, YA’l] = [I:I9=o,m }A’O,ﬂ] = ()

Label simultaneous ﬁé’:O,ﬂ and YA} eigenstates by e; only



Pure Yang-Mills

Implications of Center-Parity Algebra

Consider m = (0,0,1) as example

Remember [I-Alezo,ﬂ, YA’l] = [I:I9=o,m }A’O,ﬂ] = ()

Label simultaneous H,_, , and 1; eigenstates by e; only
At = 0:
S oa oA A A
Recall: e; is defined mod N

N odd: e; = 0 invariant

N
N even: e; = (), > invariant



Pure Yang-Mills

Implications of Center-Parity Algebra

Consider m = (0,0,1) as example

Remember [I-Alezo,ﬂ, YA’l] = [I:I9=o,m }A’O,ﬂ] = ()

Label simultaneous H@:O,]Z and YA} eigenstates by e; only

At0 = 0: At 0 = x:
& B A -1 A &5 2nimIN D A—1 > _
I'Py =PI, = Pyle;) = |—e3) TP, =e™ P T~ = Ple) = [m; —e3)
Recall: e; is defined mod N Recall: e; and m, are defined mod N
o N+1
N odd: e; = 0 invariant N odd: e; = > invariant
N
N even: e; = 0, — invariant N even: no invariant states

2



Pure Yang-Mills

Implications of Center-Parity Algebra

At = 0; At 0 = x:
TPy =Py, = Pgles) = |—e3) Ip, = e P T~ = Ple;) = |m;—e3)
Recall: e; is defined mod N Recall: e; and m, are defined mod N
- N+1
N odd: e; = 0 invariant N odd: e; = > invariant
N No anomaly, but a global inconsistency
N even: e; = (), > invariant

N even: no invariant states



Pure Yang-Mills

Implications of Center-Parity Algebra

At = 0; At 0 = x:
Recall: e5 is defined mod N Recall: e; and m, are defined mod N

N+1
N odd: e; = invariant

N odd: e; = 0 invariant

2

No anomaly, but a global inconsistency

N
N even: e; = (), > invariant

N even: no invariant states

Candidates for unique ground state



Pure Yang-Mills

Implications of Center-Parity Algebra

At = 0; At 0 = x:
Recall: e5 is defined mod N Recall: e; and m, are defined mod N

N+1
N odd: e; = invariant

N odd: e; = 0 invariant

2

No anomaly, but a global inconsistency

N
N even: e; = (), — invariant

2 N even: no invariant states

Candidates for unique ground state

No unigue ground state, at least doubly degenerate!



Pure Yang-Mills

Examples

Take m = (0,0,1), label ground states by e; only

N

4:

[0) «— {0)

2) < [2) 0) «— [1)
2) «— [3)

[1) «— [3) ———

\ — e’ —

0=0 ’

0) «— |0) 0y 1)

‘1> - ‘2> Global inconsistency ‘2> PEEEN ‘2>

——— ————

=0 0=nxn



Pure Yang-Mills

Summary and Discussion of Results

N odd:

» Candidates for unique ground states for both @ = 0, =
 (Ground states are different - global inconsistency (no anomaly)

N even:
» Only unique ground state at @ = 0O

» States at 6 = & at least doubly degenerate

All results are exact at any size torus

Infinite volume limit: if center is preserved (confining phase), parity must be
spontaneously broken



Pure Yang-Mills Recall: T,P, = TP, T}
All Gauge Groups

—

Replace ¢’ in phases by g2 Qiopl 1 k=1]

Group Center Qtop (mod 1) Parity Broken
SU(N) 7. N %ﬁilg N even
Sp(N) Zo — Nk N odd
Spin(8N) 735 x Ty —i(mt -k~ +m~ -kt) Always
Spin(8N +4) | ZF x Zy;  —3(mT -kt +m~ k")  Always
Spin(4N + 2) | Zy4 12N 7 L | Always
Spin(2N + 1) | Zs 0 Never

Es Z3 —Lmk

Er Lio —%frﬁ -k Always

Note that none of Sp(2N), Spin(2N + 1), or E¢ have a center-parity anomaly



Center-Chiral Anomaly: QCD (ad))




QCD (adj)
Introduction

Same setup as pure Yang-Mills (gauge fields, spacetime, etc)

Introduce 7, < S adjoint Weyl fermions

Z2an X SU (nf)

Zn
i

Classical 0-form U(nf) chiral symmetry broken by anomaly to

Focus on anomaly between Z2an discrete chiral symmetry and center symmetry

In a general gauge group Z2an IS replaced by ZZHfCZ where ¢, is the dual Coxeter number of the gauge group



QCD (adj)

Discrete Chiral Symmetry

27 3..%0
. 5 R e 2 L
Implemented on Hilbert space by ng?}N = e/ o

]A]’f = 127544 is the classical U(1) chiral current




QCD (adj)

Discrete Chiral Symmetry

Take m = (0,0,1) as example
Again use electric flux, energy eigenstates |E, €3>

)A(Z«)) |E,e;) = |E,e; — 1) = at least N-fold degeneracy for all N

2an
—> spontaneous breaking Z,, N Zznf

N

1) [4)

TN/

2) «— [3)



ml A

QCD (adj) Recall: TZXZ%Nz - mWXZg%NTZ

All Gauge Groups

—>

Replace ¢2™™N in phases by ¢*™ Qropl - k=1]
Group Center Qtop (mod 1) Minimum Chiral Breaking Minimum Degeneracy
SU(N) Ay Lok Zon,N — Lon, N
Sp(2N) Lo 0 Liop s (2N+1) = Lian;(2N+1) 1
Sp(2N + 1) Lo —m - k Liop (2N +2) = Loan s (N+1) 2
Spin(8N) Zy x Ly —i(mt k™ +m kY) Zon,sn_2) = Lon,an—1) 2
Spin(8N +4) | Z§ xZy  —L(m* kt +m~ - k7) Liop s (8N+2) = Lan;(aN+1) 2
Spin(4N +2) | Zy 2N Zsn,N — Lon, N 4
Spin(2N + 1) | Zs 0 Lo, (2N-1) =+ Lon,(2n—-1) 1
Es Z3 —Lmk Zoan, — Lsn, 3
o8 Zs ~Li -k Zon, — Lisn, 2

Notice: breaking relatively mild for non SU(/N) groups

Expect higher degeneracy for (at least) ne = I case (SYM)

Perhaps non-invertible symmetries?
Discrete chiral/gravity anomaly implies more breaking (for all nf)



Conclusion



Conclusions and Outlook

Summary of Results

All results are exact for any torus size

Pure Yang-Mills

Exact degeneracy of ground state for all but SU2N + 1), Sp(2N), Spin(2N + 1), and E;

Usually expect tunnelling to lift degeneracy at finite volume - there must be some delicate
cancellation

Interesting implications for both lattice and semiclassics
QCD (adj)
At least N-fold degeneracy for SU(N)

All other groups have much smaller minimal degeneracy - expect higher

Perhaps breaking of non-invertible symmetries?

Discrete chiral/gravity anomaly implies further breaking then center/chiral
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