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Schwinger model
Schwinger model - QED in the 1+1 spacetime dimensions 
-  is a famous playground  for the exploration of ideas 
about quark confinement and chiral symmetry breaking.

Originally the model was introduced as U(1) gauge theory 
with a single unit charge Dirac fermion. Our starting point 
will be the charge-N Schwinger model.

Schwinger ’62;   Coleman, Jackiw, Susskind ’75

Hanson, Nielsen, Zahed ’95 + many recent works
Its Euclidean action

the charge-N Schwinger model, which was studied recently in e.g. Refs. [4–10], see also [11]

for an early analysis. This model has the Euclidean action

Sstandard =

Z
d2x

✓
1

4e2
f2

µ⌫
+  [�µ

(@µ + iNaµ)] 

◆
+ m  L R + h.c. . (1.1)

Here aµ is a U(1) gauge field,  is a Dirac fermion field with chiral components  L, R, the

integer N is the charge of the fermion, e has unit mass dimension, and Hermitian conjugation

is defined by analytic continuation from Minkowski space. The statement that aµ is a U(1)

gauge field means that the gauge transformation functions ↵(x) take values in U(1), meaning

that there is 2⇡ periodicity. Physically, one could interpret this periodicity as arising from

gauge transformations of a very heavy unit-charge test fermion field  t,

 t ! ei↵ t,

while the gauge transformations of the other fields are

aµ ! aµ � @µ↵,

 ! eiN↵ .

Gauge invariance also implies that
R
M2

f 2 2⇡Z where M2 is any closed smooth 2-manifold

and f = da =
1

2
fµ⌫dxµ

^ dx⌫ is the field strength 2-form.

We also add an explicit topological ✓ term

S✓ =
i✓

2⇡

Z

M2

da (1.2)

to the action, and assume that m � 0. The coe�cient ✓ is 2⇡ periodic. However, we will

mostly focus on the physics at ✓ = 0, where the theory has a Z2 parity symmetry.

As defined above, the Schwinger model has a ZN 1-form symmetry [12] for any value of

m. This symmetry is generated by a collection of N local topological operators Un(x) and

has the e↵ect of multiplying Wilson loops by ZN phases:

hUn(x) eiq
R
C aµdx

µ
i = exp
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◆
heiq

R
C aµdx

µ
i (1.3)

where `(C, x) is the linking number of C and x. The internal global symmetry of the

m 6= 0 Schwinger model—which is just the ZN 1-form symmetry—coincides with the global

symmetry of pure 4d SU(N) Yang-Mills theory. The existence of the 1-form ZN symmetry

means that charge confinement is a sharply-defined concept in the Schwinger model when

N > 1. The same is true in 4d SU(N) pure YM theory.2

2In discussions of 4d YM theory it is common to call its ZN 1-form symmetry “center symmetry” [13, 14].

This has some historical justification because the center subgroup of SU(N) is ZN , which happens to be

the same as the 1-form symmetry group so long as all matter fields are in representations of N -ality zero.

We won’t use this language here because the addition of matter reduces the 1-form symmetry to a discrete

subgroup, while the center subgroup of the U(1) gauge group is U(1).
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that there is 2⇡ periodicity. Physically, one could interpret this periodicity as arising from

gauge transformations of a very heavy unit-charge test fermion field  t,

 t ! ei↵ t,

while the gauge transformations of the other fields are

aµ ! aµ � @µ↵,

 ! eiN↵ .

Gauge invariance also implies that
R
M2

f 2 2⇡Z where M2 is any closed smooth 2-manifold

and f = da =
1

2
fµ⌫dxµ

^ dx⌫ is the field strength 2-form.

We also add an explicit topological ✓ term

S✓ =
i✓

2⇡

Z

M2

da (1.2)

to the action, and assume that m � 0. The coe�cient ✓ is 2⇡ periodic. However, we will

mostly focus on the physics at ✓ = 0, where the theory has a Z2 parity symmetry.

As defined above, the Schwinger model has a ZN 1-form symmetry [12] for any value of

m. This symmetry is generated by a collection of N local topological operators Un(x) and

has the e↵ect of multiplying Wilson loops by ZN phases:

hUn(x) eiq
R
C aµdx

µ
i = exp

✓
2⇡inq

N
`(C, x)

◆
heiq

R
C aµdx
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where `(C, x) is the linking number of C and x. The internal global symmetry of the

m 6= 0 Schwinger model—which is just the ZN 1-form symmetry—coincides with the global

symmetry of pure 4d SU(N) Yang-Mills theory. The existence of the 1-form ZN symmetry

means that charge confinement is a sharply-defined concept in the Schwinger model when

N > 1. The same is true in 4d SU(N) pure YM theory.2

2In discussions of 4d YM theory it is common to call its ZN 1-form symmetry “center symmetry” [13, 14].

This has some historical justification because the center subgroup of SU(N) is ZN , which happens to be

the same as the 1-form symmetry group so long as all matter fields are in representations of N -ality zero.

We won’t use this language here because the addition of matter reduces the 1-form symmetry to a discrete

subgroup, while the center subgroup of the U(1) gauge group is U(1).
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damental (that is, q = ±1) test charges when N > 2. When N is even the ZN 1-form

symmetry is spontaneously broken to ZN/2, so test charges with q = N/2 mod N are decon-

fined, while others are confined. Also, when N is even, the model has a Z2 chiral symmetry,

the fermion mass term is forbidden, and one can think of (1.10) as a variant of the massless

charge-N Schwinger model with confinement for N > 2. When N is odd and larger than

1, chiral symmetry is completely broken, and the ZN 1-form symmetry is not spontaneously

broken at all. The mass term can be generated by fluctuations. We will show how these fea-

tures arise using bosonization on R2, as well as by an analysis on R ⇥ S1 when S1 is small.

These analyses have complementary strengths, and combining them yields some interesting

insights into the nature of the confinement mechanism in this model.

The behavior of the four-fermion-deformed charge-N Schwinger model is much closer to

the expected behavior of QCD-like 4d gauge theories. The four-fermion-deformed Schwinger

model is also a nice toy model for the behavior of 2d SU(N) adjoint QCD. Adjoint QCD in

2d has only a Z2 chiral symmetry when the quark mass is set to zero, and is also known to

have two interesting four-fermion deformations [21] consistent with chiral symmetry. When

these deformations are tuned to zero, 2d adjoint QCD deconfines on R2 due to a mixed

’t Hooft anomaly between its ZN 1-form symmetry and an exotic non-invertible symmetry [8].

However, once the four-fermion deformations are turned on, at generic points in its parameter

space 2d adjoint QCD confines [21].

2 Confinement from elementary considerations

2.1 Confinement in the standard charge N Schwinger model

As discussed in the introduction, the massless charge-N Schwinger model has a Z(1)

N
1-form

symmetry and Z(0)

N
0-form chiral symmetry. It is often asserted that when the fermions are

massless, the theory does not confine integer test charges, while with massive fermions, it

does confine integer test charges. The common argument for this involves considering the

topological ✓ parameter of U(1) gauge theory, which enters the Euclidean action through

S✓ =
i✓

2⇡

Z

M2

da . (2.1)

Coleman observed that changing ✓ by 2⇡ corresponds to inserting a particle of charge ±1 at

x = ±1. This means that the k-string tension can be written as

Tk(✓) = E(✓ + 2⇡k) � E(✓) , (2.2)

where E(✓) is the vacuum energy density as a function of ✓.

Of course, when m = 0, there is no ✓ dependence in vacuum energy, because a chiral

rotation can remove the ✓ term from the action. This immediately implies that the massless

theory does not confine integer test charges. Once a mass term for fermions is added, the

✓ term can no longer be removed by chiral rotations: a transformation that would remove
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there is no    dependence, so the massless theory does
not  confine integer test  charges.      
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the charge-N Schwinger model, which was studied recently in e.g. Refs. [4–10], see also [11]

for an early analysis. This model has the Euclidean action

Sstandard =

Z
d2x

✓
1

4e2
f2

µ⌫
+  [�µ

(@µ + iNaµ)] 

◆
+ m  L R + h.c. . (1.1)

Here aµ is a U(1) gauge field,  is a Dirac fermion field with chiral components  L, R, the

integer N is the charge of the fermion, e has unit mass dimension, and Hermitian conjugation

is defined by analytic continuation from Minkowski space. The statement that aµ is a U(1)

gauge field means that the gauge transformation functions ↵(x) take values in U(1), meaning

that there is 2⇡ periodicity. Physically, one could interpret this periodicity as arising from

gauge transformations of a very heavy unit-charge test fermion field  t,

 t ! ei↵ t,

while the gauge transformations of the other fields are

aµ ! aµ � @µ↵,

 ! eiN↵ .

Gauge invariance also implies that
R
M2

f 2 2⇡Z where M2 is any closed smooth 2-manifold

and f = da =
1

2
fµ⌫dxµ

^ dx⌫ is the field strength 2-form.

We also add an explicit topological ✓ term

S✓ =
i✓

2⇡

Z

M2

da (1.2)

to the action, and assume that m � 0. The coe�cient ✓ is 2⇡ periodic. However, we will

mostly focus on the physics at ✓ = 0, where the theory has a Z2 parity symmetry.

As defined above, the Schwinger model has a ZN 1-form symmetry [12] for any value of

m. This symmetry is generated by a collection of N local topological operators Un(x) and

has the e↵ect of multiplying Wilson loops by ZN phases:

hUn(x) eiq
R
C aµdx

µ
i = exp

✓
2⇡inq

N
`(C, x)

◆
heiq

R
C aµdx

µ
i (1.3)

where `(C, x) is the linking number of C and x. The internal global symmetry of the

m 6= 0 Schwinger model—which is just the ZN 1-form symmetry—coincides with the global

symmetry of pure 4d SU(N) Yang-Mills theory. The existence of the 1-form ZN symmetry

means that charge confinement is a sharply-defined concept in the Schwinger model when

N > 1. The same is true in 4d SU(N) pure YM theory.2

2In discussions of 4d YM theory it is common to call its ZN 1-form symmetry “center symmetry” [13, 14].

This has some historical justification because the center subgroup of SU(N) is ZN , which happens to be

the same as the 1-form symmetry group so long as all matter fields are in representations of N -ality zero.

We won’t use this language here because the addition of matter reduces the 1-form symmetry to a discrete

subgroup, while the center subgroup of the U(1) gauge group is U(1).
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When             
the topological term from the action reintroduces it in the mass term as m  L R !

m ei✓/N L R. As a result, when m 6= 0, the degeneracy between the N chirally broken

vacua is lifted. When m is small, the ✓ dependence of the vacuum energy density emerges

as Ek(✓) = �m h L Ri + c.c where the chiral condensate is given by (see e.g. [22]):

h L Ri =
m� e�

4⇡
ei

✓+2⇡k
N , k = 1, . . . , N (2.3)

and m� = Ne/
p
⇡ is the mass gap in the theory.6 The string tension for a charge-k probe

in the presence of the theta angle can be written as

Tk(✓) = �m µ
Ne

2⇡3/2


cos

✓
✓ + 2⇡k

N

◆
� cos

✓
✓

N

◆�
+ O(m2

 
) . (2.4)

For ✓ = 0, this expression can be simplified into

Tk(✓ = 0) = m µ
Ne

⇡3/2
sin

2

✓
⇡k

N

◆
+ O(m2

 
) . (2.5)

In these formulas µ is a renormalization scale, which of course would cancel in appropri-

ate ratios of dimensionful physical quantities. Clearly, there is a finite tension, and hence

confinement, for charges k 6= 0 (mod N), and charges that are multiples of N are screened:

mass deformation : hWk(C)i =

(
e�TkA(C), k 6= 0 (mod N)

e�MP (C), k = 0 (mod N)
. (2.6)

where A(C) is the area of the disk-like region enclosed by the curve C, P (C) is the perimeter

of C, M is a non-universal mass scale, and we have assumed that A(C) is large compared

to the microscopic scales of the theory, while at the same time it is small compared to the

size of the spacetime manifold.

2.2 Confinement in the four-fermion deformed charge-N Schwinger model

The discussion above may lead one to think that it is necessary to have massive fermions to

achieve confinement in the Schwinger model. However, this is not true. All we need is for the

vacuum energy density to have non-trivial ✓-dependence. In fact, even when the fermions are

exactly massless and a chiral symmetry protects a mass term from being generated, the gauge

interactions in the Schwinger model may lead to confinement of fundamental test charges. For

this to be the case, what we need is a deformation which is chirally charged, so that with its

inclusion, the ✓ term cannot be removed, while at the same time the deformation preserves a

non-trivial subgroup of the chiral symmetry so that the mass term is still forbidden. Finally,

we want the deformation operator to be marginal or relevant, so that its e↵ects survive at

long distances. We will defer a discussion of this last point to the next section, and focus on

the first point here.

6We use the same symbol e for the the base of the natural logarithm and the gauge coupling, and hope

that readers can distinguish them from context.
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the charge-N Schwinger model, which was studied recently in e.g. Refs. [4–10], see also [11]

for an early analysis. This model has the Euclidean action

Sstandard =

Z
d2x

✓
1

4e2
f2

µ⌫
+  [�µ

(@µ + iNaµ)] 

◆
+ m  L R + h.c. . (1.1)

Here aµ is a U(1) gauge field,  is a Dirac fermion field with chiral components  L, R, the

integer N is the charge of the fermion, e has unit mass dimension, and Hermitian conjugation

is defined by analytic continuation from Minkowski space. The statement that aµ is a U(1)

gauge field means that the gauge transformation functions ↵(x) take values in U(1), meaning

that there is 2⇡ periodicity. Physically, one could interpret this periodicity as arising from

gauge transformations of a very heavy unit-charge test fermion field  t,

 t ! ei↵ t,

while the gauge transformations of the other fields are

aµ ! aµ � @µ↵,

 ! eiN↵ .

Gauge invariance also implies that
R
M2

f 2 2⇡Z where M2 is any closed smooth 2-manifold

and f = da =
1

2
fµ⌫dxµ

^ dx⌫ is the field strength 2-form.

We also add an explicit topological ✓ term

S✓ =
i✓

2⇡

Z

M2

da (1.2)

to the action, and assume that m � 0. The coe�cient ✓ is 2⇡ periodic. However, we will

mostly focus on the physics at ✓ = 0, where the theory has a Z2 parity symmetry.

As defined above, the Schwinger model has a ZN 1-form symmetry [12] for any value of

m. This symmetry is generated by a collection of N local topological operators Un(x) and

has the e↵ect of multiplying Wilson loops by ZN phases:

hUn(x) eiq
R
C aµdx

µ
i = exp

✓
2⇡inq

N
`(C, x)

◆
heiq

R
C aµdx

µ
i (1.3)

where `(C, x) is the linking number of C and x. The internal global symmetry of the

m 6= 0 Schwinger model—which is just the ZN 1-form symmetry—coincides with the global

symmetry of pure 4d SU(N) Yang-Mills theory. The existence of the 1-form ZN symmetry

means that charge confinement is a sharply-defined concept in the Schwinger model when

N > 1. The same is true in 4d SU(N) pure YM theory.2

2In discussions of 4d YM theory it is common to call its ZN 1-form symmetry “center symmetry” [13, 14].

This has some historical justification because the center subgroup of SU(N) is ZN , which happens to be

the same as the 1-form symmetry group so long as all matter fields are in representations of N -ality zero.

We won’t use this language here because the addition of matter reduces the 1-form symmetry to a discrete

subgroup, while the center subgroup of the U(1) gauge group is U(1).
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mostly focus on the physics at ✓ = 0, where the theory has a Z2 parity symmetry.

As defined above, the Schwinger model has a ZN 1-form symmetry [12] for any value of

m. This symmetry is generated by a collection of N local topological operators Un(x) and

has the e↵ect of multiplying Wilson loops by ZN phases:
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where `(C, x) is the linking number of C and x. The internal global symmetry of the

m 6= 0 Schwinger model—which is just the ZN 1-form symmetry—coincides with the global

symmetry of pure 4d SU(N) Yang-Mills theory. The existence of the 1-form ZN symmetry

means that charge confinement is a sharply-defined concept in the Schwinger model when

N > 1. The same is true in 4d SU(N) pure YM theory.2

2In discussions of 4d YM theory it is common to call its ZN 1-form symmetry “center symmetry” [13, 14].

This has some historical justification because the center subgroup of SU(N) is ZN , which happens to be

the same as the 1-form symmetry group so long as all matter fields are in representations of N -ality zero.

We won’t use this language here because the addition of matter reduces the 1-form symmetry to a discrete

subgroup, while the center subgroup of the U(1) gauge group is U(1).
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theory does not confine integer test charges. Once a mass term for fermions is added, the

✓ term can no longer be removed by chiral rotations: a transformation that would remove

the topological term from the action reintroduces it in the mass term as m  L R !

m ei✓/N L R. As a result, when m 6= 0, the degeneracy between the N chirally broken

vacua is lifted. When m is small, the ✓ dependence of the vacuum energy density emerges

as Ek(✓) = �m h L Ri + c.c where the chiral condensate is given by (see e.g. [22]):

h L Ri =
m� e�

4⇡
ei

✓+2⇡k
N , k = 1, . . . , N (2.3)

and m� = Ne/
p
⇡ is the mass gap in the theory.6 The string tension for a charge-k probe

in the presence of the theta angle can be written as

Tk(✓) = �m µ
Ne

2⇡3/2


cos

✓
✓ + 2⇡k

N

◆
� cos

✓
✓

N

◆�
+ O(m2

 
) . (2.4)

Tk(✓) = �
m m�e�

2⇡


cos

✓
✓ + 2⇡k

N

◆
� cos

✓
✓

N

◆�
+ O(m2

 
) . (2.5)

For ✓ = 0, this expression can be simplified into

Tk(✓ = 0) = m µ
Ne

⇡3/2
sin

2

✓
⇡k

N

◆
+ O(m2

 
) . (2.6)

Tk(✓ = 0) =
m m�e�

⇡
sin

2

✓
⇡k

N

◆
+ O(m2

 
) . (2.7)

In these formulas µ is a renormalization scale, which of course would cancel in appropri-

ate ratios of dimensionful physical quantities. Clearly, there is a finite tension, and hence

confinement, for charges k 6= 0 (mod N), and charges that are multiples of N are screened:

mass deformation : hWk(C)i =

(
e�TkA(C), k 6= 0 (mod N)

e�MP (C), k = 0 (mod N)
. (2.8)

where A(C) is the area of the disk-like region enclosed by the curve C, P (C) is the perimeter

of C, M is a non-universal mass scale, and we have assumed that A(C) is large compared

to the microscopic scales of the theory, while at the same time it is small compared to the

size of the spacetime manifold.

6We use the same symbol e for the the base of the natural logarithm and the gauge coupling, and hope

that readers can distinguish them from context.
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When             - at the classical level a U(1) axial symmetry

damental (that is, q = ±1) test charges when N > 2. When N is even the ZN 1-form

symmetry is spontaneously broken to ZN/2, so test charges with q = N/2 mod N are decon-

fined, while others are confined. Also, when N is even, the model has a Z2 chiral symmetry,

the fermion mass term is forbidden, and one can think of (1.10) as a variant of the massless

charge-N Schwinger model with confinement for N > 2. When N is odd and larger than

1, chiral symmetry is completely broken, and the ZN 1-form symmetry is not spontaneously

broken at all. The mass term can be generated by fluctuations. We will show how these fea-

tures arise using bosonization on R2, as well as by an analysis on R ⇥ S1 when S1 is small.

These analyses have complementary strengths, and combining them yields some interesting

insights into the nature of the confinement mechanism in this model.

The behavior of the four-fermion-deformed charge-N Schwinger model is much closer to

the expected behavior of QCD-like 4d gauge theories. The four-fermion-deformed Schwinger

model is also a nice toy model for the behavior of 2d SU(N) adjoint QCD. Adjoint QCD in

2d has only a Z2 chiral symmetry when the quark mass is set to zero, and is also known to

have two interesting four-fermion deformations [21] consistent with chiral symmetry. When

these deformations are tuned to zero, 2d adjoint QCD deconfines on R2 due to a mixed

’t Hooft anomaly between its ZN 1-form symmetry and an exotic non-invertible symmetry [8].

However, once the four-fermion deformations are turned on, at generic points in its parameter

space 2d adjoint QCD confines [21].

2 Confinement from elementary considerations

2.1 Confinement in the standard charge N Schwinger model

As discussed in the introduction, the massless charge-N Schwinger model has a Z(1)

N
1-form

symmetry and Z(0)

N
0-form chiral symmetry. It is often asserted that when the fermions are

massless, the theory does not confine integer test charges, while with massive fermions, it

does confine integer test charges. The common argument for this involves considering the

topological ✓ parameter of U(1) gauge theory, which enters the Euclidean action through

S✓ =
i✓

2⇡

Z

M2

da . (2.1)

Coleman observed that changing ✓ by 2⇡ corresponds to inserting a particle of charge ±1 at

x = ±1. This means that the k-string tension can be written as

Tk(✓) = E(✓ + 2⇡k) � E(✓) , (2.2)

where E(✓) is the vacuum energy density as a function of ✓.

Of course, when m = 0, there is no ✓ dependence in vacuum energy, because a chiral

rotation can remove the ✓ term from the action. This immediately implies that the massless

theory does not confine integer test charges. Once a mass term for fermions is added, the

✓ term can no longer be removed by chiral rotations: a transformation that would remove
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broken by ABJ anomaly to the discrete 

When m = 0, at the classical level the Schwinger model has a U(1) axial symmetry. As

usual, the ABJ anomaly means that the chiral symmetry in the quantum theory is reduced,

and is generated by

 (x) ! e2⇡i�5/(2N) (x) . (1.4)

The faithfully-acting symmetry is ZN , and acts as  L R ! e2⇡i/N L R. The existence

of the discrete chiral symmetry means that it is meaningful to discuss spontaneous chiral

symmetry breaking, just as in e.g 4d SU(N) N = 1 super-YM theory. The ZN 0-form

chiral symmetry and the ZN 1-form symmetry have a mixed ’t Hooft anomaly [4]. Indeed, the

internal global symmetries and anomalies of the massless charge-N Schwinger model coincide

with the internal bosonic global symmetries and anomalies of 4d SU(N) N = 1 super-YM

theory.

From the perspective of the first paragraph of this introduction, it would be nice if the

dynamics of 4d SU(N) gauge theories and the charge-N Schwinger model looked similar.

Unfortunately, the behavior of the 4d and 2d theories is very di↵erent! When m = 0, the

good news is that the ZN chiral symmetry is spontaneously broken, just as in 4d N = 1

SYM. The bad news for the comparison with 4d gauge theory is that the ZN 1-form symmetry

of the Schwinger model with m = 0 is spontaneously broken, and the expectation values

of large ‘fundamental’ Wilson loops have a perimeter-law behavior

hei
R
C a

i ⇠ e�µP (C) , (1.5)

where C is e.g. a circular contour with perimeter P (C), µ is a UV scale (of order the mass

of a heavy test particle), and a = aµdxµ. Confinement appears (and the 1-form symmetry

is restored) when m 6= 0, but the string tension scales as T ⇠ m e for m ⌧ e. In 4d

N = 1 SYM, in contrast, the 1-form ZN symmetry is not spontaneously broken, and large

Wilson loops obey an area law.

There are three basic ways to understand the behavior of Wilson loops in the Schwinger

model:

(a) Solve the charge-N Schwinger model exactly on R2 using bosonization and compute the

relevant expectation values. This has the virtue of using direct and relatively elementary

arguments.

(b) Relate deconfinement to the existence of a mixed ’t Hooft anomaly between the ZN 1-

form symmetry and the ZN 0-form chiral symmetry. This approach has the advantage

that it uses only basic symmetry principles, and so it generalizes to theories which are

not exactly solvable.

(c) Solve the model on R ⇥ S1 with small S1 and extrapolate the phase structure to

R2. Due to the ’t Hooft anomaly, the quantum-mechanical EFT has N degenerate

ground states. One can take any linear combination of them to be a ground state. The
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There are three basic ways to understand the behavior of Wilson loops in the Schwinger
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(b) Relate deconfinement to the existence of a mixed ’t Hooft anomaly between the ZN 1-
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the charge-N Schwinger model, which was studied recently in e.g. Refs. [4–10], see also [11]

for an early analysis. This model has the Euclidean action

Sstandard =

Z
d2x

✓
1

4e2
f2

µ⌫
+  [�µ

(@µ + iNaµ)] 

◆
+ m  L R + h.c. . (1.1)

Here aµ is a U(1) gauge field,  is a Dirac fermion field with chiral components  L, R, the

integer N is the charge of the fermion, e has unit mass dimension, and Hermitian conjugation

is defined by analytic continuation from Minkowski space. The statement that aµ is a U(1)

gauge field means that the gauge transformation functions ↵(x) take values in U(1), meaning

that there is 2⇡ periodicity. Physically, one could interpret this periodicity as arising from

gauge transformations of a very heavy unit-charge test fermion field  t,

 t ! ei↵ t,

while the gauge transformations of the other fields are

aµ ! aµ � @µ↵,

 ! eiN↵ .

Gauge invariance also implies that
R
M2

f 2 2⇡Z where M2 is any closed smooth 2-manifold

and f = da =
1

2
fµ⌫dxµ

^ dx⌫ is the field strength 2-form.

We also add an explicit topological ✓ term

S✓ =
i✓

2⇡

Z

M2

da (1.2)

to the action, and assume that m � 0. The coe�cient ✓ is 2⇡ periodic. However, we will

mostly focus on the physics at ✓ = 0, where the theory has a Z2 parity symmetry.

As defined above, the Schwinger model has a ZN 1-form symmetry [12] for any value of

m. This symmetry is generated by a collection of N local topological operators Un(x) and

has the e↵ect of multiplying Wilson loops by ZN phases:

hUn(x) eiq
R
C aµdx

µ
i = exp

✓
2⇡inq

N
`(C, x)

◆
heiq

R
C aµdx

µ
i (1.3)

where `(C, x) is the linking number of C and x. The internal global symmetry of the

m 6= 0 Schwinger model—which is just the ZN 1-form symmetry—coincides with the global

symmetry of pure 4d SU(N) Yang-Mills theory. The existence of the 1-form ZN symmetry

means that charge confinement is a sharply-defined concept in the Schwinger model when

N > 1. The same is true in 4d SU(N) pure YM theory.2

2In discussions of 4d YM theory it is common to call its ZN 1-form symmetry “center symmetry” [13, 14].

This has some historical justification because the center subgroup of SU(N) is ZN , which happens to be

the same as the 1-form symmetry group so long as all matter fields are in representations of N -ality zero.

We won’t use this language here because the addition of matter reduces the 1-form symmetry to a discrete

subgroup, while the center subgroup of the U(1) gauge group is U(1).
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At             both,  axial      0-form and         -form
symmetries are spontaneously broken. 

damental (that is, q = ±1) test charges when N > 2. When N is even the ZN 1-form

symmetry is spontaneously broken to ZN/2, so test charges with q = N/2 mod N are decon-

fined, while others are confined. Also, when N is even, the model has a Z2 chiral symmetry,

the fermion mass term is forbidden, and one can think of (1.10) as a variant of the massless

charge-N Schwinger model with confinement for N > 2. When N is odd and larger than

1, chiral symmetry is completely broken, and the ZN 1-form symmetry is not spontaneously

broken at all. The mass term can be generated by fluctuations. We will show how these fea-

tures arise using bosonization on R2, as well as by an analysis on R ⇥ S1 when S1 is small.

These analyses have complementary strengths, and combining them yields some interesting

insights into the nature of the confinement mechanism in this model.

The behavior of the four-fermion-deformed charge-N Schwinger model is much closer to

the expected behavior of QCD-like 4d gauge theories. The four-fermion-deformed Schwinger

model is also a nice toy model for the behavior of 2d SU(N) adjoint QCD. Adjoint QCD in

2d has only a Z2 chiral symmetry when the quark mass is set to zero, and is also known to

have two interesting four-fermion deformations [21] consistent with chiral symmetry. When

these deformations are tuned to zero, 2d adjoint QCD deconfines on R2 due to a mixed

’t Hooft anomaly between its ZN 1-form symmetry and an exotic non-invertible symmetry [8].

However, once the four-fermion deformations are turned on, at generic points in its parameter

space 2d adjoint QCD confines [21].

2 Confinement from elementary considerations

2.1 Confinement in the standard charge N Schwinger model

As discussed in the introduction, the massless charge-N Schwinger model has a Z(1)

N
1-form

symmetry and Z(0)

N
0-form chiral symmetry. It is often asserted that when the fermions are

massless, the theory does not confine integer test charges, while with massive fermions, it

does confine integer test charges. The common argument for this involves considering the

topological ✓ parameter of U(1) gauge theory, which enters the Euclidean action through

S✓ =
i✓

2⇡

Z

M2

da . (2.1)

Coleman observed that changing ✓ by 2⇡ corresponds to inserting a particle of charge ±1 at

x = ±1. This means that the k-string tension can be written as

Tk(✓) = E(✓ + 2⇡k) � E(✓) , (2.2)

where E(✓) is the vacuum energy density as a function of ✓.

Of course, when m = 0, there is no ✓ dependence in vacuum energy, because a chiral

rotation can remove the ✓ term from the action. This immediately implies that the massless

theory does not confine integer test charges. Once a mass term for fermions is added, the

✓ term can no longer be removed by chiral rotations: a transformation that would remove
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When m = 0, at the classical level the Schwinger model has a U(1) axial symmetry. As

usual, the ABJ anomaly means that the chiral symmetry in the quantum theory is reduced,

and is generated by

 (x) ! e2⇡i�5/(2N) (x) . (1.4)

The faithfully-acting symmetry is ZN , and acts as  L R ! e2⇡i/N L R. The existence

of the discrete chiral symmetry means that it is meaningful to discuss spontaneous chiral

symmetry breaking, just as in e.g 4d SU(N) N = 1 super-YM theory. The ZN 0-form

chiral symmetry and the ZN 1-form symmetry have a mixed ’t Hooft anomaly [4]. Indeed, the

internal global symmetries and anomalies of the massless charge-N Schwinger model coincide

with the internal bosonic global symmetries and anomalies of 4d SU(N) N = 1 super-YM

theory.

From the perspective of the first paragraph of this introduction, it would be nice if the

dynamics of 4d SU(N) gauge theories and the charge-N Schwinger model looked similar.

Unfortunately, the behavior of the 4d and 2d theories is very di↵erent! When m = 0, the

good news is that the ZN chiral symmetry is spontaneously broken, just as in 4d N = 1

SYM. The bad news for the comparison with 4d gauge theory is that the ZN 1-form symmetry

of the Schwinger model with m = 0 is spontaneously broken, and the expectation values

of large ‘fundamental’ Wilson loops have a perimeter-law behavior
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i ⇠ e�µP (C) , (1.5)

where C is e.g. a circular contour with perimeter P (C), µ is a UV scale (of order the mass

of a heavy test particle), and a = aµdxµ. Confinement appears (and the 1-form symmetry

is restored) when m 6= 0, but the string tension scales as T ⇠ m e for m ⌧ e. In 4d

N = 1 SYM, in contrast, the 1-form ZN symmetry is not spontaneously broken, and large

Wilson loops obey an area law.

There are three basic ways to understand the behavior of Wilson loops in the Schwinger

model:

(a) Solve the charge-N Schwinger model exactly on R2 using bosonization and compute the

relevant expectation values. This has the virtue of using direct and relatively elementary

arguments.

(b) Relate deconfinement to the existence of a mixed ’t Hooft anomaly between the ZN 1-

form symmetry and the ZN 0-form chiral symmetry. This approach has the advantage

that it uses only basic symmetry principles, and so it generalizes to theories which are

not exactly solvable.

(c) Solve the model on R ⇥ S1 with small S1 and extrapolate the phase structure to

R2. Due to the ’t Hooft anomaly, the quantum-mechanical EFT has N degenerate

ground states. One can take any linear combination of them to be a ground state. The
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The second breaking implies that the test unit charges              
are not confined and the Wilson loop has a perimeter  
behavior.  Confinement appears at            .

Can we modify the model to get confinement at            ?             

the topological term from the action reintroduces it in the mass term as m  L R !

m ei✓/N L R. As a result, when m 6= 0, the degeneracy between the N chirally broken

vacua is lifted. When m is small, the ✓ dependence of the vacuum energy density emerges

as Ek(✓) = �m h L Ri + c.c where the chiral condensate is given by (see e.g. [22]):

h L Ri =
m� e�

4⇡
ei

✓+2⇡k
N , k = 1, . . . , N (2.3)

and m� = Ne/
p
⇡ is the mass gap in the theory.6 The string tension for a charge-k probe

in the presence of the theta angle can be written as

Tk(✓) = �m µ
Ne

2⇡3/2


cos

✓
✓ + 2⇡k

N

◆
� cos

✓
✓

N

◆�
+ O(m2

 
) . (2.4)

For ✓ = 0, this expression can be simplified into

Tk(✓ = 0) = m µ
Ne

⇡3/2
sin

2

✓
⇡k

N

◆
+ O(m2

 
) . (2.5)

In these formulas µ is a renormalization scale, which of course would cancel in appropri-

ate ratios of dimensionful physical quantities. Clearly, there is a finite tension, and hence

confinement, for charges k 6= 0 (mod N), and charges that are multiples of N are screened:

mass deformation : hWk(C)i =

(
e�TkA(C), k 6= 0 (mod N)

e�MP (C), k = 0 (mod N)
. (2.6)

where A(C) is the area of the disk-like region enclosed by the curve C, P (C) is the perimeter

of C, M is a non-universal mass scale, and we have assumed that A(C) is large compared

to the microscopic scales of the theory, while at the same time it is small compared to the

size of the spacetime manifold.

2.2 Confinement in the four-fermion deformed charge-N Schwinger model

The discussion above may lead one to think that it is necessary to have massive fermions to

achieve confinement in the Schwinger model. However, this is not true. All we need is for the

vacuum energy density to have non-trivial ✓-dependence. In fact, even when the fermions are

exactly massless and a chiral symmetry protects a mass term from being generated, the gauge

interactions in the Schwinger model may lead to confinement of fundamental test charges. For

this to be the case, what we need is a deformation which is chirally charged, so that with its

inclusion, the ✓ term cannot be removed, while at the same time the deformation preserves a

non-trivial subgroup of the chiral symmetry so that the mass term is still forbidden. Finally,

we want the deformation operator to be marginal or relevant, so that its e↵ects survive at

long distances. We will defer a discussion of this last point to the next section, and focus on

the first point here.

6We use the same symbol e for the the base of the natural logarithm and the gauge coupling, and hope

that readers can distinguish them from context.
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Four-fermion modifications
The Schwinger model is super-renormalizable, approaches 
a free field CFT at high energies. There is an unique exactly 
marginal four-fermion operator

two most interesting choices result in either the chiral condensate being non-zero while

the Polyakov loop has zero expectation value, or vice versa. Only the former choice

extrapolates nicely to R2. The issue with the other choice is that in the large S1 limit

the Polyakov loop disappears as an observable. We should emphasize that in 2d gauge

theories, the vanishing of the Polyakov loop expectation value on a cylinder S1 is not

su�cient to conclude that the 1-form symmetry is unbroken on R2.

All of these approaches have been discussed in the literature [4–10].

The fact that charge-q Wilson loops are deconfined for all q 2 Z in the charge-N

Schwinger model sharply contrasts with the expected behavior in 4d SU(N) gauge theory

with adjoint fermions. The latter theory is expected to confine fundamental test charges even

when the mass of the dynamical fermion goes to zero, at least as it is outside of the conformal

window. Here we discuss a modification of the charge-N Schwinger model which brings its

dynamics much closer to the dynamics of 4d gauge theories. We will mostly focus on the

Schwinger model with even N for reasons that will become clear shortly.

We now explain the basic idea of this paper. First, we recall that at high energies

the standard Schwinger model (1.1) approaches a free-field CFT fixed point, which can be

described as a free massless Dirac fermion. We then note that this CFT contains a unique

exactly marginal operator

Ojj = jµjµ
=  �µ  �

µ = �4 R L L R . (1.6)

This ‘Thirring model’ operator is exactly marginal, �jj = 2, and neutral under all symmetries

of the model. Therefore we are free to add it to the action with a dimensionless coe�cient

g 2 R. This yields a generalization of the Schwinger model which we will call the Schwinger-

Thirring (ST) model:

SST = Sstandard + g

Z
d2x Ojj (1.7)

Since (1.7) is an interacting theory, in general one might expect a dimensionless parameter

like g to run with the RG scale. However, when m = 0 it is known that in fact g remains

an exactly marginal parameter even after we take into account the gauge interaction [15–18].

This is easiest to see using bosonization, as we review below, but it can also be deduced directly

in the fermionic variables, see Appendix B. There is a minimum value of g, g⇤ = �⇡/2,

below which some operator scaling dimensions become negative, and the theory ceases to be

unitary. We will assume that g > g⇤. Turning on the perturbation by Ojj perturbation

does not a↵ect the symmetries and anomalies of the massless Schwinger model. As a result,

the massless Schwinger-Thirring model remains in a deconfined phase with a finite mass gap

and spontaneous chiral symmetry breaking for g 2 (g⇤, 1), just like the original charge N

Schwinger model.

We should emphasize that the high energy behavior of SST is not the same as that

of the original Schwinger model, although it is continuously connected to it. Rather than

– 4 –

This ‘Thirring model’ operator with           preserves           
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As discussed in the introduction, the massless charge-N Schwinger model has a Z(1)

N
1-form

symmetry and Z(0)

N
0-form chiral symmetry. It is often asserted that when the fermions are

massless, the theory does not confine integer test charges, while with massive fermions, it

does confine integer test charges. The common argument for this involves considering the

topological ✓ parameter of U(1) gauge theory, which enters the Euclidean action through

S✓ =
i✓

2⇡

Z

M2

da . (2.1)

Coleman observed that changing ✓ by 2⇡ corresponds to inserting a particle of charge ±1 at

x = ±1. This means that the k-string tension can be written as

Tk(✓) = E(✓ + 2⇡k) � E(✓) , (2.2)

where E(✓) is the vacuum energy density as a function of ✓.

Of course, when m = 0, there is no ✓ dependence in vacuum energy, because a chiral

rotation can remove the ✓ term from the action. This immediately implies that the massless

theory does not confine integer test charges. Once a mass term for fermions is added, the

✓ term can no longer be removed by chiral rotations: a transformation that would remove
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While the model still approaches a free field CFT point 
at high energies it becomes an interacting fixed point — 
scaling  dimensions of operators do not coincide with 
canonical ones.

The lowest dimension four-fermion operator breaking      
chiral  symmetry is               .

We should emphasize that the high energy behavior of SST is not the same as that

of the original Schwinger model, although it is continuously connected to it. Rather than

approaching a free-field CFT fixed point, it approaches an interacting CFT fixed point at

high energies. In this UV CFT fixed point the scaling dimensions of operators do not coincide

with their ‘engineering’ dimensions.

The lowest-dimension four-fermion operator which is invariant under parity but not ZN

chiral symmetry is

O� =  L R(Dµ L)(D
µ R) . (1.8)

At the free-field fixed point (that is, at high energies and with g = 0), the scaling dimension

of O� coincides with its engineering dimension, which is 4. So when g = 0, this operator

is RG irrelevant. But the scaling dimension �� of O� depends on g, and we will show that

�� decreases monotonically as g is increased. Specifically, bosonization implies that

� =
4

1 + 2g/⇡
. (1.9)

The scaling dimension of O� diverges as g ! g⇤ = �⇡/2 from above, but it becomes

relevant when g > ⇡/2.

As a result, there is a critical value of g (g = ⇡/2) at which O� becomes marginal at the

UV fixed point, and as g is increased further, the O� operator becomes relevant at the UV

fixed point. At the same time, we note that the operator O� is the lowest-dimension operator

with charge 2 under ZN chiral symmetry, and it is invariant under all other symmetries. In

the rest of this paper, we will discuss what happens to the low-energy physics once we add

the O� operator to the UV action of the ST model as a perturbation:3

S = SST + ⇤
2���

Z
d2x (O� + O

†
�
) . (1.10)

The parameter ⇤ is a new parameter with unit mass dimension. Its power is fixed from the

scaling dimension of O� at the UV fixed point. Whether one should think of ⇤ as an IR or

a UV energy scale depends on ��, and as we have already said �� depends on the marginal

parameter g. If �� > 2, then ⇤ is a UV scale: the model defined by Eq. (1.10) needs a UV

completion at the scale ⇤. In this case we will get a physically-interesting model if e ⌧ ⇤.

If �� < 2, then ⇤ is an IR mass scale in the same sense as the fermion mass parameter is

an ‘IR scale’ of a free-fermion theory, and there is no a priori constraint on the ratio ⇤/e.

Nevertheless, we will see that the model is weakly coupled (in the bosonized duality frame)

when ⇤/e ⌧ 1, and so that is the regime we will focus on.

3An inspirational brief discussion of a very similar deformation was given in Ref. [8]. However, the form of

the deformation in the fermionic variables given in Ref. [8] is the same as our O� without derivatives, which

vanishes identically due to fermi statistics. The form of the deformation in the bosonic variables in Ref. [8]

coincides with our bosonized expressions, but the consequences of the technical irrelevance of this operator

were not highlighted.
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two most interesting choices result in either the chiral condensate being non-zero while

the Polyakov loop has zero expectation value, or vice versa. Only the former choice

extrapolates nicely to R2. The issue with the other choice is that in the large S1 limit

the Polyakov loop disappears as an observable. We should emphasize that in 2d gauge

theories, the vanishing of the Polyakov loop expectation value on a cylinder S1 is not

su�cient to conclude that the 1-form symmetry is unbroken on R2.

All of these approaches have been discussed in the literature [4–10].

The fact that charge-q Wilson loops are deconfined for all q 2 Z in the charge-N

Schwinger model sharply contrasts with the expected behavior in 4d SU(N) gauge theory

with adjoint fermions. The latter theory is expected to confine fundamental test charges even

when the mass of the dynamical fermion goes to zero, at least as it is outside of the conformal

window. Here we discuss a modification of the charge-N Schwinger model which brings its

dynamics much closer to the dynamics of 4d gauge theories. We will mostly focus on the

Schwinger model with even N for reasons that will become clear shortly.

We now explain the basic idea of this paper. First, we recall that at high energies

the standard Schwinger model (1.1) approaches a free-field CFT fixed point, which can be

described as a free massless Dirac fermion. We then note that this CFT contains a unique

exactly marginal operator

Ojj = jµjµ
=  �µ  �

µ = �4 R L L R . (1.6)

This ‘Thirring model’ operator is exactly marginal, �jj = 2, and neutral under all symmetries

of the model. Therefore we are free to add it to the action with a dimensionless coe�cient

g 2 R. This yields a generalization of the Schwinger model which we will call the Schwinger-

Thirring (ST) model:

SST = Sstandard + g

Z
d2x Ojj (1.7)

Since (1.7) is an interacting theory, in general one might expect a dimensionless parameter

like g to run with the RG scale. However, when m = 0 it is known that in fact g remains

an exactly marginal parameter even after we take into account the gauge interaction [15–18].

This is easiest to see using bosonization, as we review below, but it can also be deduced directly

in the fermionic variables, see Appendix B. There is a minimum value of g, g⇤ = �⇡/2,

below which some operator scaling dimensions become negative, and the theory ceases to be

unitary. We will assume that g > g⇤.

g > g⇤ = �⇡/2

Turning on the perturbation by Ojj perturbation does not a↵ect the symmetries and anomalies

of the massless Schwinger model. As a result, the massless Schwinger-Thirring model remains

in a deconfined phase with a finite mass gap and spontaneous chiral symmetry breaking for

g 2 (g⇤, 1), just like the original charge N Schwinger model.
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Figure 1. Behaviour of the massless Schwinger model in the presence of two four-fermion operators
Ojj and O� for N -even. Ojj is a marginal deformation. When g > gc, O� becomes relevant and
the massless theory becomes confining. The behaviour of the four-fermion-deformed Schwinger model
is similar in this respect to four-fermion-deformed QCD(adj)2.

To get a feeling for the physics of the four-fermion deformed model (1.10) let us first

suppose that �� > 2. This would be the case if e.g. we set g = 0. Then chiral symmetry

is explicitly broken at the UV scale ⇤. For even N it is broken to a Z2 subgroup, while for

odd N it is broken completely. One might therefore expect that the model becomes confining

for odd N . However, this is not quite correct. At long distances ` � 1/e � 1/⇤, the

deformation by O� is irrelevant in the RG sense, and at distances large compared to 1/⇤

there can be an emergent ZN chiral symmetry.4 Indeed, in this case the string tension induced

by the ⇤ perturbation is proportional to e.g. e4/⇤2 when g = 0, and so unit test charges

separated by a distance L satisfying 1/e ⌧ L ⌧ ⇤
2/e3 will not feel a linear potential.

In this sense the ST model with a deformation by O� with �� > 2 is no more confining

than U(1) QED in three spacetime dimensions, interpreted as a lattice gauge theory on a

square Euclidean lattice with a Wilson action. In that model, at finite lattice spacing a

there are finite-action monopole instantons which induce a finite string tension [13]. But the

monopole-instanton action diverges in the continuum limit a ! 0, so the string tension also

goes to zero in the continuum limit.5

4When the O� operator is irrelevant, we expect it to behave similarly to the Wilson term in the Wilson

fermion action in 4d lattice gauge theory. In 4d, the Wilson term is an irrelevant dimension 5 operator,

schematically  DµD
µ , which breaks chiral symmetry as well as the degeneracy between the 16 ‘doubler’

fermion modes. If the bare mass term is set to zero, then a lattice-scale mass term is induced by RG flow, and

there is no emergent chiral symmetry in the infrared: the Wilson term is dangerously irrelevant. But one can

get an emergent chiral symmetry in the infrared by tuning the bare quark mass term. We expect the same to

be true for the O� operator when N is odd, but leave a detailed exploration of this feature of the model to

future work.
5Recently it was understood that there are other lattice actions which flow to U(1) QED in three spacetime
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be true for the O� operator when N is odd, but leave a detailed exploration of this feature of the model to

future work.
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When m = 0, at the classical level the Schwinger model has a U(1) axial symmetry. As

usual, the ABJ anomaly means that the chiral symmetry in the quantum theory is reduced,

and is generated by

 (x) ! e2⇡i�5/(2N) (x) . (1.4)

The faithfully-acting symmetry is ZN , and acts as  L R ! e2⇡i/N L R. The existence
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symmetry breaking, just as in e.g 4d SU(N) N = 1 super-YM theory. The ZN 0-form

chiral symmetry and the ZN 1-form symmetry have a mixed ’t Hooft anomaly [4]. Indeed, the
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with the internal bosonic global symmetries and anomalies of 4d SU(N) N = 1 super-YM
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dynamics of 4d SU(N) gauge theories and the charge-N Schwinger model looked similar.

Unfortunately, the behavior of the 4d and 2d theories is very di↵erent! When m = 0, the

good news is that the ZN chiral symmetry is spontaneously broken, just as in 4d N = 1

SYM. The bad news for the comparison with 4d gauge theory is that the ZN 1-form symmetry

of the Schwinger model with m = 0 is spontaneously broken, and the expectation values

of large ‘fundamental’ Wilson loops have a perimeter-law behavior

hei
R
C a

i ⇠ e�µP (C) , (1.5)

where C is e.g. a circular contour with perimeter P (C), µ is a UV scale (of order the mass

of a heavy test particle), and a = aµdxµ. Confinement appears (and the 1-form symmetry

is restored) when m 6= 0, but the string tension scales as T ⇠ m e for m ⌧ e. In 4d

N = 1 SYM, in contrast, the 1-form ZN symmetry is not spontaneously broken, and large
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(b) Relate deconfinement to the existence of a mixed ’t Hooft anomaly between the ZN 1-
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R2. Due to the ’t Hooft anomaly, the quantum-mechanical EFT has N degenerate
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Figure 1. Behaviour of the massless Schwinger model in the presence of two four-fermion operators
Ojj and O� for N -even. Ojj is a marginal deformation. When g > gc, O� becomes relevant and
the massless theory becomes confining. The behaviour of the four-fermion-deformed Schwinger model
is similar in this respect to four-fermion-deformed QCD(adj)2.

To get a feeling for the physics of the four-fermion deformed model (1.10) let us first

suppose that �� > 2. This would be the case if e.g. we set g = 0. Then chiral symmetry

is explicitly broken at the UV scale ⇤. For even N it is broken to a Z2 subgroup, while for

odd N it is broken completely. One might therefore expect that the model becomes confining

for odd N . However, this is not quite correct. At long distances ` � 1/e � 1/⇤, the

deformation by O� is irrelevant in the RG sense, and at distances large compared to 1/⇤

there can be an emergent ZN chiral symmetry.4 Indeed, in this case the string tension induced

by the ⇤ perturbation is proportional to e.g. e4/⇤2 when g = 0, and so unit test charges

separated by a distance L satisfying 1/e ⌧ L ⌧ ⇤
2/e3 will not feel a linear potential.

In this sense the ST model with a deformation by O� with �� > 2 is no more confining

than U(1) QED in three spacetime dimensions, interpreted as a lattice gauge theory on a

square Euclidean lattice with a Wilson action. In that model, at finite lattice spacing a

there are finite-action monopole instantons which induce a finite string tension [13]. But the

monopole-instanton action diverges in the continuum limit a ! 0, so the string tension also

goes to zero in the continuum limit.5

4When the O� operator is irrelevant, we expect it to behave similarly to the Wilson term in the Wilson

fermion action in 4d lattice gauge theory. In 4d, the Wilson term is an irrelevant dimension 5 operator,

schematically  DµD
µ , which breaks chiral symmetry as well as the degeneracy between the 16 ‘doubler’

fermion modes. If the bare mass term is set to zero, then a lattice-scale mass term is induced by RG flow, and

there is no emergent chiral symmetry in the infrared: the Wilson term is dangerously irrelevant. But one can

get an emergent chiral symmetry in the infrared by tuning the bare quark mass term. We expect the same to

be true for the O� operator when N is odd, but leave a detailed exploration of this feature of the model to

future work.
5Recently it was understood that there are other lattice actions which flow to U(1) QED in three spacetime
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damental (that is, q = ±1) test charges when N > 2. When N is even the ZN 1-form
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These analyses have complementary strengths, and combining them yields some interesting
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N
1-form

symmetry and Z(0)

N
0-form chiral symmetry. It is often asserted that when the fermions are
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2⇡

Z

M2

da . (2.1)

Coleman observed that changing ✓ by 2⇡ corresponds to inserting a particle of charge ±1 at

x = ±1. This means that the k-string tension can be written as

Tk(✓) = E(✓ + 2⇡k) � E(✓) , (2.2)

where E(✓) is the vacuum energy density as a function of ✓.

Of course, when m = 0, there is no ✓ dependence in vacuum energy, because a chiral

rotation can remove the ✓ term from the action. This immediately implies that the massless

theory does not confine integer test charges. Once a mass term for fermions is added, the

✓ term can no longer be removed by chiral rotations: a transformation that would remove
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Figure 1. Behaviour of the massless Schwinger model in the presence of two four-fermion operators
Ojj and O� for N -even. Ojj is a marginal deformation. When g > gc, O� becomes relevant and
the massless theory becomes confining. The behaviour of the four-fermion-deformed Schwinger model
is similar in this respect to four-fermion-deformed QCD(adj)2.

To get a feeling for the physics of the four-fermion deformed model (1.10) let us first

suppose that �� > 2. This would be the case if e.g. we set g = 0. Then chiral symmetry

is explicitly broken at the UV scale ⇤. For even N it is broken to a Z2 subgroup, while for

odd N it is broken completely. One might therefore expect that the model becomes confining

for odd N . However, this is not quite correct. At long distances ` � 1/e � 1/⇤, the

deformation by O� is irrelevant in the RG sense, and at distances large compared to 1/⇤

there can be an emergent ZN chiral symmetry.4 Indeed, in this case the string tension induced

by the ⇤ perturbation is proportional to e.g. e4/⇤2 when g = 0, and so unit test charges

separated by a distance L satisfying 1/e ⌧ L ⌧ ⇤
2/e3 will not feel a linear potential.

In this sense the ST model with a deformation by O� with �� > 2 is no more confining

than U(1) QED in three spacetime dimensions, interpreted as a lattice gauge theory on a

square Euclidean lattice with a Wilson action. In that model, at finite lattice spacing a

there are finite-action monopole instantons which induce a finite string tension [13]. But the

monopole-instanton action diverges in the continuum limit a ! 0, so the string tension also

goes to zero in the continuum limit.5

4When the O� operator is irrelevant, we expect it to behave similarly to the Wilson term in the Wilson

fermion action in 4d lattice gauge theory. In 4d, the Wilson term is an irrelevant dimension 5 operator,

schematically  DµD
µ , which breaks chiral symmetry as well as the degeneracy between the 16 ‘doubler’

fermion modes. If the bare mass term is set to zero, then a lattice-scale mass term is induced by RG flow, and

there is no emergent chiral symmetry in the infrared: the Wilson term is dangerously irrelevant. But one can

get an emergent chiral symmetry in the infrared by tuning the bare quark mass term. We expect the same to

be true for the O� operator when N is odd, but leave a detailed exploration of this feature of the model to

future work.
5Recently it was understood that there are other lattice actions which flow to U(1) QED in three spacetime
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The result is illustrated at the figure.



2.2 Confinement in the four-fermion deformed charge-N Schwinger model

The discussion above may lead one to think that it is necessary to have massive fermions to

achieve confinement in the Schwinger model. However, this is not true. All we need is for the

vacuum energy density to have non-trivial ✓-dependence. In fact, even when the fermions are

exactly massless and a chiral symmetry protects a mass term from being generated, the gauge

interactions in the Schwinger model may lead to confinement of fundamental test charges. For

this to be the case, what we need is a deformation which is chirally charged, so that with its

inclusion, the ✓ term cannot be removed, while at the same time the deformation preserves a

non-trivial subgroup of the chiral symmetry so that the mass term is still forbidden. Finally,

we want the deformation operator to be marginal or relevant, so that its e↵ects survive at

long distances. We will defer a discussion of this last point to the next section, and focus on

the first point here.

Consider the chirally-charged four-fermion operator in Eq. (1.8). The ABJ anomaly

reduces U(1)A down to Z2N , but the Z2 part of this transformation is part of the gauge

redundancy. Therefore the faithful symmetry is only ZN , as explained earlier, and the four-

fermion deformation breaks the anomaly-free faithfully-acting ZN chiral symmetry down to

Z2 for N even and breaks it completely for N odd. Therefore, for N even, a mass term

cannot be generated when the deformation is turned on. However, if N is odd, a mass term

can be generated non-perturbatively. A heuristic argument for this goes as follows. Pure

U(1) gauge theory on a torus has instantons with integer topological charge 1

2⇡

R
T 2 f 2 Z.

If we add a massless charge N Dirac fermion, a charge 1 instanton has 2N zero modes.

When N is odd we can soak up its fermion zero modes N�1

2
times by using the four-fermion

operators and generate a fermion mass term from a sum over a dilute gas of instantons.

However, this picture is only heuristic because when T 2 is large compared to the gauge

coupling e, instantons are not localized, so a dilute instanton gas sum does not make sense.

In Section 5 we will discuss a regime where a semiclassical calculation involving finite-action

field configuration does make sense, and make these remarks more precise.

If we do a chiral rotation to remove the topological term (1.2) in the action, we reintroduce

✓ in the chirally-charged four-fermion operator as O� 7! e2i✓/N
O�. Therefore, even in the

absence of massless fermions, the vacuum energy density depends on ✓. Following the same

steps as in the undeformed theory, we find that the string tension for a charge k probe is

Tk ⇠ �⇤
2���


cos

✓
2(✓ + 2⇡k)

N

◆
� cos

✓
2✓

N

◆�
+ O(⇤

2(2���)) , (2.9)

where �� is the scaling dimension of O�. If �� > 2, ⇤ is a UV scale, and Tk vanishes for

all k as we take ⇤/e � 1. If �� < 2, then ⇤ is an IR scale. The expression above assumes

that ⇤/e ⌧ 1 when �� < 2. For ✓ = 0, this expression can be simplified into

Tk ⇠ ⇤
2��� sin

2

✓
2⇡k

N

◆
+ O(⇤

2(2���)) . (2.10)
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Figure 1. Behaviour of the massless Schwinger model in the presence of two four-fermion operators
Ojj and O� for N -even. Ojj is a marginal deformation. When g > gc, O� becomes relevant and
the massless theory becomes confining. The behaviour of the four-fermion-deformed Schwinger model
is similar in this respect to four-fermion-deformed QCD(adj)2.

To get a feeling for the physics of the four-fermion deformed model (1.10) let us first

suppose that �� > 2. This would be the case if e.g. we set g = 0. Then chiral symmetry

is explicitly broken at the UV scale ⇤. For even N it is broken to a Z2 subgroup, while for

odd N it is broken completely. One might therefore expect that the model becomes confining

for odd N . However, this is not quite correct. At long distances ` � 1/e � 1/⇤, the

deformation by O� is irrelevant in the RG sense, and at distances large compared to 1/⇤

there can be an emergent ZN chiral symmetry.4 Indeed, in this case the string tension induced

by the ⇤ perturbation is proportional to e.g. e4/⇤2 when g = 0, and so unit test charges

separated by a distance L satisfying 1/e ⌧ L ⌧ ⇤
2/e3 will not feel a linear potential.

In this sense the ST model with a deformation by O� with �� > 2 is no more confining

than U(1) QED in three spacetime dimensions, interpreted as a lattice gauge theory on a

square Euclidean lattice with a Wilson action. In that model, at finite lattice spacing a

there are finite-action monopole instantons which induce a finite string tension [13]. But the

monopole-instanton action diverges in the continuum limit a ! 0, so the string tension also

goes to zero in the continuum limit.5

4When the O� operator is irrelevant, we expect it to behave similarly to the Wilson term in the Wilson

fermion action in 4d lattice gauge theory. In 4d, the Wilson term is an irrelevant dimension 5 operator,

schematically  DµD
µ , which breaks chiral symmetry as well as the degeneracy between the 16 ‘doubler’

fermion modes. If the bare mass term is set to zero, then a lattice-scale mass term is induced by RG flow, and

there is no emergent chiral symmetry in the infrared: the Wilson term is dangerously irrelevant. But one can

get an emergent chiral symmetry in the infrared by tuning the bare quark mass term. We expect the same to

be true for the O� operator when N is odd, but leave a detailed exploration of this feature of the model to

future work.
5Recently it was understood that there are other lattice actions which flow to U(1) QED in three spacetime
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the charge-N Schwinger model, which was studied recently in e.g. Refs. [4–10], see also [11]

for an early analysis. This model has the Euclidean action

Sstandard =

Z
d2x

✓
1

4e2
f2

µ⌫
+  [�µ

(@µ + iNaµ)] 

◆
+ m  L R + h.c. . (1.1)

Here aµ is a U(1) gauge field,  is a Dirac fermion field with chiral components  L, R, the

integer N is the charge of the fermion, e has unit mass dimension, and Hermitian conjugation

is defined by analytic continuation from Minkowski space. The statement that aµ is a U(1)

gauge field means that the gauge transformation functions ↵(x) take values in U(1), meaning

that there is 2⇡ periodicity. Physically, one could interpret this periodicity as arising from

gauge transformations of a very heavy unit-charge test fermion field  t,

 t ! ei↵ t,

while the gauge transformations of the other fields are

aµ ! aµ � @µ↵,

 ! eiN↵ .

Gauge invariance also implies that
R
M2

f 2 2⇡Z where M2 is any closed smooth 2-manifold

and f = da =
1

2
fµ⌫dxµ

^ dx⌫ is the field strength 2-form.

We also add an explicit topological ✓ term

S✓ =
i✓

2⇡

Z

M2

da (1.2)

to the action, and assume that m � 0. The coe�cient ✓ is 2⇡ periodic. However, we will

mostly focus on the physics at ✓ = 0, where the theory has a Z2 parity symmetry.

As defined above, the Schwinger model has a ZN 1-form symmetry [12] for any value of

m. This symmetry is generated by a collection of N local topological operators Un(x) and

has the e↵ect of multiplying Wilson loops by ZN phases:

hUn(x) eiq
R
C aµdx

µ
i = exp

✓
2⇡inq

N
`(C, x)

◆
heiq

R
C aµdx

µ
i (1.3)

where `(C, x) is the linking number of C and x. The internal global symmetry of the

m 6= 0 Schwinger model—which is just the ZN 1-form symmetry—coincides with the global

symmetry of pure 4d SU(N) Yang-Mills theory. The existence of the 1-form ZN symmetry

means that charge confinement is a sharply-defined concept in the Schwinger model when

N > 1. The same is true in 4d SU(N) pure YM theory.2

2In discussions of 4d YM theory it is common to call its ZN 1-form symmetry “center symmetry” [13, 14].

This has some historical justification because the center subgroup of SU(N) is ZN , which happens to be

the same as the 1-form symmetry group so long as all matter fields are in representations of N -ality zero.

We won’t use this language here because the addition of matter reduces the 1-form symmetry to a discrete

subgroup, while the center subgroup of the U(1) gauge group is U(1).
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2.2 Confinement in the four-fermion deformed charge-N Schwinger model

The discussion above may lead one to think that it is necessary to have massive fermions to

achieve confinement in the Schwinger model. However, this is not true. All we need is for the

vacuum energy density to have non-trivial ✓-dependence. In fact, even when the fermions are

exactly massless and a chiral symmetry protects a mass term from being generated, the gauge

interactions in the Schwinger model may lead to confinement of fundamental test charges. For

this to be the case, what we need is a deformation which is chirally charged, so that with its

inclusion, the ✓ term cannot be removed, while at the same time the deformation preserves a

non-trivial subgroup of the chiral symmetry so that the mass term is still forbidden. Finally,

we want the deformation operator to be marginal or relevant, so that its e↵ects survive at

long distances. We will defer a discussion of this last point to the next section, and focus on

the first point here.

Consider the chirally-charged four-fermion operator in Eq. (1.8). The ABJ anomaly

reduces U(1)A down to Z2N , but the Z2 part of this transformation is part of the gauge

redundancy. Therefore the faithful symmetry is only ZN , as explained earlier, and the four-

fermion deformation breaks the anomaly-free faithfully-acting ZN chiral symmetry down to

Z2 for N even and breaks it completely for N odd. Therefore, for N even, a mass term

cannot be generated when the deformation is turned on. However, if N is odd, a mass term

can be generated non-perturbatively. A heuristic argument for this goes as follows. Pure

U(1) gauge theory on a torus has instantons with integer topological charge 1

2⇡

R
T 2 f 2 Z.

If we add a massless charge N Dirac fermion, a charge 1 instanton has 2N zero modes.

When N is odd we can soak up its fermion zero modes N�1

2
times by using the four-fermion

operators and generate a fermion mass term from a sum over a dilute gas of instantons.

However, this picture is only heuristic because when T 2 is large compared to the gauge

coupling e, instantons are not localized, so a dilute instanton gas sum does not make sense.

In Section 5 we will discuss a regime where a semiclassical calculation involving finite-action

field configuration does make sense, and make these remarks more precise.

If we do a chiral rotation to remove the topological term (1.2) in the action, we reintroduce

✓ in the chirally-charged four-fermion operator as O� 7! e2i✓/N
O�. Therefore, even in the

absence of massless fermions, the vacuum energy density depends on ✓. Following the same

steps as in the undeformed theory, we find that the string tension for a charge k probe is

Tk ⇠ �⇤
2���


cos

✓
2(✓ + 2⇡k)

N

◆
� cos

✓
2✓

N

◆�
+ O(⇤

2(2���)) , (2.9)

where �� is the scaling dimension of O�. If �� > 2, ⇤ is a UV scale, and Tk vanishes for

all k as we take ⇤/e � 1. If �� < 2, then ⇤ is an IR scale. The expression above assumes

that ⇤/e ⌧ 1 when �� < 2. For ✓ = 0, this expression can be simplified into

Tk ⇠ ⇤
2��� sin

2

✓
2⇡k

N

◆
+ O(⇤

2(2���)) . (2.10)
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and at        

theory does not confine integer test charges. Once a mass term for fermions is added, the

✓ term can no longer be removed by chiral rotations: a transformation that would remove

the topological term from the action reintroduces it in the mass term as m  L R !

m ei✓/N L R. As a result, when m 6= 0, the degeneracy between the N chirally broken

vacua is lifted. When m is small, the ✓ dependence of the vacuum energy density emerges

as Ek(✓) = �m h L Ri + c.c where the chiral condensate is given by (see e.g. [22]):

h L Ri =
m� e�

4⇡
ei

✓+2⇡k
N , k = 1, . . . , N (2.3)

and m� = Ne/
p
⇡ is the mass gap in the theory.6 The string tension for a charge-k probe

in the presence of the theta angle can be written as

Tk(✓) = �m µ
Ne

2⇡3/2


cos

✓
✓ + 2⇡k

N

◆
� cos

✓
✓

N

◆�
+ O(m2

 
) . (2.4)

Tk(✓) = �
m m�e�

2⇡


cos

✓
✓ + 2⇡k

N

◆
� cos

✓
✓

N

◆�
+ O(m2

 
) . (2.5)

For ✓ = 0, this expression can be simplified into

Tk(✓ = 0) = m µ
Ne

⇡3/2
sin

2

✓
⇡k

N

◆
+ O(m2

 
) . (2.6)

Tk(✓ = 0) =
m m�e�

⇡
sin

2

✓
⇡k

N

◆
+ O(m2

 
) . (2.7)

In these formulas µ is a renormalization scale, which of course would cancel in appropri-

ate ratios of dimensionful physical quantities. Clearly, there is a finite tension, and hence

confinement, for charges k 6= 0 (mod N), and charges that are multiples of N are screened:

mass deformation : hWk(C)i =

(
e�TkA(C), k 6= 0 (mod N)

e�MP (C), k = 0 (mod N)
. (2.8)

where A(C) is the area of the disk-like region enclosed by the curve C, P (C) is the perimeter

of C, M is a non-universal mass scale, and we have assumed that A(C) is large compared

to the microscopic scales of the theory, while at the same time it is small compared to the

size of the spacetime manifold.

6We use the same symbol e for the the base of the natural logarithm and the gauge coupling, and hope

that readers can distinguish them from context.
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inclusion, the ✓ term cannot be removed, while at the same time the deformation preserves a

non-trivial subgroup of the chiral symmetry so that the mass term is still forbidden. Finally,

we want the deformation operator to be marginal or relevant, so that its e↵ects survive at
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the first point here.

Consider the chirally-charged four-fermion operator in Eq. (1.8). The ABJ anomaly

reduces U(1)A down to Z2N , but the Z2 part of this transformation is part of the gauge

redundancy. Therefore the faithful symmetry is only ZN , as explained earlier, and the four-

fermion deformation breaks the anomaly-free faithfully-acting ZN chiral symmetry down to

Z2 for N even and breaks it completely for N odd. Therefore, for N even, a mass term

cannot be generated when the deformation is turned on. However, if N is odd, a mass term

can be generated non-perturbatively. A heuristic argument for this goes as follows. Pure

U(1) gauge theory on a torus has instantons with integer topological charge 1
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If we add a massless charge N Dirac fermion, a charge 1 instanton has 2N zero modes.

When N is odd we can soak up its fermion zero modes N�1
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times by using the four-fermion

operators and generate a fermion mass term from a sum over a dilute gas of instantons.

However, this picture is only heuristic because when T 2 is large compared to the gauge

coupling e, instantons are not localized, so a dilute instanton gas sum does not make sense.

In Section 5 we will discuss a regime where a semiclassical calculation involving finite-action

field configuration does make sense, and make these remarks more precise.

If we do a chiral rotation to remove the topological term (1.2) in the action, we reintroduce

✓ in the chirally-charged four-fermion operator as O� 7! e2i✓/N
O�. Therefore, even in the

absence of massless fermions, the vacuum energy density depends on ✓. Following the same

steps as in the undeformed theory, we find that the string tension for a charge k probe is

Tk ⇠ �⇤
2���


cos

✓
2(✓ + 2⇡k)

N

◆
� cos

✓
2✓

N

◆�
+ O(⇤

2(2���)) , (2.9)

where �� is the scaling dimension of O�. If �� > 2, ⇤ is a UV scale, and Tk vanishes for

all k as we take ⇤/e � 1. If �� < 2, then ⇤ is an IR scale. The expression above assumes

that ⇤/e ⌧ 1 when �� < 2. For ✓ = 0, this expression can be simplified into

Tk ⇠ ⇤
2��� sin

2

✓
2⇡k

N

◆
+ O(⇤

2(2���)) . (2.10)
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String tension in mass deformed theory String tension in 4-fermi deformed theory

Tk

Tk

N -ality k N -ality kN
2

N
2

a) b) 

Figure 2. String tensions in the charge-N Schwinger model for even N as a function of N -ality
in a) the mass-deformed theory and b) the theory deformed by the two four-fermion operators. The
first case exhibits a single hump structure, and the string tension is maximal at k =

N
2

, and there
is generically a two-fold degeneracy of tensions. In the second case, the string tension vanishes at
k =

N
2

, there is a double-hump structure, and the spectrum of string tensions is generically 4-fold
degenerate.

Note that for N even, the string tension vanishes for charges k = 0, N/2 (mod N), and

is non-vanishing otherwise. For N odd, string tensions except for k = 0 (mod N) are

non-zero. The basic fate of confinement is illustrated by the sketch in Fig. 1. An interesting

feature in both cases is the double-hump structure of the tensions as a function of k. For

example, for odd N , the minimal tension is not T1 = TN�1, but T(N�1)/2 = T(N+1)/2.

This is illustrated in Fig. 2 .

To summarize, in our version of the massless Schwinger model defined by (1.10) with

g > ⇡/2, large Wilson loops have the following behavior:

hWk(C)i =

(
e�TkA(C), k 6= 0, N/2 (mod N)

e�MP (C), k = 0, N/2 (mod N)
. (2.11)

The probe charges k = 0, N/2 (mod N) are screened and the other probe charges are

confined. The main distinction relative to the standard massive Schwinger model is the fact

that k = N/2 probe charge is confined in the massive model, and is screened in the four-

fermion deformed model. In the semi-classical domain, we will see the microscopic di↵erence

between these two versions of confinement.

3 Bosonization

It is famously useful to treat the Schwinger model using bosonization, and in this section we

describe the bosonized form of the model. This will allow us to understand the interplay of

the two four-fermion deformations of the model, and will be very useful both for the analysis
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Bosonizations
The compact boson action corresponding to free-fermion 
theory is       

of the dynamics on R2, as well as to understand some subtleties that arise in our analysis of

the physics on R ⇥ S1.

Bosonization amounts to a ‘change of variables’ in the path integral from the fermion

field  to a scalar field '. The scalar is circle-valued, '(x) ⌘ '(x) + 2⇡, so e.g. d'

and eik' with integer k are good local operators, but ' itself is not. To write down the

bosonized theory, consider a free massless fermion with gauged fermion parity. It has two

U(1) global symmetries, the vector-like symmetry U(1)V and the axial symmetry U(1)A,

with conserved current 1-forms jV , jA respectively. The bosonic action corresponding to the

free-fermion theory is

S',free =

Z

M2

1

8⇡
kd'k

2 (3.1)

where kCk
2

⌘ C ^ ?C for any di↵erential form C. The conserved currents of the bosonic

and fermionic theories are related via

jV $ �
1

2⇡
? d' , jA $

i

4⇡
d' . (3.2)

Chiral symmetry acts on ' via ei'
! e2⇡i/Nei'. The bosonic operator corresponding to

the fermion bilinears is

 L(x) R(x) $ �
µe�

2⇡
ei'(x) (3.3)

and µ is the renormalization scale. This scale appears on the bosonic side of the mapping

because the two-point function of ' calculated from the action (3.1) has logarithmic UV/IR

sensitivity, h'(x)'(0)i � h'(0)2i ⇠ log(xµ). When the renormalization scale is changed

from µ to µ0, exponentials of ' transform as [23]

eik'
!

����
µ0

µ

����
k
2

eik' (3.4)

where on the left the renormalization scale of eik' is µ while on the right it is µ0.

We will also need relations between the four-fermion operators Ojj, O� and bosonized

quantities. First, note that

|jV |
2
=  �µ  �

µ $
1

4⇡2
|d'|

2 . (3.5)

This relation follows from the bosonic substitution (3.2) for the current (jV )
µ
=  �µ . It

implies that the bosonic dual of the Schwinger-Thirring model with action (1.7) is

Sbosonized ST =

Z

M2


1

2e2
kdak

2
+

1

2
R2

kd'k
2

� mµ cos(') �
iN

2⇡
d' ^ a

�
, (3.6)
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Bozonized version of Schwinger -Thirring model                         
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where m = e�m /2⇡, and

R2
=

1

4⇡

✓
1 +

2g

⇡

◆
. (3.7)

The parameter R gives the ‘radius’ of the canonically-normalized scalar '̃ associated to ',

so that the periodicity of '̃ is 2⇡R. When g = 0, R = 1/
p
4⇡, so the periodicity of '̃ is

⇡1/2.

Note when m = 0, the action (3.6) is quadratic in the fields, and so it is a free field

theory in the bosonic duality frame for any R (that is, any g). This makes it clear that g

does not run in the ST model: it is an exactly marginal parameter. The energy is bounded

from below so long as g > �⇡/2. When g 6= 0, the renormalization scale-change relation

becomes

eik'
!

����
µ0

µ

����
k
2
/4⇡R

2

eik' (3.8)

Equation (3.8) implies that the scaling dimension of eik' is

�k ⌘ �[eik'
] =

k2

1 + 2g/⇡
, (3.9)

so that the bosonization rule for e.g. the fermion bilinear becomes

 L(x) R(x)$ �
µ�1e�

2⇡
ei'(x) . (3.10)

We can also state the bosonization rule for the operator

O� =  L R(Dµ L)(D
µ R) , (3.11)

which is a scalar operator with chiral charge 2 and scaling dimension 4 at g = 0. The only

such operator in the bosonic description is e2i', so we conclude that

O� + O
†
�
 ! cµ�2 cos(2') (3.12)

where c is an O(1) numerical constant.7 This means that

⇤
2��2

Z
d2x (O� + O

†
�
)  ! cµ�2 ⇤

2��2

Z
d2x cos(2') . (3.13)

Since we will be working with the bosonized form of the theory from here onward, we will

absorb c into the normalization of ⇤, so it will not appear in our formulas. The bosonized

action of the Schwinger model deformed by Ojj and O� with m = 0 is thus

S =

Z

M2


1

2
R2
kd'k2 + µ�2⇤

2��2 cos(2') +
1

2e2
kdak2 �

i

2⇡
Nd' ^ a

�
(3.14)

7Our argument for Eq. (3.12) is based on matching symmetries and scaling dimensions. We are not aware

of a complete and explicit discussion of bosonization for this chirality-violating four-fermion operator in the
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theory in the bosonic duality frame for any R (that is, any g). This makes it clear that g
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In what follows we will often integrate the axion-like gauge field coupling of ' by parts and

drop the total derivative that appears in the process. Appendix A contains a discussion of

some interesting global subtleties of axion interaction terms in 2d abelian gauge theories.

Handling these subtleties is important in some of our calculations on R ⇥ S1.

The action in (3.14) depends on the renormalization scale µ. When �2 > 2, the O�

deformation is irrelevant, and we should assume that ⇤ � m� ⌘
eN

2⇡R
to get a well-defined

theory without needing to specify a detailed UV completion. Then the scale relevant to the

low-energy physics will be ⇠ m� , see (4.3). When �2 < 2, the O� deformation is relevant,

and ⇤ could be larger or smaller than m� . We will focus on the situation where ⇤ ⌧ m�

when �2 < 2. Given this assumption, it will be useful to shift the renormalization scale to

m� in (3.14) for any value of �2 > 0. Using (3.8), this gives the form of the action we will

use from here onward:

S =

Z

M2


1

2
R2
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2
+ m�2

�
⇤

2��2 cos(2') +
1

2e2
kdak

2
�
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Nd' ^ a

�
. (3.15)

As we already mentioned in the introduction, when m = 0, and we do not turn on the

O� deformation, the model has ZN 1-form and 0-form symmetries. These two symmetries

have a mixed ’t Hooft anomaly. One simple way to see this is to analyze the theory on

R ⇥ S1 [4]. Another way is to write explicit expressions for the topological operators that

generate these symmetries [10]. To do this it is helpful to rewrite the action in first-order

form as

S1st order =

Z

M2


1

2R2

wwwb(1)
www

2

+ ib(1) ^ d' + m�2
�

⇤
2��2 cos(2')

+
e2

2

wwwb(0)
www

2

+ ib(0) ^ da �
i

2⇡
Nd' ^ a

�
. (3.16)

The chiral symmetry is associated with the existence of topological line operators of the form

Vk(C) = exp


2⇡ik

N

Z

C

✓
b(1) +

N

2⇡
a

◆�
. (3.17)

The 1-form symmetry is generated by local topological operators Un(x). They take form

Un(x) = exp


2⇡in

N

✓
b(0) +

N

2⇡
'

◆�
. (3.18)

The key thing to take from these expressions is that Un(x) is charged under the ZN chiral

symmetry, while Vk(C) is charged under the ZN 1-form symmetry. This means that there

is the ’t Hooft anomaly between the two ZN global symmetries.

The expectation values of U1(x) take the form

hU1(x)i = e2⇡ik/N , (3.19)

see e.g. [10] for an extensive discussion. The choice of k labels the N universes of the

model. Domain walls between universes have infinite tension, and can be thought of as Wilson
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lines. The form of Eq. (3.18) implies that chiral symmetry relates di↵erent values of k. The

di↵erent universes have identical vacuum energy densities, which implies that chiral symmetry

is spontaneously broken on R2. But the fact that domain walls between the chiral vacua can

be thought of as Wilson lines implies that the 1-form symmetry is also spontaneously broken.

To summarize, when m = 0 and we do not turn on the O� perturbation, the theory does

not confine test charges with q 2 N.

Another instructive perspective [8] on deconfinement in the massless non-deformed Schwinger

model is o↵ered by the fact that given a charge-1 Wilson loop W (C) on a contour C, we

can always insert V1(C0
), where C0 is a contour lying e.g. inside C, and has an opposite

orientation to C. On the one hand, the the operator V1(C0
) is topological, so C0 can be

shrunk to arbitrarily small size, and V1(C0
! 0) ! 1, so that

hW (C)i = hV1(C
0
)W (C)i . (3.20)

But on the other hand, the operator Vk(C0
) looks like the world-line of a particle with charge

k. If we take C0
= C to be the curve C traversed in the opposite direction, then

hV1(C
0
= C)W (C)i =

⌧
exp


�

2⇡i

N

Z

C

b(1)
��

(3.21)

and the expectation value on the right has a perimeter-law expectation value because b(1) is

not electrically charged. This argument leads to us to conclude that W (C) itself must have

a perimeter-law expectation value.

If we turn on the O� deformation, so that ⇤ 6= 0, the exact chiral symmetry is reduced

to Z2. (The approxiate low-energy chiral symmetry can be larger.) There is now only one

topological line operator, VN/2(C). Correspondingly, the ’t Hooft anomaly is between the

surviving Z2 chiral symmetry and the Z2 subgroup of center symmetry generated by

UN/2(x) = exp


i⇡ b(0) +

iN

2
'

�
. (3.22)

This means that test charges with q = N/2 should be deconfined. The fate of confinement

for test charges in other representations depends on whether O� is relevant, and will be

discussed below.

4 Dynamics on R2

In the following sections we examine the dynamics of the charge-N Schwinger model with

four-fermion deformations. We first discuss the physics on R2, where our analysis will be

under analytic control so long as the coe�cient of the Z2-invariant chiral symmetry-breaking

four-fermion deformation is small enough.

First, suppose m = 0, and turn o↵ the O� deformation. Let us view R2 as the infinite-

volume limit of some closed manifold M2, such as a torus, and drop the boundary term in

Eq. (3.15). The gauge field a enters the action as f = da, so instead of integrating over a we
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chiral symmetry at long distances as we take the UV scale ⇤ to infinity. The considerations

in Sec. 2.2 imply that there is a non-vanishing string tension for m�/⇤ 6= 0, but it goes to

zero as ⇤ becomes large. In this sense the theory is no more (and no less) confining than

compact U(1) QED in 2+1 dimensions on a Euclidean lattice with the Wilson gauge action.

For us the more interesting case is R2 > 1/(2⇡), where O� is relevant, and ⇤ should

be interpreted as an infrared scale, which we assume is small compared to m� .8 If N is even,

then the chiral symmetry is Z2 at long distances. We would like to determine the realization

of this symmetry, as well as the realization of the ZN 1-form symmetry. To do this it is

important to understand when our Lagrangian is weakly coupled. The squared mass of the

particles created by ' in the kth universe (that is, the coe�cient of 1

2
'̃2) is

m2

e↵
= m2

�

"
1 +

✓
⇤

m�

◆2��2 4

R2
cos

✓
4⇡k

n

◆
+ · · ·

#
. (4.5)

while the coe�cient of e.g. the quartic interaction �

4!
'̃4 is

� = m2

�

"
�

16

R4

✓
⇤

m�

◆2��2

cos

✓
4⇡k

N

◆
+ · · ·

#
. (4.6)

where the · · · represents terms that are higher-order in the small parameter
⇣

⇤

m�

⌘2��2

.

The theory is weakly-coupled if e.g. the parameter |�/m2

e↵
| ⌧ 1, and

����
�

m2

e↵

���� =
16

⇣
⇤

m�

⌘2��2

cos

⇣
4⇡k

n

⌘

R4


1 +

4

R2

⇣
⇤

m�

⌘2��2

cos

⇣
4⇡k

n

⌘ � '
16

R4

✓
⇤

m�

◆2��2

cos

✓
4⇡k

n

◆
. (4.7)

This illustrates the fact that the massless four-Fermi-deformed Schwinger model is weakly

coupled when
⇣

⇤

m�

⌘2��2

⌧ 1, just as the conventional massive Schwinger model is weakly

coupled when m /e ⌧ 1.

When the model is weakly-coupled we can read o↵ the vacuum structure and the confining

string tensions by considering the vacuum energy densities of the universes in the Lagrangian.

Indeed, this was already discussed in Sec. 2, where we had already tacitly assumed that there

is a duality frame where the theory is weakly coupled.

5 Dynamics on R ⇥ S1

We now discuss the calculation of the string tension both in the mass-perturbed theory as

well as the massless theory with four-fermion perturbations on R⇥S1 with small S1, as well

8If R2 = 1/(2⇡), then O� is marginal if the gauge interaction is turned o↵ and m = 0. This means that

O� enters the action with a dimensionless coe�cient which we can call �. It may be interesting to understand

whether and how this parameter runs with the renormalization scale.
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does not run in the ST model: it is an exactly marginal parameter. The energy is bounded

from below so long as g > �⇡/2. When g 6= 0, the renormalization scale-change relation

becomes
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Equation (3.8) implies that the scaling dimension of eik' is
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1 + 2g/⇡
, (3.9)

so that the bosonization rule for e.g. the fermion bilinear becomes
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ei'(x) . (3.10)

We can also state the bosonization rule for the operator

O� =  L R(Dµ L)(D
µ R) , (3.11)
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Since we will be working with the bosonized form of the theory from here onward, we will
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7Our argument for Eq. (3.12) is based on matching symmetries and scaling dimensions. We are not aware

of a complete and explicit discussion of bosonization for this chirality-violating four-fermion operator in the

literature for the operator O�, although see Sec. 5.6 of Ref. [24] for some interesting related discussion in a

condensed-matter context.
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Adding      modification leads to the breaking of chiral 
symmetry without emergence of the fermion mass and 
confinement arises.  It makes the situation more 
analogous to 4d confinement.      
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