**XVth Quark Confinement and the Hadron Spectrum Conference** 

**University of Stavanger** 

2 August, 2022

#### Four-fermion deformations of the massless Schwinger model and confinement

Arkady Vainshtein

FTPI, U of Minnesota and KITP, UCSB

Based on work: e-print: 2203.13156 [hep-th] with Alexey Cherman, Theodore Jacobson, Mikhail Shifman, and Mithat Ünsal

# Schwinger model

Schwinger model - QED in the I+I spacetime dimensions - is a famous playground for the exploration of ideas about quark confinement and chiral symmetry breaking. Schwinger '62; Coleman, Jackiw, Susskind '75

Originally the model was introduced as U(I) gauge theory with a single unit charge Dirac fermion. Our starting point will be the charge-N Schwinger model.

Hanson, Nielsen, Zahed '95 + many recent works Its Euclidean action

$$S_{
m standard} = \int d^2x \, \left( rac{1}{4e^2} f_{\mu
u}^2 + \overline{\psi} \left[ \gamma^\mu (\partial_\mu + iNa_\mu) \right] \psi 
ight) + m_\psi \overline{\psi}_L \psi_R + {
m h.c.}$$

contains U(1) gauge field  $a_{\mu}$ , Dirac fermion  $\psi$ , the integer N is the charge of the fermion (in units of e). Heavy probe have the unit charge. The integer N keeps the group manifold compact.

We also add the topological  $\theta$  term,

$$S_{ heta} = rac{i heta}{2\pi}\int_{M_2} da$$

Coleman observed that changing  $\theta$  by  $2\pi$  corresponds to inserting charges  $\pm 1$  at  $x = \pm \infty$ . It means the k-string tension can be written as

$$T_k( heta) = \mathcal{E}( heta+2\pi k) - \mathcal{E}( heta)\,,$$

where  $\mathcal{E}(\theta)$  is the vacuum energy density. At  $m_{\psi} = 0$ there is no  $\theta$  dependence, so the massless theory does not confine integer test charges.

$$\begin{array}{l} \text{When } m_{\psi} \neq 0 \\ \mathcal{E}_{k}(\theta) = -m_{\psi} \langle \overline{\psi}_{L} \psi_{R} \rangle + \mathrm{c.c} \\ \langle \overline{\psi}_{L} \psi_{R} \rangle = \frac{m_{\gamma} \, e^{\gamma}}{4\pi} e^{i \frac{\theta + 2\pi k}{N}}, \quad k = 1, \ldots, N \quad m_{\gamma} = N e / \sqrt{\pi} \end{array}$$

$$T_k(\theta) = -\frac{m_{\psi}m_{\gamma}e^{\gamma}}{2\pi} \left[ \cos\left(\frac{\theta + 2\pi\kappa}{N}\right) - \cos\left(\frac{\theta}{N}\right) \right] + O(m_{\psi}^2)$$

#### For $\theta = 0$ it becomes

$$T_k( heta=0)=rac{m_\psi m_\gamma e^\gamma}{\pi}\sin^2\left(rac{\pi k}{N}
ight)+O(m_\psi^2)\,.$$

Clearly, there is a finite tension, and hence confinement for charges  $k \neq 0 \pmod{N}$ , and charges that are multiples of N are screened.

$$ext{mass deformation}: \quad \langle W_k(C) 
angle = egin{cases} e^{-T_k A(C)}, & k 
eq 0 \pmod{N} \ e^{-MP(C)}, & k = 0 \pmod{N} \end{cases}$$

For any value of  $m_{\psi}$  the model has  $\mathbb{Z}_N$  1-form symmetry. Generated by *N* topological operators  $U_n(x)$  acting on Wilson loops:

$$\langle U_n(x)\,e^{iq\int_C a_\mu dx^\mu}
angle = \exp\left(rac{2\pi inq}{N}\ell(C,x)
ight)\langle e^{iq\int_C a_\mu dx^\mu}
angle$$

where  $\ell(C, x)$  is the linking number of C and x.

 $\mathbb{Z}_N$  1-form symmetry sharply defined the concept of confinement.

When  $m_{\psi} = 0$  - at the classical level a U(1) axial symmetry broken by ABJ anomaly to the discrete  $\mathbb{Z}_N$ ,

 $\psi(x) 
ightarrow e^{2\pi i \gamma_5/(2N)} \psi(x)$  .

Under action of  $\mathbb{Z}_N$ ,  $\overline{\psi}_L \psi_R \to e^{2\pi i/N} \overline{\psi}_L \psi_R$  so is meaningful to discuss spontaneous symmetry breaking. The above  $\mathbb{Z}_N$  0-form chiral symmetry and the  $\mathbb{Z}_N$  1-form have a mixed 't Hooft anomaly Anber, Poppitz '18 Komargodski, Ohmori Roumpedakis, Seifnashri '21

At  $m_{\psi} = 0$  both, axial  $\mathbb{Z}_N 0$ -form and  $\mathbb{Z}_N 1$ -form symmetries are spontaneously broken.

The second breaking implies that the test unit charges are not confined and the Wilson loop has a perimeter behavior. Confinement appears at  $m_{\psi} \neq 0$ .

Can we modify the model to get confinement at  $m_{\psi} = 0$ ?

### Four-fermion modifications

The Schwinger model is super-renormalizable, approaches a free field CFT at high energies. There is an unique exactly marginal four-fermion operator

 $\mathcal{O}_{
m jj}=j_{\mu}j^{\mu}=\overline{\psi}\gamma_{\mu}\psi\,\overline{\psi}\gamma^{\mu}\psi=-4\overline{\psi}_{R}\psi_{L}\overline{\psi}_{L}\psi_{R}\,.$ 

This 'Thirring model' operator with  $\Delta_{jj} = 2$  preserves all the symmetries of the model. Adding it with a dimensionless coefficient g we come to what we call the Schwinger-Thirring (ST) model:

$$S_{
m ST} = S_{
m standard} + g \, \int d^2 x \, \mathcal{O}_{jj}$$

It is important that when  $m_{\psi} = 0$  the parameter g remains exactly marginal even in the presence of gauge interaction.

The only limitation for value of g is  $g > g_* = -\pi/2$ Unitarity is broken below  $g_*$ . While the model still approaches a free field CFT point at high energies it becomes an interacting fixed point scaling dimensions of operators do not coincide with canonical ones.

The lowest dimension four-fermion operator breaking chiral symmetry is .

$$\mathcal{O}_{\chi} = \overline{\psi}_L \psi_R (D_\mu \overline{\psi}_L) (D^\mu \psi_R) \,.$$

For its scaling dimension  $\Delta_{\chi}$  bosonization implies

$$\Delta_\chi = rac{4}{1+2g/\pi}\,.$$

Thus,  $\mathcal{O}_{\chi}$  is RG irrelevant at g = 0, but becomes relevant when  $g > \pi/2$ .

What happens to the low-energy physics once we add  $\mathcal{O}_{\chi}$ ?

$$egin{aligned} S &= S_{ ext{ST}} + \Lambda^{2-\Delta_\chi} \int d^2x \left(\mathcal{O}_\chi + \mathcal{O}_\chi^\dagger
ight) \ S_{ ext{ST}} &= S_{ ext{standard}} + g \int d^2x \, \mathcal{O}_{jj} \end{aligned}$$

We limit ourselves by even N. In this case  $\mathbb{Z}_N$  chiral symmetry is broken by  $\mathcal{O}_{\chi}$  to  $\mathbb{Z}_2$ . This  $\mathbb{Z}_2$  is sufficient to forbid an emergence of mass when we start with  $m_{\psi} = 0$ 

The result is illustrated at the figure.



Note that  $\mathcal{O}_{\chi}$  deformation introduces  $\theta$  dependence even in the massless case,  $O_{\chi} \mapsto e^{2i\theta/N} \mathcal{O}_{\chi}$ . It leads to

$$T_k \sim -\Lambda^{2-\Delta_{\chi}} \left[ \cos\left(rac{2( heta+2\pi k)}{N}
ight) - \cos\left(rac{2 heta}{N}
ight) 
ight] + \mathcal{O}(\Lambda^{2(2-\Delta_{\chi})})$$

and at  $\theta = 0$ 

$$T_k \sim \Lambda^{2-\Delta_\chi} \sin^2\left(rac{2\pi k}{N}
ight) + \mathcal{O}(\Lambda^{2(2-\Delta_\chi)})\,.$$



#### Bosonizations

The compact boson action corresponding to free-fermion theory is  $\int_{1}^{1} 1$ 

$$S_{arphi, ext{free}} = \int_{M_2} rac{1}{8\pi} \, \|darphi\|^2$$

The conserved currents are related via

$$j_V \leftrightarrow -\frac{1}{2\pi} \star d\varphi, \quad j_A \leftrightarrow \frac{i}{4\pi} d\varphi.$$
  
Chiral symmetry acts via  $e^{i\varphi} \rightarrow e^{2\pi i/N} e^{i\varphi}$ . So  
 $\overline{\psi}_L(x) \psi_R(x) \leftrightarrow -\frac{\mu e^{\gamma}}{2\pi} e^{i\varphi(x)}$   
Change of the renormalization scale

$$e^{ikarphi} 
ightarrow \left|rac{\mu'}{\mu}
ight|^{k^2}\!\!e^{ikarphi}$$

#### For four-fermion operator $\mathcal{O}_{jj}$ $|j_V|^2 = \overline{\psi} \gamma_\mu \psi \overline{\psi} \gamma^\mu \psi \leftrightarrow \frac{1}{4\pi^2} |d\varphi|^2.$

**Bozonized version of Schwinger - Thirring model** 

Thus, at  $m_\psi = 0$ 

$$S = \int_{M_2} \left[ rac{1}{2} R^2 \left\| darphi 
ight\|^2 + m_\gamma^{\Delta_2} \Lambda^{2-\Delta_2} \cos(2arphi) + rac{1}{2e^2} \left\| da 
ight\|^2 - rac{i}{2\pi} N darphi \wedge a 
ight].$$

## Conclusions

We analyzed bosonized form in  $\mathbb{R}^2$  and  $\mathbb{R} \times S^1$  geometries.

- It allows for explicit construction of 0-form and 1-form operators. Without  $\mathcal{O}_{\chi}$  modification 't Hooft anomaly in their mixing explains deconfinement in the model.
- Adding  $\mathcal{O}_{\chi}$  modification leads to the breaking of chiral symmetry without emergence of the fermion mass and confinement arises. It makes the situation more analogous to 4d confinement.