Localisation of Dirac eigenmodes and confinement in gauge theories: the Roberge-Weiss transition

Matteo Giordano

Eötvös Loránd University (ELTE) Budapest

Confinement XV
University of Stavanger
2nd August 2022

Based on M. Cardinali, M. D'Elia, F. Garosi, MG, PRD 105 (2022) 014506 [arXiv:2110.10029]

QCD at Finite Temperature

Analytic crossover in the range $T \simeq 145-165 \mathrm{MeV}$
Deconfinement, chiral symmetry restoration in the same temperature range

Renormalised Polyakov loop and chiral condensate Figures from [Borsányi et al. (2010)]
In other QCD-like gauge theories with genuine phase transitions

- deconfinement improves chiral symmetry properties if single transition (e.g., pure gauge theory, $N_{f}=3$ staggered fermions on coarse lattices)
- $T_{\text {dec }}<T_{\chi}$ if two transitions are present (e.g., adjoint fermions)

Relation between the two phenomena still not fully clear

Finite-Temperature Gauge Theory on the Lattice

Partition function at finite T (imaginary time formulation)

$$
Z=\int[D A] \operatorname{det}(\not D[A]+m) e^{-S_{G}[A]} \rightarrow \int[D U] \operatorname{det}\left(D_{\mathrm{lat}}[U]+m\right) e^{-S_{G}^{\text {lat }}[U]}
$$

- Euclidean fields, compact temporal direction of size $1 / T$
- periodic/antiperiodic temporal b.c. for gauge/fermion fields

Lattice approach: Euclidean continuum replaced by discrete finite lattice

- Fields associated with lattice elements: fermions \rightarrow sites, gauge fields \rightarrow edges
- Hypercubic $N_{t} \times N_{s}^{3}$ lattice w/periodic spatial b.c., temporal b.c. as above
- Thermodynamic $(V \rightarrow \infty)$ and continuum $(a \rightarrow 0)$ limits taken eventually at fixed $T=\left(a N_{t}\right)^{-1}$

Deconfinement and χ SB from spontaneous SB

Deconfinement and χ SB from SSB in opposite quark-mass limits
Quark mass $m \rightarrow \infty$ (pure gauge theory)

- Exact \mathbb{Z}_{3} centre symmetry
- Spontaneously broken above $T_{c} \approx 290 \mathrm{MeV}$ [G. Boyd et al. (1996)]

Quark free energy from Polyakov loop

$$
\langle\operatorname{tr} P\rangle \propto e^{-F_{q} / T}
$$

$T<T_{c}:\langle\operatorname{tr} P\rangle=0 \Rightarrow F_{q}=\infty$
$T>T_{c}:\langle\operatorname{tr} P\rangle \neq 0 \Rightarrow F_{q}<\infty$
Deconfinement $=$ PL ordering

Deconfinement and χ SB from spontaneous SB

Deconfinement and χ SB from SSB in opposite quark-mass limits
Quark mass $m \rightarrow \infty$ (pure gauge theory)

- Exact \mathbb{Z}_{3} centre symmetry
- Spontaneously broken above $T_{c} \approx 290 \mathrm{MeV}$ [G. Boyd et al. (1996)]

Quark free energy from Polyakov loop

$$
\langle\operatorname{tr} P\rangle \propto e^{-F_{q} / T}
$$

$T<T_{c}:\langle\operatorname{tr} P\rangle=0 \Rightarrow F_{q}=\infty$
$T>T_{c}:\langle\operatorname{tr} P\rangle \neq 0 \Rightarrow F_{q}<\infty$
Deconfinement $=$ PL ordering

Deconfinement and χ SB from spontaneous SB

Deconfinement and χ SB from SSB in opposite quark-mass limits
Quark mass $m \rightarrow \infty$ (pure gauge theory)

- Exact \mathbb{Z}_{3} centre symmetry
- Spontaneously broken above $T_{c} \approx 290 \mathrm{MeV}$ [G. Boyd et al. (1996)]

Quark free energy from Polyakov loop

$$
\langle\operatorname{tr} P\rangle \propto e^{-F_{q} / T}
$$

$T<T_{c}:\langle\operatorname{tr} P\rangle=0 \Rightarrow F_{q}=\infty$
$T>T_{c}:\langle\operatorname{tr} P\rangle \neq 0 \Rightarrow F_{q}<\infty$
Deconfinement $=$ PL ordering

Deconfinement and χ SB from spontaneous SB

Quark mass $m \rightarrow 0$

- Exact $\operatorname{SU}\left(N_{f}\right)_{L} \times \operatorname{SU}\left(N_{f}\right)_{R}$ chiral symmetry
- Spontaneously broken below $T_{c}\left(N_{f}=2\right) \approx 132 \mathrm{MeV}$ [Ding et al. (2019)]

$$
\begin{aligned}
|\langle\bar{\psi} \psi\rangle| & =\int_{0}^{\infty} d \lambda \frac{2 m \rho(\lambda)}{\lambda^{2}+m^{2}} \underset{m \rightarrow 0}{\rightarrow} \pi \rho\left(0^{+}\right) \\
\rho(\lambda) & =\lim _{V \rightarrow \infty} \frac{T}{V}\left\langle\sum_{n} \delta\left(\lambda-\lambda_{n}\right)\right\rangle
\end{aligned}
$$

$\chi \mathrm{SB}=$ accumulation of Dirac modes at $\lambda=0$

Different symmetries, approximate $@ m_{\text {phys }}$: how do they affect each other?

Localisation of Dirac eigenmodes

Low Dirac modes become localised at the QCD transition

Delocalised mode

- extends throughout system
- $\|\psi(x)\|^{2} \sim 1 / L^{\alpha}$ with $0<\alpha \leq d$
cond-mat: delocalised if $\alpha=d$, critical if $0<\alpha<d$

Localised mode

- confined in finite region
- $\|\psi(x)\|^{2} \sim 1 / L^{0}$ inside, negligible outside

$$
\begin{aligned}
& \int_{0}^{\beta} d t \int d^{3} x\left\|\psi_{n}(t, \vec{x})\right\|^{2}=1 \\
& \left\|\psi_{n}(t, \vec{x})\right\|^{2} \equiv \sum_{c, \eta}\left|\psi_{n c, \eta}(t, \vec{x})\right|^{2}
\end{aligned}
$$

Figures from [Ujfalusi et al. (2015)]

Localisation of Dirac eigenmodes in QCD

Participation ratio \approx fraction of system occupied by a mode

- Mobility edge λ_{c} separates localised and delocalised modes $\left(T>T_{c}\right)$
$\langle\mathrm{PR}\rangle_{\lambda}=\frac{T}{L^{d}}\left\langle\sum_{n} \delta\left(\lambda-\lambda_{n}\right) \operatorname{IPR}_{n}^{-1}\right\rangle \sim L^{-(d-\alpha)}$
- Second-order (Anderson) transition at λ_{c}

Localisation and spectral statistics

Localisation of eigenmodes reflects on statistical properties of eigenvalues

- delocalised modes easily mixed by fluctuations \rightarrow RMT- type statistics
- localised modes fluctuate independently \rightarrow Poisson statistics

Universal expectations for unfolded level spacings $s_{n}=\frac{\lambda_{n+1}-\lambda_{n}}{\left\langle\lambda_{n+1}-\lambda_{n}\right\rangle_{\lambda}}$

- local spacing distribution $p_{\lambda}(s, L)$

$$
I_{s_{0}}(\lambda)=\int_{0}^{s_{0}} d s p_{\lambda}(s)
$$

$s_{0} \approx 0.508$ maximises RMT / Poisson difference

- $p_{\lambda} \rightarrow p_{\text {Poisson }}$ (localised) or $p_{\lambda} \rightarrow p_{\mathrm{RMT}}$ (delocalised) as system size $L \rightarrow \infty$

- $\lambda_{c}=$ scale-invariant point, critical statistics $p_{\text {crit }}$

Mobility edge in QCD

Mobility edge extrapolates to 0 in the crossover region [Kovács, Pittler (2012)] No localised modes in the confined/chirally broken phase at low T

Figure from [Kovács, Pittler (2012)]

- Numerical evidence from the lattice [MG, Kovács (2021)]
- Localised modes seen with various fermion discretisations, survive continuum limit \Rightarrow not a lattice artefact
- Same critical features as 3D unitary Anderson model [MG et al. (2014), Ujfalusi et al. (2015), Nishigaki et al. (2014)]

D ~ disordered Hamiltonian, localisation expected - but why at the origin?

Sea/islands picture

Ordered phase \approx configs. fluctuate around $\vec{A}=0, P(\vec{x})=\operatorname{diag}\left(e^{i \phi_{\mathrm{a}}}\right)$ Temporal "twist" from $\mathrm{ABC} \Rightarrow$ gapped spectrum $|\lambda| \geq \omega=\left(\pi-\phi_{\mathrm{PL}}\right) T$

$$
\phi_{\mathrm{PL}}=\max _{a, \phi_{a} \in(-\pi, \pi]}\left|\phi_{a}\right|
$$

- "Sea" of $\phi_{\mathrm{PL}}=0$ selected because of largest twist/spectral gap
- "Islands" $|\phi(\vec{x})|<\phi_{\text {PL }}$ reduce twist $/ \lambda$, support localised modes $<\omega$
[Bruckmann et al. (2011); MG et al. (2015, 2016)] Too simplistic, requires refinement [Baranka, MG (2022)]

Prediction: localisation in the deconfined phase of a generic gauge theory

Sea/islands picture

Ordered phase \approx configs. fluctuate around $\vec{A}=0, P(\vec{x})=\operatorname{diag}\left(e^{i \phi_{\mathrm{a}}}\right)$ Temporal "twist" from $\mathrm{ABC} \Rightarrow$ gapped spectrum $|\lambda| \geq \omega=\left(\pi-\phi_{\mathrm{PL}}\right) T$

- "Sea" of $\phi_{\mathrm{PL}}=0$ selected because of largest twist/spectral gap
- "Islands" $|\phi(\vec{x})|<\phi_{\text {PL }}$ reduce twist $/ \lambda$, support localised modes $<\omega$
[Bruckmann et al. (2011); MG et al. $(2015,2016)]$ Too simplistic, requires refinement [Baranka, MG (2022)]

Prediction: localisation in the deconfined phase of a generic gauge theory

Sea/islands picture

Ordered phase \approx configs. fluctuate around $\vec{A}=0, P(\vec{x})=\operatorname{diag}\left(e^{i \phi_{\mathrm{a}}}\right)$ Temporal "twist" from $\mathrm{ABC} \Rightarrow$ gapped spectrum $|\lambda| \geq \omega=\left(\pi-\phi_{\mathrm{PL}}\right) T$

- "Sea" of $\phi_{\mathrm{PL}}=0$ selected because of largest twist/spectral gap
- "Islands" $|\phi(\vec{x})|<\phi_{\text {PL }}$ reduce twist $/ \lambda$, support localised modes $<\omega$
[Bruckmann et al. (2011); MG et al. $(2015,2016)$] Too simplistic, requires refinement [Baranka, MG (2022)]

Prediction: localisation in the deconfined phase of a generic gauge theory

Sea/islands picture

Ordered phase \approx configs. fluctuate around $\vec{A}=0, P(\vec{x})=\operatorname{diag}\left(e^{i \phi_{\mathrm{a}}}\right)$ Temporal "twist" from $\mathrm{ABC} \Rightarrow$ gapped spectrum $|\lambda| \geq \omega=\left(\pi-\phi_{\mathrm{PL}}\right) T$

$$
\phi_{\mathrm{PL}}=\max _{a, \phi_{a} \in(-\pi, \pi]}\left|\phi_{a}\right|
$$

- "Sea" of $\phi_{\mathrm{PL}}=0$ selected because of largest twist/spectral gap
- "Islands" $|\phi(\vec{x})|<\phi_{\text {PL }}$ reduce twist $/ \lambda$, support localised modes $<\omega$
[Bruckmann et al. (2011); MG et al. $(2015,2016)$] Too simplistic, requires refinement [Baranka, MG (2022)]

Prediction: localisation in the deconfined phase of a generic gauge theory

Localisation and deconfinement - pure gauge theory

Localisation observed in the deconfined phase in many pure gauge systems

- $\operatorname{SU}(3)$ in $3+1 \mathrm{D}$ [Kovács, Vig $(2018,2020)$] and 2+1D [MG (2019)]
- SU(3) + trace deformation [Bonati et al. (2021)]
- \mathbb{Z}_{2} [Baranka, MG (2021)] and \mathbb{Z}_{3} [Baranka, MG (2022)] in 2+1D

Localisation and deconfinement - fermions

Localisation in a system with fermions displaying genuine phase transition: $\mathrm{SU}(3)+N_{f}=3$ unimproved rooted staggered fermions on $N_{t}=4$ lattices
[De Forcrand, Philipsen (2003)]

Figures from [MG et al. (2017)]

- First-order, (partially) deconfining and (partially) chirally restoring p.t.
- Localised modes appear at the transition
- Transition is a lattice artefact, does not survive continuum limit

Imaginary chemical potential and Roberge-Weiss symmetry

System with physical transition? Roberge-Weiss transition at imaginary μ

- imaginary quark chemical potential $\mu_{\text {I }}$ enters like $g A_{4}$
- effective temporal boundary condition $e^{i\left(\pi+\phi_{\mathrm{PL}}\right)} \rightarrow e^{i\left(\pi+\phi_{\mathrm{PL}}+\hat{\mu}_{l}\right)}$
- $\hat{\mu}_{I} \rightarrow \hat{\mu}_{I} \pm \frac{2 \pi}{3}$ reabsorbed by centre transformation

Partition function periodic $Z\left(\hat{\mu}_{l}\right)$ under $\hat{\mu}_{I} \rightarrow \hat{\mu}_{I} \pm \frac{2 \pi}{3}$
[Roberge, Weiss (1986)]
Periodicity realised differently at low/high T :

- low $T: Z\left(\hat{\mu}_{I}\right)$ smooth periodic function
- high T : lines of first-order phase transitions at $\hat{\mu}_{I}=\frac{\pi}{3}+\frac{2 \pi}{3} n, n \in \mathbb{Z}$
- first-order lines end at second-order Ising point at $T_{\mathrm{RW}}=208(5) \mathrm{MeV}$
[C. Bonati et al. (2016)]

Figure from [C. Bonati et al. (2018)]

Roberge-Weiss transition and sea/islands picture

- gap in uniform config. modified, favoured sector changes with $\hat{\mu}_{I}$

$$
\hat{\mu}_{I}=0: \omega=\left(\pi-\left|\phi_{\mathrm{PL}}\right|\right) T \quad \hat{\mu}_{I}=\pi: \omega=\left|\phi_{\mathrm{PL}}\right| T
$$

- $\hat{\mu}_{I}=\frac{\pi}{3}+\frac{2 \pi}{3} n$: exact \mathbb{Z}_{2} centre symmetry (two centre sectors equally favoured), breaks spontaneously for $T>T_{\mathrm{RW}}$
- $\hat{\mu}_{I}=\pi$: complex sectors chosen, $\omega=\frac{2 \pi}{3} T$ for either sector
- fluctuations away from $e^{ \pm i \frac{2 \pi}{3}}$ reduce eigenvalue, lead to localisation
\Longrightarrow expect low modes to turn from delocalised to localised at T_{RW}

Roberge-Weiss transition and sea/islands picture

- gap in uniform config. modified, favoured sector changes with $\hat{\mu}_{I}$

$$
\hat{\mu}_{I}=0: \omega=\left(\pi-\left|\phi_{\mathrm{PL}}\right|\right) T \quad \hat{\mu}_{I}=\pi: \omega=\left|\phi_{\mathrm{PL}}\right| T
$$

- $\hat{\mu}_{I}=\frac{\pi}{3}+\frac{2 \pi}{3} n$: exact \mathbb{Z}_{2} centre symmetry (two centre sectors equally favoured), breaks spontaneously for $T>T_{\mathrm{RW}}$
- $\hat{\mu}_{I}=\pi$: complex sectors chosen, $\omega=\frac{2 \pi}{3} T$ for either sector
- fluctuations away from $e^{ \pm i \frac{2 \pi}{3}}$ reduce eigenvalue, lead to localisation
\Longrightarrow expect low modes to turn from delocalised to localised at T_{RW}

Roberge-Weiss transition and sea/islands picture

- gap in uniform config. modified, favoured sector changes with $\hat{\mu}_{I}$

$$
\hat{\mu}_{I}=0: \omega=\left(\pi-\left|\phi_{\mathrm{PL}}\right|\right) T \quad \hat{\mu}_{I}=\pi: \omega=\left|\phi_{\mathrm{PL}}\right| T
$$

- $\hat{\mu}_{I}=\frac{\pi}{3}+\frac{2 \pi}{3} n$: exact \mathbb{Z}_{2} centre symmetry (two centre sectors equally favoured), breaks spontaneously for $T>T_{\mathrm{RW}}$
- $\hat{\mu}_{I}=\pi$: complex sectors chosen, $\omega=\frac{2 \pi}{3} T$ for either sector
- fluctuations away from $e^{ \pm i \frac{2 \pi}{3}}$ reduce eigenvalue, lead to localisation
\Longrightarrow expect low modes to turn from delocalised to localised at T_{RW}

Roberge-Weiss transition and sea/islands picture

- gap in uniform config. modified, favoured sector changes with $\hat{\mu}_{I}$

$$
\hat{\mu}_{I}=0: \omega=\left(\pi-\left|\phi_{\mathrm{PL}}\right|\right) T \quad \hat{\mu}_{I}=\pi: \omega=\left|\phi_{\mathrm{PL}}\right| T
$$

- $\hat{\mu}_{I}=\frac{\pi}{3}+\frac{2 \pi}{3} n$: exact \mathbb{Z}_{2} centre symmetry (two centre sectors equally favoured), breaks spontaneously for $T>T_{\mathrm{RW}}$
- $\hat{\mu}_{I}=\pi$: complex sectors chosen, $\omega=\frac{2 \pi}{3} T$ for either sector
- fluctuations away from $e^{ \pm i \frac{2 \pi}{3}}$ reduce eigenvalue, lead to localisation
\Longrightarrow expect low modes to turn from delocalised to localised at T_{RW}

Numerical setup

Lattice discretisation of $N_{f}=2+1$ QCD

- physical quark masses
- finite temperature T
- imaginary chemical potential $\hat{\mu}_{I}=\pi$ ($=\mathrm{PBC}$ in temporal direction)

Details for the practitioners:

- 2-stout improved rooted staggered fermions
- tree-level improved Symanzik gauge action
- $N_{t}=4,6,8$ with aspect ratio 6 (also 8 for $N_{t}=4$)

Scan in temperature for $T>T_{\mathrm{RW}}$, study localisation using statistical properties of the Dirac spectrum

Localisation above T_{RW}

$$
I_{s_{0}}(\lambda)=\int_{0}^{s_{0}} d s p_{\lambda}(s)
$$

Critical value $I_{s_{0}}^{c r i t}$ known [MG et al. (2014)], use to find λ_{c} via $I_{s_{0}}\left(\lambda_{c}\right)=I_{s_{0}}^{\text {crit }}$

Mobility edge

Find $T_{\text {loc }}\left(N_{t}\right)$ where $\lambda_{c}=0$ for each lattice spacing $a=\left(T N_{t}\right)^{-1}$ fitting to

$$
\frac{\lambda_{c}}{m_{\mathrm{ud}}}=A\left(N_{t}\right)\left[T-T_{\mathrm{loc}}\left(N_{t}\right)\right]^{B\left(N_{T}\right)}
$$

Lowest T for each N_{t} excluded from fit, large finite-size effects for $N_{t}=6,8$

Localisation temperature

Within errors $T_{\text {loc }}\left(N_{t}\right)=T_{\mathrm{RW}}\left(N_{t}\right) \Longrightarrow$ strongly supports $T_{\text {loc }}=T_{\mathrm{RW}}$
Localised modes appear right at a genuine deconfinement transition (Roberge-Weiss transition) also in the presence of fermions

Summary and outlook

We studied localisation in QCD at imaginary chemical potential $\hat{\mu}_{I}=\pi$ above the Roberge-Weiss temperature T_{RW}, finding that:

- localised low Dirac modes are present \Longrightarrow confirms expectations of "sea/islands" picture
- localisation appears at T_{RW}
\Longrightarrow confirms strong connection with deconfinement
Open issues:
- many clues connecting localisation and deconfinement, but something still missing
- no studies yet in models with a trivial centre
- physical meaning of localisation still unclear
- in the chiral limit it affects (possibly kills) Goldstone excitations [MG (2021), MG (2022)]
- is localisation how deconfinement improves
 chiral symmetry properties?

References

[Borsányi et al. (2010)] S. Borsányi et al., JHEP 1009 (2010) 073			
[G. Boyd et al. (1996)] G. Boyd et al., Nucl. Phys. B 469 (1996) 419			
[Ding et al. (2019)] H. T. Ding et al., Phys. Rev. Lett. 123 (2019) 062002			
[Ujfalusi et al. (2015)] L. Ujfalusi, M. Giordano, F. Pittler, T. G. Kovács and I. Varga, Phys. Rev. D 92 (2015) 094513			
[MG et al. (2014)] M. Giordano, T. G. Kovács and F. Pittler, Phys. Rev. Lett. 112 (2014) 102002			
[MG, Kovács (2021)] M. Giordano and T. G. Kovács, Universe 7 (2021) 194			
[Kovács, Pittler (2012)] T. G. Kovács and F. Pittler, Phys. Rev. D 86 (2012) 114515			
[Kovács (2010)] T. G. Kovács, Phys. Rev. Lett. 104 (2010) 031601			
[Nishigaki et al. (2014)] S. M. Nishigaki, M. Giordano, T. G. Kovács and F. Pittler, PoS LATTICE2013 (2014), 018			
[MG (2022)] M. Giordano, arXiv:2206.11109 [hep-th].			
[Kovács, Vig (2018)] T. G. Kovács and R. Á. Vig, Phys. Rev. D 97 (2018) 014502			
[Kovács, Vig (2020)] R. Á. Vig and T. G. Kovács, Phys. Rev. D 101 (2020) 094511			
[MG (2019)] M. Giordano, JHEP 05 (2019) 204			
[Bonati et al. (2021)] C. Bonati, M. Cardinali, M. D'Elia, M. Giordano and F. Mazziotti, Phys. Rev. D 103 (2021) 034506			
[Baranka, MG (2021)] G. Baranka and M. Giordano, Phys. Rev. D 104 (2021) 054513			
[Bruckmann et al. (2011)] F. Bruckmann, T. G. Kovács and S. Schierenberg, Phys. Rev. D 84 (2011) 034505			
[Baranka, MG (2022)] G. Baranka and M. Giordano, in preparation			
[MG, Kovács, Pittler (2015)] M. Giordano, T. G. Kovács and F. Pittler, JHEP 04 (2015) 112			
[MG, Kovács, Pittler (2016)] M. Giordano, T. G. Kovács and F. Pittler, JHEP 06 (2016) 007			
[De Forcrand, Philipsen (2003)] P. de Forcrand and O. Philipsen, Nucl. Phys. B 673 (2003) 170			
[MG et al. (2017)] M. Giordano, S. D. Katz, T. G. Kovács and F. Pittler, JHEP 02 (2017) 055			
[Roberge, Weiss (1986)] A. Roberge and N. Weiss, Nucl. Phys. B 275 (1986) 734			
[C. Bonati et al. (2016)] C. Bonati et al., Phys. Rev. D 93 (2016) 074504			
[C. Bonati et al. (2018)] C. Bonati et al., Phys. Rev. D 99 (2019) 014502			
[MG (2021)] M. Giordano, J. Phys. A 54 (2021) 37			

