Confinement/deconfinement transition in DOmatrix model and appearance of M-theory

Stratos Pateloudis University of Regensburg, Germany

ConfXV: 02/08/22

Based on: 2110.01312

Elitenetzwerk Bayern

With: Bergner, Bodendorfer, Hanada, Rinaldi, Schäfer, Vranas, Watanabe (MCSMC)

O Definition of the model

- O Holography
- **O** Relation with gravity
- O Simulations

O Confinement in DO-matrix model

2

$$\mathscr{L} = \frac{1}{2g_{YM}^2} Tr\left\{ (D_t X_M)^2 + [X_M, X_N]^4 + i\bar{\psi}^{\alpha} D_t \psi^{\beta} + \bar{\psi}^{\alpha} \gamma^M_{\alpha\beta} [X_M, \psi^{\beta}] \right\}$$

 X_M : $N \times N$ bosonic hermitian matrices with $M = 1, \dots, 9$ D_t : $D_t \mathcal{O} = \partial_t \mathcal{O} - i[A_t, \mathcal{O}]$

 Ψ_{α} : $N \times N$ fermonic hermitian matrices with $\alpha = 1, \dots, 16$ $\lambda = g_{YM}^2 N = [\text{energy}]^3$

 $^{\rm O}$ Dimensional reduction of 4D $\mathcal{N}=4$ / 10D $\mathcal{N}=1$

O Matrix regularisation of 11D supermembrane De Wit-Hoppe-Nicolai, 1988

O Matrix model of M-theory (BFSS) Banks-Fischler-Shenker-Susskind, 1996

O Dual to type IIA black O-brane near 't Hoof limit Itzhaki- Maldacena-Sonnenschein-Yankielowicz, 1998

DO-matrix model (BFSS)

$$\mathscr{L} = \frac{1}{2g_{YM}^2} Tr\left\{ (D_t X_M)^2 + [X_M, X_N]^4 + i\bar{\psi}^{\alpha} D_t \psi^{\beta} + \bar{\psi}^{\alpha} \gamma^M_{\alpha\beta} [X_M, \psi^{\beta}] \right\}$$

 D_t : $D_t \mathcal{O} = \partial_t \mathcal{O} - i[A_t, \mathcal{O}]$ X_M : $N \times N$ bosonic hermitian matrices with $M = 1, \dots, 9$

 $\lambda = g_{YM}^2 N = [\text{energy}]^3$ Ψ_{α} : $N \times N$ fermonic hermitian matrices with $\alpha = 1, \dots, 16$

^O Dimensional reduction of 4D $\mathcal{N} = 4$ / 10D $\mathcal{N} = 1$ IIA M-theory IIB O Matrix regularisation of 11D supermembrane De Wit-Hoppe-Nicolai, 1988 Ι

• Matrix model of M-theory (BFSS) Banks-Fischler-Shenker-Susskind, 1996

O Dual to type IIA black O-brane near 't Hoof limit Itzhaki- Maldacena-Sonnenschein-Yankielowicz, 1998

DO-matrix model (BFSS)

 X_M : $N \times N$ bosonic hermitian matrices with $M = 1, \dots, 9$ D_t : $D_t \mathcal{O} = \partial_t \mathcal{O} - i[A_t, \mathcal{O}]$

 Ψ_{α} : $N \times N$ fermonic hermitian matrices with $\alpha = 1, \dots, 16$ $\lambda = g_{YM}^2 N = [\text{energy}]^3$

Gauge/gravity duality in string theory

Gauge/gravity duality in string theory

Gauge/gravity duality in string theory

 $\lambda = g_{YM}^2 N = [\text{energy}]^3 \implies g_{\text{eff}} = \frac{\lambda}{E^3}$

 $\lambda = g_{YM}^2 N = [\text{energy}]^3 \implies g_{\text{eff}} = \frac{\lambda}{F^3}$

Universität Regensburg

What does this correspond to in the gravity side?

The curious case of p=0 Universität Regensburg $g_{\rm eff} = \frac{\lambda}{E^3}$ Low energies \longleftrightarrow Strong coupling Black zero-brane in IIA SUGRA log(N) $E = 7.41 N^2 \lambda^{-3/5} T^{14/5}$ R_{B0} IIA M-theory D0 $\frac{R_{B0}^2}{\alpha'} \sim g_{eff}^{\frac{1}{2}} \sim \sqrt{\frac{\lambda}{E^3}}$ Matrix (d) (b) (c) (a) Perturbative Black holes $\sim \frac{g_{eff}^{7/4}}{N}$ SQM e^{ϕ} log(1/E)log(g,,,)

Itzhaki-Maldacena-Sonnenschein-Yankielowicz, 1998

The curious case of p=0 Universität Regensburg $g_{\rm eff} = \frac{\lambda}{F^3}$ Low energies \longleftrightarrow Strong coupling Black zero-brane in IIA SUGRA log(N) $E = 7.41 N^2 \lambda^{-3/5} T^{14/5}$ R_{B0} IIA M-theory **D0** $\frac{R_{B0}^2}{\alpha'} \sim g_{eff}^{\frac{1}{2}} \sim \sqrt{\frac{\lambda}{E^3}}$ Matrix (d) (b) (c) (a) Perturbative Black holes $\sim \frac{g_{eff}^{7/4}}{N}$ SQM e^{ϕ} log(1/E)log(g,,r)

Itzhaki-Maldacena-Sonnenschein-Yankielowicz, 1998

Universität Regensburg

Type IIA string theory is defined as M-theory compactified on a circle $\,{f S}^1$

 $R_{11} \sim 2\pi g_s = 2\pi e^{\phi} \simeq \frac{g_{\text{eff}}^{7/4}}{N}, \quad g_{\text{eff}} = \frac{\lambda}{E^3}$ Strong coupling/low energies corresponds to the M-theory region

To probe M-theory region $E \ll 1$ $(E = 7.41N^2\lambda^{-3/5}T^{14/5})$ \longrightarrow Low temperatures

Simulations

- **O** We can do Monte Carlo simulations
- **O** Borrow techniques from lattice QCD
- **O** (0+1)-d matrix quantum mechanics

O Parameters

T ____ Temperature

Simulations

- O We can do Monte Carlo simulations
- **O** Borrow techniques from lattice QCD
- O (0+1)-d matrix quantum mechanics

Confinement/deconfinement

Universität Regensburg

Aharony-Marsano-Minwalla-Papadodimas-Van Raamsdonk, 2003

Confinement/deconfinement

Continuum and N=10 @ T=0.2

[MCSMC, 2021]

[MCSMC, 2021]

ODO-matrix models interesting test examples for holography

OAn interesting possibility to probe contents of M-theory

• A stable confinement phase has been observed for the first time

O Confinement/deconfinement transition

---- Topology change in gravity

OMore studies (confined and deconfined) are important

ODO-matrix models interesting test examples for holography

OAn interesting possibility to probe contents of M-theory

O A stable confinement phase has been observed for the first time

O Confinement/deconfinement transition

----> Topology change in gravity

OMore studies (confined and deconfined) are important

Thank you